
Nonlinear State Estimation - An Engineering

Perspective

Thomas B. Schön
Division of Automatic Control

Linköping University
SE–58183 Linköping, Sweden.

E-mail: schon@isy.liu.se

December 9, 2008

2

Contents

1 Introduction 5

2 State Estimation 7
2.1 State-Space Models . 8
2.2 Conceptual Solution . 9
2.3 An Important Special Case . 10
2.4 Local Approximations . 11
2.5 Point Estimates . 12

3 Particle Filters 15
3.1 Random Number Generation . 16

3.1.1 Perfect Sampling . 16
3.1.2 Importance Sampling . 18
3.1.3 Sampling Importance Resampling 20

3.2 A First Particle Filter . 21
3.3 A General Particle Filter . 25

3.3.1 Resampling Algorithms 28
3.3.2 Computing the Estimate 30
3.3.3 Implementation . 31

A Useful Facts from Probability Theory 35

4 CONTENTS

Chapter 1

Introduction

The goal of this work is to provide a self contained introduction to the nonlinear
state estimation problem and how this can be solved using the particle filter.
The objective in nonlinear filtering is to recursively in time estimate the state
xt in the dynamic model,

xt+1 = ft(xt) + vt, (1.1a)
yt = ht(xt) + et. (1.1b)

This is a real-time signal processing problem, where new measurement informa-
tion inherently arrives in a sequential fashion.

The main ideas underlying the particle filter were conceived already at the
end of the 1940’s. However, it was not until 1993 that the first working particle
filter was discovered by Gordon et al. by introducing the final missing com-
ponent, the so called resampling step. There are still major ongoing research
efforts all over the world when it comes to the particle filter, both in terms of
theory and in terms of practical applications.

In Chapter 2 the nonlinear state estimation problem is mathematically de-
fined. This is achieved by introducing the nonlinear state-space models and
deriving the conceptual solution to the nonlinear state estimation problem. The
particle filter is introduced in Chapter 3. Since the particle filter is really all
about random numbers we will start by describing the underlying mechanisms
for generating random numbers. We will then move on by adding the concept
of time and dynamic models from Chapter 2 to the random number generators.
The result is the particle filter. An important part of Chapter 2 is that we also
provide Matlab code for the particle filter, implying that you can implement
the filter within five minutes. Finally, Appendix A provides some useful facts
from probability theory.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

State Estimation

The aim of this chapter is to mathematically define the nonlinear state estima-
tion problem we are considering in this work. The probability density function
p(xt|y1:s) contains all statistical information available about the state variable
xt, based on the information in the measurements y1:s. Here,

y1:s = {y1, y2, . . . , ys}, (2.1)

that is the set of all the measurements up to and including time s. Depending
on the relation between t and s in p(xt|y1:s) three different estimation problems
are obtained

• The filtering problem, t = s.

• The prediction problem, t > s.

• The smoothing problem, t < s.

This chapter will illustrate how the expressive power of the probability density
functions can be used to handle the filtering problem. The filtering problem will
be considered solved when we have access to an approximation of the filtering
density function p(xt|y1:t). Based on this approximation we can then form
various state estimates according to

I (g(xt)) , Ep(xt|y1:t) {g(xt)} =
∫

Rnx

g(xt)p(xt|y1:t)dxt. (2.2)

Typically g(xt) = xt is used in the above equations, providing us with and
estimate of the state itself. The objective in state estimation is to recursively
in time estimate the state in the dynamic model. The dynamic models we
are working with are modelled using state-space models, motivating Section 2.1
providing a brief introduction to state-space models. In Section 2.2 we will
derive the necessary expressions for the probability density functions that are
needed in order to solve the nonlinear filtering problem. Due to its importance,
the relation to the Kalman filter is given in Section 2.3. Finally, it is explained
how to obtain point estimates using the density functions derived in Section 2.2.

7

8 CHAPTER 2. STATE ESTIMATION

2.1 State-Space Models

The dynamical models that we work with are formulated using state-space mod-
els. A rather general state-space model is given by

xt+1 = ft(xt, vt, θ), (2.3a)
yt = ht(xt, et, θ), (2.3b)

where xt ∈ Rnx denotes the state, yt ∈ Rny denotes the measurement, θ
denotes possibly unknown parameters, vt and et denote the stochastic pro-
cess and measurement noise, respectively. Furthermore, the dynamic equa-
tions for the process (typically referred to as the process model) are denoted
by ft : Rnx × Rnv → Rnx and the equations modelling the sensors (typically
referred to as the measurement model) are denoted by ht : Rnx × Rne → Rny .
Note that any deterministic input signal ut is subsumed in the time-varying
dynamics. Since we are not concerned with parameter estimation in the present
work, we assume that all parameters are known and hence θ will not be present
in the expressions that follow. Most applied signal processing problems are for-
mulated using a special case of (2.3), where the noise processes are assumed to
enter additively according to the formulation given in Model 2.1.

Model 2.1 (Nonlinear state-space model with additive noise)

The nonlinear discrete-time state-space model with additive noise is given by

xt+1 = ft(xt) + vt, (2.4a)
yt = ht(xt) + et, (2.4b)

with vt and et independent and identically distributed i.i.d..

An alternative and useful formulation of the state-space model is the following

xt+1 ∼ p(xt+1|xt), (2.5a)
yt ∼ p(yt|xt). (2.5b)

In this formulation we state the model in terms of probability density functions,
which describe both the dynamics and the measurement relations. In order to
formulate Model 2.1 in the form (2.5) we make the following observations,

p(xt+1|xt) = pvt
(xt+1 − ft(xt)), (2.6a)

p(yt|xt) = pet
(yt − ht(xt)). (2.6b)

We will in this work only make use of probability density functions p(x) and
not the corresponding probability measures p(dx). The reason is to keep things
as simple as possible and the use of measure theory is only needed when de-
tails on convergence are discussed and such details will not be covered in this
introduction.

The most common special case of Model 2.1 is the linear (the functions f
and h are linear) state-space model, subject to Gaussian noise.

2.2. CONCEPTUAL SOLUTION 9

Model 2.2 (Linear state-space model with Gaussian noise)

The discrete-time linear state-space model, subject to Gaussian noise is given
by

xt+1 = Atxt + wt, wt ∼ N (0, Qt), (2.7a)
yt = Ctxt + et, et ∼ N (0, Rt). (2.7b)

The theory concerning linear state-space models is by now rather mature and
there are numerous text books available on the subject.

2.2 Conceptual Solution

This section is concerned with the problem of deriving expressions for the proba-
bility density functions that are needed for solving the nonlinear filtering prob-
lem. We will start by assuming that the model is given in the form (2.5),
repeated here for convenience

xt+1 ∼ p(xt+1|xt), (2.8a)
yt ∼ p(yt|xt). (2.8b)

Recall the according to (2.6) a model in the form (2.4) can straightforwardly
be converted into the form (2.8) above. In the development that follows Bayes’
theorem and the Markov property will be instrumental (See Appendix A for
details).

Consider the filtering density

p(xt|y1:t) = p(xt|yt, y1:t−1), (2.9)

which using Bayes’ theorem and the Markov property can be rewritten as

p(xt|y1:t) =
p(yt|xt, y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)
=
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (2.10)

In order to handle the denominator in the above equations it has to be expressed
using known densities. This can be accomplished by marginalizing the following
equation with respect to xt

p(yt, xt|y1:t−1) = p(yt|xt)p(xt|y1:t−1), (2.11)

which corresponds to integrating (2.11) with respect to xt, resulting in

p(yt|y1:t−1) =
∫

Rnx

p(yt|xt)p(xt|y1:t−1)dxt. (2.12)

Furthermore, in order to derive an expression for the one step ahead prediction
density p(xt+1|y1:t) we employ the marginalization trick once more by integrat-
ing the following equations with respect to xt,

p(xt+1, xt|y1:t) = p(xt+1|xt, y1:t)p(xt|y1:t) = p(xt+1|xt)p(xt|y1:t), (2.13)

10 CHAPTER 2. STATE ESTIMATION

resulting in the following expression

p(xt+1|y1:t) =
∫

Rnx

p(xt+1|xt)p(xt|y1:t)dxt. (2.14)

This equation is sometimes referred to as the Chapman–Kolmogorov equation.
These expressions are important, hence we summarize them in the following
theorem.

