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Abstract
A benchmark problem for robust feedback control of a flexible manipula-
tor is presented together with some suggested solutions. The system to
be controlled is a four-mass system subject to input saturation, nonlinear
gear elasticity, model uncertainties and load disturbances affecting both
the motor and the arm. The system should be controlled by a discrete-time
controller that optimizes performance for given robustness requirements.

Keywords: Robots, manipulators, flexible structures, robustness, position
control



1

A Benchmark Problem for Robust Feedback Control

of a Flexible Manipulator

Stig Moberg, Jonas Öhr, and Svante Gunnarsson

Abstract—A benchmark problem for robust feedback
control of a flexible manipulator is presented together
with some suggested solutions. The system to be con-
trolled is a four-mass system subject to input satura-
tion, nonlinear gear elasticity, model uncertainties and
load disturbances affecting both the motor and the
arm. The system should be controlled by a discrete-
time controller that optimizes performance for given
robustness requirements.

Index Terms—Robots, manipulators, flexible struc-
tures, robustness, position control

I. Introduction

Experiments are essential in control technology re-
search. A method that has been developed by means
of realistic experiments has a larger potential to work
in reality compared to methods that have not. Bench-
mark problems, often given in the form of mathematical
equations embodied as software simulators together with
performance specifications, can serve as substitute for real
control experiments. A benchmark problem should be suf-
ficiently realistic and complete but also avoid unmotivated
complexity. This paper presents an industrial benchmark
problem with the intention to stimulate research in the
area of robust control of flexible industrial manipulators
(robots). Some proposed solutions to this benchmark prob-
lem will also be presented and discussed. The authors hope
that the degree of authenticity is just right and that re-
searchers will take on the problem and eventually propose
solutions and methods. When evaluating strengths and
drawbacks of a certain method in the light of realistic
examples, control engineers and researchers will find it
easier to interpret results and the chance for the proposed
method to be used in a real application increases. Thus, it
is believed that the benchmark problem presented below
can help increasing the ratio of control methods used
outside the academic world to control methods proposed in
literature. An example of a similar (at least in some parts)
benchmark problem is the flexible transmission system
presented by [1]. Another benchmark problem for con-
troller design is [2] where the participants did not know the
true system, which was supplied in the form of scrambled
simulation code. A third example is the Grumman F-14
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Benchmark Control Problem described in [3]. However, in
the area of robot manipulator control it is believed that
a realistic and relevant industrial benchmark problem is
needed for reasons stated above. The paper is organized
as follows. Section II presents the original control problem
and discusses some of the main aspects of the problem,
and then in Section III the nonlinear simulation model as
well as a linearized model are presented. An experimental
model validation is presented in Section IV. The control
design task is described in Section V, and some suggested
solutions are presented in Section VI.

II. Problem Description

The most common type of industrial manipulator has
six serially mounted links, all controlled by electrical
motors via gears. An example of a serial industrial ma-
nipulator is shown in Figure 1.

Fig. 1. IRB6600ID from ABB equipped with a spot welding gun

The dynamics of the manipulator change rapidly as the
robot links move fast within its working range, and the
dynamic couplings between the links are strong. Moreover,
the structure is elastic and the gears have nonlinearities
such as backlash, friction and nonlinear elasticity. From
a control engineering perspective a manipulator can be
described as a nonlinear multivariable dynamical system
having the six motor currents as the inputs and the six
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measurable motor angles as outputs. The goal of the mo-
tion control is to control the orientation and the position

of the tool when moving the tool along a certain desired
path.

The benchmark problem described in this paper con-
cerns only the so-called regulator problem, where a feed-
back controller should be designed such that the actual
tool position is close to the desired reference, in the
presence of motor torque disturbances, e.g. motor torque
ripple, and tool disturbances acting on the tool e.g. under
material processing. For simplicity only the first axis of a
horizontally mounted manipulator will be considered here.
The remaining axes are positioned in a fixed configuration.
In this way the influence of the nonlinear rigid body
dynamics associated with the change of configuration (op-
erating point) as well as gravity, centripetal and Coriolis
torques can be neglected. Moreover, the remaining axes
are positioned to minimize the couplings to the first axis.
In this way, the control problem concerning the first axis
can be approximated as a SISO control problem.