Theorem 1 If the dynamic model is given by

xt+1 ∼ p(xt+1|xt), (2.15a)
yt ∼ p(yt|xt), (2.15b)

the filtering density p(xt|y1:t) and the one step ahead prediction density p(xt+1|y1:t)
are given by

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(2.16a)

p(xt+1|y1:t) =
∫

Rnx

p(xt+1|xt)p(xt|y1:t)dxt, (2.16b)

where

p(yt|y1:t−1) =
∫

Rnx

p(yt|xt)p(xt|y1:t−1)dxt. (2.16c)

Given the complexity of the problem it is actually quite remarkable that we are
able to derive a result as the one given in Theorem 1 above. However, there is a
severe problem with this solution, the multidimensional integrals involved only
permit an analytical solution in a few special cases. The most important special
case is when the dynamic model is linear and the involved stochastic variables
are normal, Theorem 1 is then reduced to the Kalman filter (see the subsequent
section). This is due to the fact that the mathematics involved is tractable,
but most importantly it hinges on the fact that there are a vast amount of
real world applications where this special case has been successfully applied.
However, most applications would perform better if the nonlinear estimation
problem could be properly solved. More importantly this would also allow us
to tackle more complicated applications, which do not lend themselves to linear
algorithms. The particle filter has proved to be a very successful technique for
solving the nonlinear state estimation problem.

2.3 An Important Special Case

An important property of the linear state-space model, see Model 2.2, is that
all density functions involved are Gaussian. This is due to the fact that a linear
transformation of a Gaussian random variable will result in a new Gaussian
random variable. Another important fact is that a Gaussian density function
is completely parameterized by two parameters, the first and second order mo-
ments, i.e., the mean and the covariance. This implies that if it is assumed
that the underlying model is given by (2.7) the recursions in Theorem 1 can

2.4. LOCAL APPROXIMATIONS 11

be recast as recursive relations for the mean values and the covariances of the
involved probability density functions. This leads to an important corollary to
Theorem 1, the Kalman filter. Before stating the corollary the notation x̂t|s
is introduced, which denotes the estimate of the state x at time t using the
information available in the measurements up to and including time s. In other
words, x̂t|s = Ep(xt|y1:s) {xt}.

Corollary 1 (Kalman filter) Consider (2.7) and assume that the initial state
is distributed as x0 ∼ N (x̄0, P̄0). Then, the estimates for the filtering density
function and the one step ahead prediction density function are both normal,
according to

p̂(xt|y1:t) = N (x ; x̂t|t, Pt|t), (2.17a)
p̂(xt+1|y1:t) = N (x ; x̂t+1|t, Pt+1|t), (2.17b)

where

x̂t|t = x̂t|t−1 +Kt(yt − Ctx̂t|t−1), (2.18a)
Pt|t = Pt|t−1 −KtCtPt|t−1, (2.18b)

x̂t+1|t = Atx̂t|t, (2.18c)

Pt+1|t = AtPt|tA
T
t +Qt, (2.18d)

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t +Rt)−1, (2.18e)

with initial values x̂0|−1 = x̄0 and P0|−1 = P̄0.

There are many different ways in which this result can be proved. A good
way to practise the theory introduced above is to derive Corollary 1 based on
Theorem 1 and Model 2.2. Theorem 3 in Appendix A is useful.

2.4 Local Approximations

The idea employed in local methods is to approximate the nonlinear model by a
linear, Gaussian model. This model is only valid locally, but the Kalman filter
can readily be applied. The first approach along those lines was to linearize
the model along a nominal trajectory, resulting in the linearized Kalman filter.
An improvement to this was suggested by S. F. Schmidt et al. They suggested
that the linearization should be performed around the current estimate, rather
than around a nominal trajectory. The result is the extended Kalman filter
(or perhaps more appropriately the Schmidt EKF). More specifically, the local
approximation is obtained by linearizing the nonlinear model (2.4) by applying
a first-order Taylor expansion around the current estimate,

f(xt, t) ≈ f(x̂t|t, t) +
∂f(x, t)
∂x

∣∣∣∣
x=x̂t|t

(xt − x̂t|t), (2.19a)

h(xt, t) ≈ h(x̂t|t−1, t) +
∂h(x, t)
∂x

∣∣∣∣
x=x̂t|t−1

(xt − x̂t|t−1). (2.19b)

Using this approximation in (2.4) gives

xt+1 = f(x̂t|t, t)− Ftx̂t|t + Ftxt + wt, (2.20a)
yt = h(x̂t|t−1, t)−Htx̂t|t−1 +Htxt + et, (2.20b)

12 CHAPTER 2. STATE ESTIMATION

where

Ft ,
∂f(x, t)
∂x

∣∣∣∣
x=x̂t|t

, Ht ,
∂h(x, t)
∂x

∣∣∣∣
x=x̂t|t−1

. (2.21)

The approximate model given in (2.20) is a linear, Gaussian model in xt, which
implies that the Kalman filter given in Corollary 1 can be applied. The result
is the extended Kalman filter, given in Algorithm 2.1.

Algorithm 2.1 (Extended Kalman Filter (EKF))

Consider Model 2.1. An approximate sub-optimal estimate for the filter density
function p(xt|Yt), obtained by linearization, is recursively given according to

p̂(xt|Yt) = N (x ; x̂t|t, Pt|t), (2.22a)
p̂(xt+1|Yt) = N (x ; x̂t+1|t, Pt+1|t), (2.22b)

where

x̂t|t = x̂t|t−1 +Kt

(
yt − h(x̂t|t−1, t)

)
, (2.23a)

Pt|t = Pt|t−1 −KtHtPt|t−1, (2.23b)
x̂t+1|t = f(x̂t|t, t), (2.23c)

Pt+1|t = FtPt|tF
T
t +Qt, (2.23d)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1, (2.23e)

with initial values x̂1|0 = x̄1 and P1|0 = Π̄1. Furthermore, Ft and Ht are defined
by

Ft =
∂f(x, t)
∂x

∣∣∣∣
xt=x̂t|t

Ht =
∂h(x, t)
∂x

∣∣∣∣
xt=x̂t|t−1

(2.24)

One of the problems inherent in the EKF is that it might diverge. The liter-
ature contains several more or less ad hoc methods trying to counteract this
phenomenon and to further enhance the general performance of the EKF. To
mention a few examples we have, the iterated EKF and higher-order Taylor
expansions.

2.5 Point Estimates

The task of finding a point estimate can, in abstract terms, be cast as a prob-
lem of finding a transformation mt, which makes use of the information in the
measurements and the known input signals to produce estimates of the states
of interest.

mt : u1:t × y1:t → x̂t (2.25)

All information available in the measurements has been processed and inferred
into the density function p(xt|y1:t). This density function can then be used to
derive various point estimates, which is normally what the user would expect
from the estimation algorithm. Typically, the application does not need the

2.5. POINT ESTIMATES 13

entire probability density function. Instead it is sufficient to know how the
values of the various states evolve over time and a quality assessment of these
values. It is reasonable to claim that an estimate is useless, if we do not know
how good it is. Since a probabilistic framework is employed, this opens up for
using the tools available in probability theory and statistics for assessing the
quality of estimates, such as covariances, confidence regions, tests, etc.

This section is concerned with some of the most common mappings (2.25)
present in the literature. Most of the estimates are indeed based on approxima-
tions of the probability density functions p(xt|y1:t), but the estimates can also
be based on deterministic considerations.

From a probabilistic point of view a rather appealing point estimate is pro-
vided by choosing the value that minimizes the variance of the estimation error,
referred to as the minimum variance (MV) estimate

x̂MV
t , arg min

x̂t

E
{
‖xt − x̂t‖2

∣∣y1:t

}
(2.26)

where ‖xt‖2 = xTt xt. It is in fact possible to derive an explicit expression for
this estimate.

E
{
‖x̂t − xt‖2

∣∣y1:t

}
= E

{
(xt − x̂t)T (xt − x̂t)

∣∣y1:t

}
= E

{
xTt xt

∣∣y1:t

}
− 2x̂Tt E {xt|y1:t}+ x̂Tt x̂t

= ‖x̂t − E {xt|y1:t}‖2 + E
{
‖xt‖2|y1:t

}
− ‖E {xt|y1:t}‖2

(2.27)

The two last terms in (2.27) are independent of x̂t and hence (2.27) is minimized
by

x̂MV
t = E {xt|y1:t} =

∫
xtp(xt|y1:t) dxt. (2.28)

The above calculation explains the name, minimum mean square error (MMSE),
which is commonly used as an alternative name for the estimate (2.28).

Another point estimate which suggests itself, within the probabilistic frame-
work, is the point where the probability is most dense.

x̂MAP
t , arg max

xt

p(xt|y1:t) = arg max
xt

p(yt|xt)p(xt|y1:t−1), (2.29)

which is referred to as the maximum a posteriori (MAP) estimate. In the
second equality of (2.29) Bayes’ theorem and the Markov property are employed,
together with the fact that the maximization is performed over xt.

14 CHAPTER 2. STATE ESTIMATION

Chapter 3

Particle Filters

The key idea underlying the particle filter is to approximate the filtering density
function as a weighted set of samples

p̂N (xt|y1:t) =
N∑
i=1

witδ(xt − xit),
N∑
i=1

wit = 1, wit ≥ 0, ∀i, (3.1)

where δ(·) is the Dirac delta1 and wit denotes the weights associated with the
sample xit. Here it is worth noting that the samples xit are also referred to
as particles, which explains the name particle filter. The approximation (3.1)
allows the otherwise intractable integrals in (2.2) and (2.16) to be transformed
into tractable sums. For example, if we use (3.1) in order to evaluate (2.2) with
g(xt) = xt and s = t we straightforwardly have the following approximation

ÎN (xt) ≈
∫

Rnx

xtp̂N (xt|y1:t)dxt =
∫

Rnx

xt

N∑
i=1

witδ(xt − xit)dxt =
N∑
i=1

witx
i
t.

(3.3)

The representation (3.1) is fundamentally different from the representation used
in for instance the Kalman filter, where a specific functional form of the density
function is assumed (Gaussian). There the estimate is then represented by the
parameters (the mean and the covariance) parameterizing this density. In the
particle filter the filtering density is represented as a set of random samples
approximately distributed according to this density.

The particle filter is really all about random numbers, motivating Section 3.1,
where we introduce the concept of importance sampling. In Section 3.2 we will

1The Dirac delta is not a function, but it can formally be defined as a distribution. However,
for many purposes it can be manipulated as if it is a function. Informally, the Dirac delta
δ(x − a) is a function that has zero value everywhere, except at x = a where it is infinitely
large, such that its total integral is 1. The most important property of the Dirac delta is the
so called sifting property, ∫ ∞

−∞
f(x)δ(x− a)dx = f(a) (3.2)

for a test function f . The property will be heavily used in the discussion to come in order to
form the actual state estimates based on the particle approximations.

15

16 CHAPTER 3. PARTICLE FILTERS

the add the concept of dynamic models and time to the random number gener-
ators, providing us with a first particle filter. There are lots of embellishments
available for this first particle filter, some of which are introduced in Section 3.3,
where a more general particle filter is introduced.

3.1 Random Number Generation

The particle filter represents the filtering density function using a large number
of samples approximately drawn from the true filtering PDF. Hence, the ability
to generate random numbers distributed according to nonstandard probability
density functions is essential in order to device a particle filter. Before we
start our brief exposition on random number generation it is worth noting that
throughout this section there will be no notion of time, since that would only
complicate things without adding any additional understanding.

Here, the problem under consideration is how to generate samples from some
known probability density function, referred to as the target density t(x). If the
target density is a standard PDF, for example Gaussian, it is by now well-
known how to generate these random numbers. This leads to perfect samples,
in the sense that the samples are drawn exactly from the target density. This
case is further discussed in Section 3.1.1 below. However, in most problems we
typically cannot generate samples from t(x) directly. This calls for an alternative
solution and the idea is then to employ an alternate density that is simple to
draw samples from, referred to as the proposal density q(x). The only restriction
imposed on q(x) is that its support should include the support of t(x)2. When a
sample x̃ ∼ q(x) is drawn the probability that it was in fact generated from the
target density can be calculated. This probability can then be used to decide
whether x̃ should be considered to be a sample from t(x) or not. This probability
is referred to as the acceptance probability, and it is typically expressed as a
function of w(x̃), defined by the following relationship,

t(x̃) ∝ w(x̃)w(x̃), (3.4)

or equivalently

w(x̃) ∝ target density
proposal density

(3.5)

Depending on the exact details of how the acceptance probability is computed
different methods are obtained. The three most common methods used to de-
rive particle filters are, importance sampling, acceptance-rejection sampling and
Metropolis-Hastings independence sampling. The most well-used strategy is to
make use of the importance sampling idea and that will be done here as well.
However, we will first discuss perfect sampling.

3.1.1 Perfect Sampling

This section is concerned with the problem of calculating estimates (2.2) based
on the assumption that we have access to N i.i.d. samples, {xi}Ni=1 from the
target density t(x). This assumption is unrealistic from a practical point of

2The support of q(x) includes the support of t(x) if ∀x ∈ Rnx , t(x) > 0⇒ q(x) > 0.

3.1. RANDOM NUMBER GENERATION 17

view. Nevertheless, it will allow us to illustrate the key idea underlying the
particle filter. Using the samples {xi}Ni=1 an empirical estimate of the density
function t(x) can be formed according to

t̂N (x) =
N∑
i=1

1
N
δ
(
x− xi

)
. (3.6)

Using this empirical density an estimate of I(g(x)), defined in (2.2), is obtained
as

ÎN (g(x)) =
∫
g(x)t̂N (x)dx =

N∑
i=1

1
N
g(xi). (3.7)

This estimate is unbiased and according to the strong law of large numbers we
have that

lim
N→∞

ÎN (g(x)) a.s.−→ I(g(x)), (3.8)

where a.s.−→ denotes almost sure (a.s.) convergence. If we assume that σ2 =
I(g2(x))− I2(g(x)) <∞ the central limit theorem can be applied, which gives

lim
N→∞

√
N

σ

(
ÎN (g(x))− I(g(x))

) d−→ N (0, 1), (3.9)

where d−→ denotes convergence in distribution. Hence, using a large number of
samples {xi}Ni=1 we can easily estimate any quantity I(g(x)), according to (3.7).
Methods of this type are typically referred to as Monte Carlo methods. In
Example 3.1 we will illustrate perfect sampling from a Gaussian mixture.

Example 3.1 (Perfect Sampling from a Gaussian mixture)
This example will illustrate perfect sampling of the following Gaussian mix-
ture

t(x) = 0.3N (x ; 2, 2) + 0.7N (x ; 9, 19). (3.10)

Since the target PDF t(x) given in (3.10) is made up of normal PDF’s we
can generate samples from this using standard functions. That is, we can
generate realizations from the stochastic variable with the density function
given in (3.10). Using these realizations an empirical estimate t̂N (x) of the
true PDF can then be formed according to (3.6). The result is given in
Figure 3.1 using N = 5000 and N = 50000 samples.
The fact that the quality of the empirical density improves as the number
of samples increase should come as no surprise. The example gets more
interesting as we change to importance sampling in the subsequent section.

The assumption underlying the above discussion is that it is possible to obtain
i.i.d. samples from t(x). However, in practise this assumption is very seldom
valid. Nevertheless, the ideas sketched above can still be used if we are able to
generate random numbers from more complicated distributions.

18 CHAPTER 3. PARTICLE FILTERS

(a) Using 5000 samples (b) Using 50000 samples

Figure 3.1: Illustration of perfect sampling of the Gaussian mixture given
in (3.10). The dark gray shows the histogram obtained by perfect sampling and
the black line shows the true PDF.

3.1.2 Importance Sampling

The importance sampling idea can be used to generate random variables from
complicated densities. In discussing this algorithm the proposal density q(x)
is typically referred to as the importance density. Recall that the support of
the proposal density q(x) should include the support of the target density t(x).
To understand the idea behind importance sampling, note that integrals in the
form (2.2) can be rewritten as

I(g(x)) =
∫

Rnx

g(x)w̃(x)q(x)dx, (3.11)

where

w̃(x) ,
t(x)
q(x)

(3.12)

is referred to as the importance weight. We can now obtain an approximation
of the target density by first generating N � 1 i.i.d. samples from the proposal
density, call these {x̃i}Ni=1. These samples can then be used to evaluate the
corresponding importance weights (3.12) according to

w̃i =
t(x̃i)
q(x̃i)

, i = 1, . . . , N, (3.13)

where we have used the notation w̃i rather than w̃(x̃i) for brevity. This results
in the following approximation of the target density

t̃N (x) =
N∑
i=1

w̃iδ(x− x̃i). (3.14)

3.1. RANDOM NUMBER GENERATION 19

Based on the discussion in Section 3.1.1 it is now straightforward to make use
of the approximation (3.14) to obtain an estimate of I(g(x)) according to

ĨN (g(x)) =
∫

Rnx

g(x)t̃N (x)dx =
∫

Rnx

g(x)
N∑
i=1

w̃iδ(x− x̃i)dx =
N∑
i=1

w̃ig(x̃i).

(3.15)

Note that in order to carry out the above idea, the subtle assumption that
the target density t(x) can be exactly evaluated has to be fulfilled. In many
applications this is not the case, due to the fact that the target density is only
known up to a normalizing constant, which means that the importance weights
are only given by the following proportionality

w̃(x) ∝ t(x)
q(x)

, (3.16)

rather than by equality as in (3.12). This has to be dealt with, otherwise the
importance sampling idea breaks down, since the importance weights (3.12) will
be wrong. Luckily, this can easily be handled within the importance sampling
framework.

Intuitively, this should be possible to solve simply by using the normalized
importance weights

wi =
w̃i∑N
j=1 w̃

j
, i = 1, . . . , N, (3.17)

rather than the importance weights {w̃it}Ni=1 in the approximation (3.14). That
this is indeed true can be realized in the following way. First of all, note
that (2.2) can be rewritten as

I(g(x)) =
∫
g(x)w̃(x)q(x)dx∫
w̃(x)q(x)dx

(3.18)

since ∫
w̃(x)q(x)dx =

∫
t(x)dx = 1. (3.19)

Inserting the samples from the proposal density and the corresponding impor-
tance weights into (3.18) results in

ÎN (g(x)) =
∑N
i=1 w̃

ig(x̃i)∑N
j=1 w̃

j
=

N∑
i=1

wig(x̃i), (3.20)

where we have used the normalized importance weights (3.17) in the last equal-
ity. Before importance sampling is summarized in Algorithm 3.1 it is worth
noting that the target density approximation is given by

t̂N (x) =
N∑
i=1

wiδ(x− x̃i). (3.21)

The only difference from (3.14) is that here we are using the normalized rather
than the un-normalized importance weights, allowing us to handle un-normalized
target densities as well.

20 CHAPTER 3. PARTICLE FILTERS

Algorithm 3.1 (Importance sampling)

1. Generate N i.i.d. samples {x̃i}Ni=1 from the proposal density q(x) and com-
pute the importance weights

w̃i = t(x̃i)/q(x̃i), i = 1, . . . , N. (3.22)

2. Form the acceptance probabilities by normalization,

wi = w̃i/

N∑
j=1

w̃j , i = 1, . . . , N. (3.23)

Similarly to what was done in the previous section we can prove both a central
limit theorem and a strong law of large numbers for the importance sampling
algorithm. However, this falls outside the scope of the present text

3.1.3 Sampling Importance Resampling

The topic in the present section is to explain how to compute an unweighted em-
pirical density approximation from the weighted approximation given in (3.21).

The importance weights contains information about how probable it is that
the corresponding sample was in fact generated from the target density. Hence,
the importance weights can be used as acceptance probabilities, which allows us
to generate approximately independent samples {xi}Ni=1 from the target density
function. The approximation t̂N (x) given in (3.21) is defined using a finite
number of samples {x̃i}Ni=1. This implies that the process of generating the
samples from the target density function is limited to these samples. More
specifically this is realized by resampling among the samples. The resampling
step consists in, for each i = 1, . . . , N generating a new set of samples {xi}Ni=1

by drawing with replacement according to

P
(
xi = x̃j

)
= wj , j = 1, . . . , N. (3.24)

The above equation states that the probability of drawing sample x̃j is given
by the corresponding weight wj . Algorithms and Matlab code for achieving
this give in Section 3.3.1. For now it is sufficient to accept that it can be done.
After the resampling (3.24) has been performed the approximation of the target
density has been changed from (3.21) to t̂N (x) =

∑N
i=1 1/Nδ(x− xi).

In Algorithm 3.2 the above discussion is summarized by describing how to
approximately generate N samples from the target density according to the so
called sampling importance resampling (SIR) idea.

Algorithm 3.2 (Sampling Importance Resampling (SIR))

1. Generate N i.i.d. samples {x̃i}Ni=1 from the proposal density q(x) and com-
pute the importance weights

w̃i = t(x̃i)/q(x̃i), i = 1, . . . , N. (3.25)

3.2. A FIRST PARTICLE FILTER 21

2. Compute the acceptance probabilities by normalization

wi = w̃i/

N∑
j=1

w̃j , i = 1, . . . , N. (3.26)

3. For each i = 1, . . . , N draw a new particle xit with replacement (resample)
according to,

P
(
xi = x̃j

)
= wj , j = 1, . . . , N. (3.27)

The sampling importance resampling algorithm is closely related to the bootstrap
procedure, introduced by Efron in 1979. The SIR algorithm can in fact be
interpreted in terms of a weighted bootstrap procedure. It is worthwhile to
note that the resampling step (3.27) is a very important part of the particle
filter. Without this step everything breaks down. Example 3.2 will illustrate
the importance of using a good importance density q(x) for generating the
samples in Algorithm 3.2.

Example 3.2 (Sampling importance resampling with a Gaussian
mixture)
This example is concerned with the Gaussian mixture (3.10) previously used
to illustrate perfect sampling in Example 3.1. We will now assume that we
are unable to generate samples from the target density (3.10) and hence
we have to decide which importance density q(x) to use in Algorithm 3.2.
In Figure 3.2 we illustrate the approximation from Algorithm 3.2 using the
following importance densities

q1(x) = N (x ; 5, 20), (3.28a)
q2(x) = N (x ; 1, 20). (3.28b)

From the figure it is obvious that the approximation is better if we make
use of q1(x) rather than q2(x), which is rather natural, since q1(x) covers
more of the target density than q2(x).

3.2 A First Particle Filter

Let us consider the nonlinear filtering problem introduced in Section 2.2 in the
light of the random number generation ideas presented in the previous sections.
Hence, the concept of time and dynamic models from Chapter 2 will be combined
with the random number generators previously discussed.

In the nonlinear filtering problem, the target density is given by the filtering
density,

t(xt) = p(xt|y1:t). (3.29)

In order to use the SIR idea outlined in the previous section it is necessary to
choose an appropriate proposal density q(xt) and a corresponding importance
weight. This is in fact quite simple, since according to (2.16a) we have

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(3.30)

22 CHAPTER 3. PARTICLE FILTERS

(a) Using 50000 samples from
q(x) = q1(x) = N (x ; 5, 20).

(b) Using 50000 samples from
q(x) = q2(x) = N (x ; 1, 20)

Figure 3.2: Illustration of importance sampling resampling of the Gaussian
mixture given in (3.10). The dark gray shows the histogram obtained by SIR,
the black solid line shows the true PDF and the black dashed line shows the PDF
of the proposal densities employed.

which suggests the following choices

p(xt|y1:t)︸ ︷︷ ︸
t(xt)

∝ p(yt|xt)︸ ︷︷ ︸
w(xt)

p(xt|y1:t−1)︸ ︷︷ ︸
q(xt)

. (3.31)

The resemblance with (3.4) and (3.16) is obvious. Hence, we can employ Algo-
rithm 3.2 to obtain samples approximately distributed according to the target
density. This provides a good framework to start our discussion of the particle
filtering algorithms.

The particle filter is typically derived completely within an importance sam-
pling framework. However, it is interesting, at least from a conceptual point of
view, to note that we could just as well have used acceptance-rejection sampling,
Metropolis-Hastings independence sampling or some other method to generate
random numbers in order to obtain alternative particle filtering algorithms.

Based on the appealing properties of the sampling importance resampling
idea we will choose to employ this principle in deriving the particle filter, which
will be done in an inductive manner. Let us start at time t := 0 by initializing
the particles and their corresponding weights according to

xi0 ∼ p(x0), i = 1, . . . , N, (3.32a)

wi0 =
1
N
, i = 1, . . . , N, (3.32b)

resulting in the following approximation

p̂N (x0) =
N∑
i=1

1
N
δ(x0 − xi0). (3.33)

At time t we will now assume that the following approximation

p̂N (xt−1|y1:t−1) =
N∑
i=1

1
N
δ(xt−1 − xit−1) (3.34)

3.2. A FIRST PARTICLE FILTER 23

is available from time t−1. According to Algorithm 3.2 we should now generate
N i.i.d. samples {x̃it}Nt=1 from the importance density q(xt). From (3.31) we have
that

q(xt) = p(xt|y1:t−1), (3.35)

which is rather natural. Given that we have an approximation of the filtering
density at time t − 1 and are interested in samples of the state at time t, it
should not come as a surprise that we are generating them simply by sampling
from the one step ahead prediction density, according to (3.35). The question is
now how to generate samples from p(xt|y1:t−1). In order to answer this question
we will make use of the time update (2.16b) in Theorem 1 in the following way,

q(xt) = p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

≈
∫
p(xt|xt−1)

N∑
i=1

1
N
δ
(
xt−1 − xit−1

)
dxt−1

=
N∑
i=1

1
N

∫
p(xt|xt−1)δ

(
xt−1 − xit−1

)
dxt−1

=
N∑
i=1

1
N
p
(
xt|xit−1

)
. (3.36)

This implies that the proposal density can be chosen as

q(xit) = p(xt|xit−1), (3.37)

Hence, according to (3.37) the predicted particles {x̃it}Ni=1 are obtained simply by
passing the filtered particles from the previous time instance {xit−1}Ni=1 through
the process dynamics (2.4b), i.e.,

x̃it ∼ p(xt|xit−1), i = 1, . . . , N. (3.38)

Alternatively, using the notation in (2.4a), this can be formulated as

x̃it = ft−1(xit−1) + vit−1, i = 1, . . . , N, (3.39)

where vit−1 is a realization from the process noise pvt−1(vt−1). The next step in
Algorithm 3.2 is to compute the importance weights, which according to (3.31)
are given by

w̃it = p(yt|x̃it), i = 1, . . . , N. (3.40)

The acceptance probabilities are then found simply by normalizing the impor-
tance weights, step 2 in Algorithm 3.2,

wit =
w̃it∑N
i=1 w̃

i
t

=
p(yt|x̃it)∑N
j=1 p(yt|x̃

j
t)

(3.41)

We have now derived the following approximation for the filtering density,

p̂N (xt|y1:t) =
N∑
i=1

witδ(xt − x̃it), (3.42)

24 CHAPTER 3. PARTICLE FILTERS

where wit is given in (3.41). According to (3.41) the acceptance probabilities
{wit}Ni=1 are affected by the likelihood function p(yt|xt). This makes sense, since
the likelihood reveals how likely the obtained measurement yt is, given the
present state xt. The better a certain particle explains the received measure-
ment, the higher the probability that this particle was in fact drawn from the
true density. Following Algorithm 3.2 (step 3), a new set of particles {xit}Ni=1 ap-
proximating p(xt|y1:t) is generated by resampling with replacement among the
predicted particles {x̃it}Ni=1, distributed according to the importance density.
Hence, for each i = 1, . . . , N draw a new particle xit according to,

P
(
xit = x̃jt

)
= wjt , j = 1, . . . , N. (3.43)

If this procedure is recursively repeated over time the following approximation

p(xt|y1:t) ≈
N∑
i=1

1
N
δ
(
xt − xit

)
(3.44)

is obtained and we have in fact derived a particle filter algorithm, which is given
in Algorithm 3.3. Note that this algorithm can be generalized. This will be the
topic for the subsequent section.

Algorithm 3.3 (A first particle filter)

1. Initialize the particles, {xi0}Ni=1 ∼ p(x0) and let t := 1.

2. Predict the particles by drawing N i.i.d. samples according to

x̃it ∼ p(xt|xit−1), i = 1, . . . , N. (3.45)

3. Compute the importance weights {w̃it}Ni=1,

w̃it = p(yt|x̃it), i = 1, . . . , N. (3.46)

and normalize wit = w̃it/
∑N
j=1 w̃

j
t .

4. For each i = 1, . . . , N draw a new particle xit with replacement (resample)
according to,

P(xit = x̃jt) = wjt , j = 1, . . . , N. (3.47)

5. Set t := t+ 1 and repeat from step 2.

The point estimates are computed after step 3 in the above algorithm using
the approximation available (3.42). According to (3.3) we can now form the
following state estimate,

x̂t =
N∑
i=1

witx̃
i
t. (3.48)

In Section 3.3.2 we will elaborate a bit on forming estimates based on the ap-
proximations provided by the particle filter.

3.3. A GENERAL PARTICLE FILTER 25

In an attempt to add some intuition for the particle filter presented in Al-
gorithm 3.3 we will now draw some parallels to the Kalman filter. The filter
is initialized by generating N particles from the initial density function p(x0)
(which is considered to be a design choice). In the Kalman filter it is suffi-
cient to choose a mean and a covariance, since the density function has to be
Gaussian. The second step is a pure prediction, using the process model. This
corresponds to the time update (2.18c) – (2.18d) in the Kalman filter, where the
process model is used to predict the state and covariance one time step forward
in time.

In the measurement update (step 2 – 3 in Algorithm 3.3) the new measure-
ment is used to assign a probability, represented by the normalized importance
weight, to each particle. This probability is calculated using the likelihood
function, which describes how likely it was to obtain the measurement given the
information available in the particle. The normalized importance weights and
the corresponding particles constitute an approximation of the filtering density.
This corresponds to the measurement update (2.18a) – (2.18b) in the Kalman
filter, where the information in the new measurement is used to update the
estimate. Finally, the resampling step will generate particles which are equally
probable. The resampled particles will then form the starting point for another
iteration of the algorithm. The resampling step has no interpretation in the
Kalman filter.

3.3 A General Particle Filter

The bootstrap particle filter derived in the previous section is just a particular
special case, corresponding to certain design choices of the more general particle
filter that will be introduced in the present section.

Before we start the derivation it is instructive to think about Algorithm 3.3
a bit more. In step 2 the particles are predicted without using the information
present in the current measurement yt, see (3.45). Since the new measurement
contains useful information about the state this information could probably
be used to make better predictions. This idea can indeed be utilized simply
by using an importance density that makes use of the new measurement yt in
generating the predicted particles. Hence, if we could construct an importance
density in the following form

q(xt|xt−1, yt), (3.49)

rather than just using p(xt|xt−1), that would probably allow us to produce better
predictions. Once again, the intuition behind this stems from the fact that there
is additional information available in the new measurement yt, which will allow
for more informed predictions. Recall Example 3.2, where it was illustrated that
it is important to have as good an importance density as possible.

We will not discuss exactly how to draw samples from q(xt|xt−1, yt), that falls
outside the scope of this introductory text. For the purposes of the present sec-
tion it is sufficient to assume that this can, at least approximately, be done. Note
that we are perfectly free to make the following approximation q(xt|xt−1, yt) ≈
p(xt|xt−1), as we did in the previous section.

Let us now start the derivation, which will again be done in an inductive
manner. The result is then summarized in Algorithm 3.4. Assume that we have

26 CHAPTER 3. PARTICLE FILTERS

access to the initial density function p(x0). Then, at time t := 0 we initialize
the particles and their weights according to

xi0 ∼ p(x0), i = 1, . . . , N, (3.50a)

wi0 =
1
N
, i = 1, . . . , N, (3.50b)

resulting in the following approximation

p̂N (x0) =
N∑
i=1

1
N
δ(x0 − xi0). (3.51)

At time t we will now assume that the following approximation

p̂N (xt−1|y1:t−1) =
N∑
i=1

wit−1δ(xt−1 − xit−1) (3.52)

is available from time t − 1. The task is now to produce an approximation of
p(xt|yt) using the importance sampling principle. Hence, the target density is
given by p(xt|yt) and the importance density is given by q(xt|xt−1, yt). Accord-
ing to Algorithm 3.2 the first step is now to generate N i.i.d. samples from the
importance density according to

x̃it ∼ q(xt|xit−1, yt), i = 1, . . . , N. (3.53)

Furthermore, the weights are computed according to (3.25), which in the present
setting corresponds to

w̃it =
p(x̃it|y1:t−1)
q(x̃it|xit−1, yt)

, i = 1, . . . , N (3.54)

In order to evaluate this expression we make use of Theorem 1, which states
that

p(xt|y1:t−1) =
∫

Rnx

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (3.55)

Using the assumption (3.52) together with (3.55) and (3.54) results in

w̃it =

∫
Rnx

p(x̃it|xt−1)
∑N
i=1 w

i
t−1δ(xt−1 − xit−1)dxt−1

q(x̃it|xit−1, yt)

=
p(x̃it|xit−1)
q(x̃it|xit−1, yt)

wit−1. (3.56)

We now have the following approximation of the one step ahead prediction

p̂N (xt|y1:t−1) =
N∑
i=1

w̃itδ(xt − x̃it), (3.57)

where the weights are given by (3.56) and the particles are generated according
to (3.53).

3.3. A GENERAL PARTICLE FILTER 27

In order to obtain an approximation of p(xt|y1:t) we make use of

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (3.58)

where

p(yt|y1:t−1) =
∫
p(yt|xt)p(xt|y1:t−1)dxt (3.59)

The above expressions are from Theorem 1. The one step ahead prediction
density is approximated according to (3.57), implying that (3.59) is straightfor-
wardly approximated according to

p̂N (yt|y1:t−1) =
∫
p(yt|xt)

N∑
i=1

w̃itδ(xt − x̃it)dxt

=
N∑
i=1

p(yt|x̃it)w̃it. (3.60)

Inserting (3.57) and (3.60) into (3.58) provides the following approximation

p̂N (xt|y1:t) =
N∑
i=1

p(yt|x̃it)w̃it∑N
j=1 p(yt|x̃

j
t)w̃

j
t

δ(xt − x̃it) (3.61)

Finally, according to step 3 in Algorithm 3.2 the resampling is performed. Now,
the resampling step does not have to be performed at each point in time. It
is common to construct a measure of sample diversity, in order to detect when
resampling should be performed. This is included in Algorithm 3.4 below and
further discussed in Section 3.3.1.

Algorithm 3.4 (Particle filter)

1. Initialize the particles, xi0 ∼ p(x0), i = 1, . . . , N and the weights, wi0 =
1/N, i = 1, . . . , N and let t := 1.

2. Generate N i.i.d. new particles by drawing from the importance density

x̃it ∼ q(xt|xit−1, yt), i = 1, . . . , N. (3.62)

and update the weights accordingly

w̃it =
p(x̃it|xit−1)
q(x̃i|xit−1, yt)

wit−1, i = 1, . . . , N. (3.63)

3. Update the weights according to,

wit =
p(yt|xit)w̃it∑N
j=1 p(yt|x

j
t)w̃

j
t

, i = 1, . . . , N. (3.64)

4. Resample according to Algorithm 3.5 or Algorithm 3.7.

5. Set t := t+ 1 and iterate from step 2.

28 CHAPTER 3. PARTICLE FILTERS

It is interesting to note that if we choose the importance density according to
q(xt) = p(xt|xt−1), Algorithm 3.4 is reduced to Algorithm 3.3.

Algorithm 3.5 (Resampling 1)

1. For each i = 1, . . . , N draw a new particle xit with replacement (resample)
according to,

P(xit = x̃jt) = wjt , j = 1, . . . , N. (3.65)

There are a lot of design choices to discuss when it comes to the particle filter.
The literature is full of “new” particle filtering algorithms. However, most of
them are just minor variations of the main algorithm presented above. All the
important mechanisms of the particle filter has been explained above.

3.3.1 Resampling Algorithms

The resampling step is absolutely essential for the particle filter to work, since
without resampling the variance of the importance weights will grow to infinity
and the filter will diverge. We will in this section describe what the resampling
step does and provide an efficient algorithm for implementing it.

The resampling step performs a re-weighting of an empirical probability den-
sity function. More specifically, it changes the non-uniformly weighted empirical
density

p̂N (xt|y1:t) =
N∑
i=1

witδ(xt − x̃it) (3.66)

into an uniformly weighted empirical density

p̂N (xt|y1:t) =
N∑
i=1

1
N
δ(xt − xit) (3.67)

by generating N i.i.d. samples {xit}Ni=1 from (3.66). This is accomplished by
drawing a new sample xit with replacement for each i = 1, . . . , N , according to

P
(
xit = x̃jt

)
= wjt , j = 1, . . . , N. (3.68)

In Figure 3.3 an illustration of the resampling (3.68) procedure is provided.
A direct implementation according to the explanation in association with

Figure 3.3 is not recommended. There are more efficient (both in terms of
computational complexity and the quality of the samples) algorithms available.
Here, we will only introduce one of the most commonly used algorithms, called
systematic resampling. Other popular algorithms include stratified resampling
and residual resampling.

Algorithm 3.6 (Resampling – Systematic sampling)

1. Generate N ordered numbers according to

uk =
(k − 1) + ũ

N
, ũ ∼ U(0, 1). (3.69)

3.3. A GENERAL PARTICLE FILTER 29

Figure 3.3: Illustration of the resampling step. The new set of samples is ob-
tained by first generating N sorted uniformly distributed random numbers, three
of which are shown by the dashed lines in the figure. These are then associ-
ated with a particle guided by the cumulative sum of the normalized importance
weights. For the situation illustrated in this figure, particle number 2 is chosen
once and particle number 4 is chosen twice.

2. The resampled particles are obtained by producing ni copies of particle xi,
where

ni = the number of uk ∈

(
i−1∑
s=1

wst ,

i∑
s=1

wst

]
. (3.70)

The Matlab code for implementing the systematic resampling algorithm given
in Algorithm 3.6 is given in Code 3.1 below. This code will later be used by the
particle filter code.

Code 3.1 (Systematic Resampling (Algorithm 3.3))

function i=sysresample(q)
qc=cumsum(q); M=length(q);
u=([0:M-1]+rand(1))/M;
i=zeros(1,M); k=1;
for j=1:M
while (qc(k)<u(j))
k=k+1;

end
i(j)=k;

end
end

As an alternative to Algorithm 3.5 we will now give an algorithm which does
not require the resampling step to be carried out at every time instant. The
particle filtering algorithm with this resampling algorithm is sometimes referred
to as the sampling importance sampling (SIS) particle filter.

30 CHAPTER 3. PARTICLE FILTERS

Algorithm 3.7 (Resampling 2)

Compute the effective sample size,

N̂eff =
1∑N

i=1

(
wit
)2 (3.71)

if N̂eff < Nth

Generate a new set of particles {xit}Ni=1 using Algorithm 3.5 and

set wit := 1/N , for i = 1, . . . , N .

else

Keep the current particles and their corresponding weights.

end

3.3.2 Computing the Estimate

We have this far only explained how to compute estimates of the filtering density
function p(xt|y1:t). Typically, we are interested in some particular property
of the underlying state variable, such as for instance a point estimate and its
associated quality, provided by the covariance. The present section will describe
how these estimates can be obtained using the approximated densities. The
approach can readily be extended to other interesting features of the underlying
state variable.

An minimum mean square error estimate of the mean value of the current
state is obtained by inserting g(xt) = xt in (2.2), resulting in

Ep(xt|y1:t) {xt} =
∫
xtp(xt|y1:t)dxt = x̂t|t. (3.72)

Using the following estimate of the probability density function,

p̂N (xt|Ys) =
M∑
i=1

witδ
(
xt − xit

)
, (3.73)

results in

x̂t|t =
∫
xtp̂M (xt|y1:t) dxt =

∫
xt

N∑
i=1

witδ
(
xt − xit

)
dxt =

N∑
i=1

witx
i
t. (3.74)

The reason for using the weighted approximation of the filtering density, rather
than the unweighted, is simply that the resampling step will slightly increase
the variance of the weights. This will in turn degrade the estimate.

Similarly to what was done above, an estimate of the covariance is obtained
using

g(xt) = (xt − x̂t|t)(xt − x̂t|t)T (3.75)

3.3. A GENERAL PARTICLE FILTER 31

in (2.2), which after some calculations results in

P̂t|t =
N∑
i=1

wit

(
xit|t − x̂t|t

)(
xit|t − x̂t|t

)T
. (3.76)

From the two expressions (3.74) and (3.76) it is clear how the estimates are
affected by the information in the normalized importance weights wit. The more
likely a certain particle is, the more it influences the estimate.

3.3.3 Implementation

We have this far derived the particle filter using mathematical tools and we have
also provided an algorithm statement. In order to make the particle filter more
accessible for those previously not familiar to it we will now provide a Matlab
implementation of the particle filter give in Algorithm 3.3. Having read this
section the reader will be able to implement a particle filter from scratch within
five minutes. Before the implementation is given there are a few steps in the
algorithm that deserves some attention.

In step 2 we are asked to generate samples according to

x̃it ∼ p(xt|xit−1), i = 1, . . . , N. (3.77)

Since the model is given by (2.4) this can be accomplished according to

x̃it = f(xit−1) + vit, i = 1, . . . , N, (3.78)

where vit ∼ pvt
(vt). Furthermore, the importance weights are given by evaluat-

ing the likelihood function, which according to (2.6b) is provided by

w̃it = p(yt|x̃it) = pet
(yt − h(x̃it)), i = 1, . . . , N. (3.79)

The Matlab code for Algorithm 3.3 is given in Code 3.2 below. The com-
mented numbers 1 – 4 indicate the connection to the corresponding step in
Algorithm 3.4. Recall that the Matlab code (sysresample) for systematic
resampling was previously given in Code 3.1.

Code 3.2 (Particle filter (Algorithm 3.3))

function [xhat] = PF(f,h,pe,B,Q,x0,P0,N,y)
nx=size(P0,2);
x = repmat(x0,1,N)+sqrtm(P0)*randn(nx,N); % 1.
xhat = zeros(nx,size(y,2));
for t=1:size(y,2)
x = feval(f,x,t) + B*sqrtm(Q)*randn(1,N); % 2.
e = repmat(y(:,t),1,N) - feval(h,x);
w = feval(pe,e); % 3.
w = w/sum(w);
xhat(:,t) = sum(repmat(w,nx,1).*x,2);
index = sysresample(w); % 4.
x = x(:,index);

end;
end

32 CHAPTER 3. PARTICLE FILTERS

In Example 3.3 we make use of the particle filter provided in Code 3.2 in order
to estimate a one dimensional motion. Since this is a linear Gaussian problem
the Kalman filter applies, which allows us to compare the performance to the
optimal filter. We will then in Example 3.4 move on to a much trickier nonlinear
time-varying system, which cannot be handled by the Kalman filter, whereas the
particle filter can directly be used. The purpose of the first example is simply
to illustrate that the particle filter will provide the same result as the optimal
filter when it is available and the number of particles tends to infinity. The idea
behind the second example is to show that the particle filter can indeed handle
more complicated nonlinear, non-Gaussian examples as well.

Example 3.3 (One dimensional motion)
Let us study a one dimensional motion, where we assume that we can mea-
sure the position and the acceleration. The task is to compute estimates of
the position and the velocity. Hence, we will devise a very simple positioning
system. The state vector is given by

xt =

ptvt
at

 , (3.80)

where pt denotes the position, vt denotes the velocity and at denotes the
acceleration. The discrete-time state-space model is given by a sampled
double integrator according to,

xt+1 =

1 T T 2/2
0 1 T
0 0 1

ptvt
at

+

T 3/6
T 2/2
T

 vt, vt ∼ N (0, Qt), (3.81)

yt =
(

1 0 0
0 0 1

)ptvt
at

+ et, et ∼ N (0, Rt), (3.82)

where T denotes the sampling time. This is a linear system subject to
Gaussian noise, which implies that the Kalman filter will provide the optimal
(in the sense of a minimum variance) solution. Hence, we can compare the
particle filter to the best available solution. The Matlab code for the solving
this problem is provided in Code 3.3, save for the Kalman filter code.

Code 3.3 (Solution to example 3.3)

N = 100; % Number of particles
x0 = [0 0 0]’; % Initial guess of the state value
P0 = 1*eye(3); % Initial covariance
B = [1/6 1/2 1]’;
Q = 0.01^2; % Process noise
R = [10^2 0;0 0.5^2]; % Measurement noise
f = inline(’[1 1 0.5;0 1 1;0 0 1]*x’,’x’,’t’);
h = inline(’[1 0 0;0 0 1]*x’,’x’);
pe = inline(’exp(-(1/2)*(sum(e.*(inv([10^2 0;0 0.5^2])*e))))’);

3.3. A GENERAL PARTICLE FILTER 33

x(:,1) = [0 1 0.1]’; % Initial state used in simulation
for t=1:100 % Simulate the model
x(:,t+1) = feval(f,x(:,t),t) + B*sqrtm(Q)*randn(1);
y(:,t) = feval(h,x(:,t)) + sqrtm(R)*randn(2,1);

end;
xHat = PF(f,h,pe,B,Q,x0,P0,N,y);

In Figure 3.4 we provide a particular realization illustrating the result. From
this figure it can be seen that using only 100 particles provides a reasonable
result. When the number of particles is increased up to 10000, the result is
almost identical to the optimal filter.

(a) Using 100 samples. (b) Using 10000 samples.

Figure 3.4: Illustration of the position and velocity estimation error, when
N = 100 and N = 10000 particle are used, respectively. The estimation error in
acceleration is not shown for brevity. Note that this is one particular realization.
The black line corresponds to the estimation error from the particle filter the grey
line corresponds to the estimation error from the Kalman filter.

Example 3.4 (Nonlinear system)
In this example the particle filter will be used to estimate the state in the
following discrete-time, nonlinear, non-Gaussian, time-varying state-space
model (Model 2.1),

xt+1 =
xt
2

+
25xt

1 + x2
t

+ 8 cos(1.2t) + vt, (3.83a)

yt =
x2
t

20
+ et, (3.83b)

where x0 ∼ N (0, 5), vt and et are mutually independent white noise se-
quences, vt ∼ N (0, 10) and et ∼ N (0, 1). In the literature this system has
become a favourite when it comes to illustrating the particle filter.
The fact that we measure the square of the state variable implies that the
measurement does not contain any information about the sign of the state.
This makes the state estimation problem especially challenging. Since there
is no closed form solution for the optimal filter for this system, we can only
compare the particle filter performance to the true state. In Code 3.4 the
Matlab code for this example is provided.

34 CHAPTER 3. PARTICLE FILTERS

Code 3.4 (Solution to example 3.4)

N = 5000; % Number of particles
P0 = 5; % Initial covariance
x0 = sqrt(P0)*randn(1); % Initial guess of the state value
Q = 10; % Process noise
R = 1; % Measurement noise
f = inline(’x./2 + 25*x./(1+x.^2)+8*cos(1.2*t)’,’x’,’t’);
h = inline(’(x.^2)/20’,’x’);
pe = inline(’exp(-(1/2)*(e.^2))’,’e’);

x(:,1) = x0; % Initial state used in simulation
for t=1:100 % Simulate the model
x(:,t+1) = feval(f,x(:,t),t) + sqrtm(Q)*randn(1);
y(:,t) = feval(h,x(:,t)) + sqrtm(R)*randn(1);

end;
xHat = PF(f,h,pe,1,Q,x0,P0,N,y);

In Figure 3.5 the particle filter estimate using 5000 particles, implemented
in Code 3.4, is shown together with the true state. The particle filter have
obvious problems from time to time, due to the fact that information about
the sign of the state is not available in the measurement.
increase the number of particles.

Figure 3.5: The black line corresponds to the particle filter estimate of the
state xt in the system (3.83). The grey line corresponds to the true state. The
error is mainly due to the square in the measurement equation.

Appendix A

Useful Facts from
Probability Theory

In this appendix we list some facts from probability theory that are important
to understand in order to read the main text. For a detailed treatment of
probability theory we refer to one of the many textbooks on the subject.

Theorem 2 (Bayes’ theorem) Given two random variables a and b the con-
ditional probability density function p(a|b) is given by

p(a|b) =
p(b|a)p(a)

p(b)
. (A.1)

Definition 1 (Markov property) A discrete-time stochastic process {xt} is
said to possess the Markov property if

p(xt+1|x1, . . . , xt) = p(xt+1|xt). (A.2)

Definition 2 (Multivariable Normal Density) A random variable a with
E{a} = µa and Cov{a} = Σa, such that det Σa > 0 is N (µa,Σa) if and only if
the probability density function for x is

p(x) =
1

(2π)nx/2
√

det Σa
e−

1
2 (x−µa)T Σ−1

a (x−µa) (A.3)

In order to have a practical notation for stating that a probability density func-
tion is normal with a certain mean value and covariance we will define the
following

N (x ; µa,Σa) =
1

(2π)nx/2
√

det Σa
e−

1
2 (x−µa)T Σ−1

a (x−µa). (A.4)

This notation will allow us to write N (x ; µa,Σa) rather than the entire expres-
sion in (A.4), which is of course convenient.

Theorem 3 (Marginalization of Gaussian densities) Let

p(a|b) =
1

(2π)na/2
√

det Σa|b
e
− 1

2 (a−Cb−ã)T Σ−1
a|b(a−Cb−ã)

, (A.5a)

p(b) =
1

(2π)nb/2
√

det Σb
e−

1
2 (b−µb)T Σ−1

b (b−µb), (A.5b)

35

36 APPENDIX A. USEFUL FACTS FROM PROBABILITY THEORY

where ã is a known constant. Then

p(a) = N
(
a|Cµb + ã, CΣbCT + Σa|b

)
. (A.6)

Proof 1

p(a) =
∫
p(a, b)db =

∫
p(a|b)p(b)db

=
∫

1
(2π)(na+nb)/2

√
det Σa|b det Σb

e−
1
2Edb, (A.7)

where

E = (a− Cb)TΣ−1
a|b(a− Cb) + (b− µB)TΣ−1

b (b− µb). (A.8)

Introduce the following variables

e = b− µb, (A.9)
f = a− Cµb − ã, (A.10)

allows us to write the exponent (A.8) according to

E = (f − Ce)TΣ−1
a|b(f − Ce) + eTΣ−1

b e (A.11)

=
(
e
f

)T (CTΣ−1
a|bC + Σ−1

b −CTΣ−1
a|b

−Σ−1
a|bC Σ−1

a|b

)(
e
f

)
(A.12)

The middle term in (A.12) can, using a block diagonal factorization, be written
according to(

CTΣ−1
a|bC + Σ−1

b −CTΣ−1
a|b

−Σ−1
a|bC Σ−1

a|b

)

=
(
I −K
0 I

)T (
CTΣ−1

a|bC + Σ−1
b 0

0 S−1

)(
I −K
0 I

)
, (A.13)

where

K = ΣbCT (CΣbCT + Σa|b)−1, (A.14a)

S = CΣbCT + Σa|b. (A.14b)

Inserting this in (A.12) results in

E =
(
e
f

)T (
I −K
0 I

)T (
CTΣ−1

a|bC + Σ−1
b 0

0 S−1

)(
I −K
0 I

)(
e
f

)
= (e−Kf)T (CTΣ−1

a|bC + Σ−1
b)(e−Kf) + fTS−1f (A.15)

Furthermore, the determinant in (A.7) can be written

1
det Σa|b det Σb

= det Σ−1
a|b det Σ−1

b = det
(

Σ−1
a|b 0
0 Σ−1

b

)
(A.16)

37

The determinant of a triangular matrix with unit diagonal equals one. This
implies that the matrix in (A.16) can be multiplied with any such matrix without
changing the value of the expression. For example it can be written as

det
(
I −K
0 I

)−T (
I 0
−C I

)T (Σ−1
a|b 0
0 Σ−1

b

)(
I 0
−C I

)(
I −K
0 I

)−1

= det
(
I −K
0 I

)−T (CTΣ−1
a|bC + Σ−1

b −CTΣ−1
a|b

−Σ−1
a|bC Σ−1

b

)(
I −K
0 I

)−1

(A.17)

which allows us to use the block diagonal factorization (A.13) to write the de-
terminant as

det
(
CTΣ−1

a|bC + Σ−1
b 0

0 S−1

)
=

1
det(CTΣ−1

a|bC + Σ−1
b)−1 detS

(A.18)

Finally, inserting (A.15) and (A.18) into (A.7), results in

p(a) =
1

(2π)na/2
√

detS
e−

1
2 f

TS−1f (A.19)

p(a) = N
(
a|Cµb + ã, CΣbCT + Σa|b

)
. (A.20)