III. Mathematical Models

A. Nonlinear simulation model

The simulation model to be used is a four-mass model
having nonlinear gear elasticity. The motor current- and
torque control is assumed to be ideal so that the motor
torque becomes the model input. The gearbox and motor
friction effects are approximately assumed to be linear. In
reality the friction normally exhibits nonlinear behavior,
but, as illustrated in the model validation, the model gives
a realistic description of the real system even though the
friction is assumed to be linear. The model is illustrated in
Figure 2. Experiments have shown that a two-mass model
is not sufficient in order to describe the flexibilities. The
results in [4] show that at least a three-mass model is
needed in order to model the dynamics of the first axis
of a moderate size robot. In [5] it can be seen than even
higher model order can be necessary for some axes. Based
on the authors experience, the suggested model structure
is adequate for the regulator problem considered in this
paper. The model structure is further justified in Section
IV.

Fig. 2. Simulation model of the robot arm

The rotating masses are connected via spring-damper
pairs. The first spring-damper pair, corresponding to
the gear, has linear damping d1 but nonlinear elasticity
k1. A typical relationship between deflection and torque
is illustrated in Figure 3. In the simulation model the

nonlinear gear elasticity is approximated by a piecewise
linear function having five segments. The second and third
spring-damper pair are both assumed to be linear and
represented by d2, k2, d3 and k3.
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Fig. 3. Nonlinear gear elasticity: Torque as function of deflection.

The moment of inertia of the arm is here split-up into
the three components Ja1, Ja2 and Ja3. The moment of
inertia of the motor is Jm. The parameters fm, fa1, fa2

and fa3 represent viscous friction in the motor and in the
arm structure respectively. The motor torque um, which is
the manipulated input of the system, is limited to ±20 Nm.
The disturbance torque acting on the motor and tool are
denoted w and v respectively. The only measured output
signal is the motor angle qm, and this signal is subject to a
measurement disturbance and a time delay. The variables
qa1, qa2 and qa3 are arm angles of the three masses and
together they define the position of the tool. The angles
in this model are, however, expressed on the high-speed
side of the gear, so in order to get the real arm angles one
must divide the model angles by the gear-ratio. Details
concerning the implementation of the simulation model
are given in Section V-F.

B. Linearized Model

For control design purpose there is also a linearized, with
respect to the nonlinear elasticity, version of the simulation
model available. The linearized model is given by

Jq̈(t) + (D + F )q̇(t) + Kq(t) = u(t) (1)

where

q(t) =
[

qm(t) qa1(t) qa2(t) qa3(t)
]T

(2)

and

u(t) =
[

um(t) + w(t) 0 0 v(t)
]T

(3)

Furthermore

J = diag(Jm, Ja1, Ja2, Ja3) (4)

D =









d1 −d1 0 0
−d1 d1 + d2 −d2 0
0 −d2 d2 + d3 −d3

0 0 −d3 d3









(5)

F = diag(fm, fa1, fa2, fa3) (6)
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and

K =









k1 −k1 0 0
−k1 k1 + k2 −k2 0
0 −k2 k2 + k3 −k3

0 0 −k3 k3









(7)

The tool position z(t) (which is the controlled variable)
can for small variations around a given working point be
calculated as

z(t) =
l1qa1(t) + l2qa2(t) + l3qa3(t)

n
(8)

where n is the gear-ratio and l1, l2, l3 are distances be-
tween the (fictive) masses and the tool. Using state-space
formulation the linearized system can now be described by

ẋ(t) = Ax(t) + Bu(t) (9)

y(t) = Cx(t) + n(t) (10)

z(t) = Ex(t) (11)

where y(t) is the measured motor angle, n(t) is measure-
ment noise and z(t) the controlled variable. Selecting the
states

x(t) =

[

q(t)
q̇(t)

]

(12)

yields

A =

[

0 I

−J−1K −J−1(D + F )

]

B =

[

0
J−1

]

(13)

C =
[

1 0 0 0 0 0 0 0
]

(14)

and
E =

[

0 l1
n

l2
n

l3
n

0 0 0 0
]

(15)

The parameter values of the nominal model, which will
be denoted by Mnom, are defined in Table III. For the
piecewise linear spring elasticity only the first segment,
k1,low, the last segment, k1,high, and the position difference
where the last segment begins, k1,pos, are given.

IV. Model Validation

The model proposed in Section III-A is a simplification
of the real problem. In order to illustrate that it, despite
simplifications, is a realistic and relevant description of the
problem for the purpose in this paper, some validation ex-
periments will be presented. The model has been validated
by identification and measurements on the first axis of a
robot from the ABB IRB6600 series (see Figure 1) using
an experimental controller. The model is semi physical, i.e.
partly physical and partly gray-box with fictive physical
elements. Some of the parameters were known in advance,
e.g. motor inertia, total axis inertia and the nonlinear
gear box elasticity. Other parameters were identified by
comparing the measured frequency response of the first
robot axis with the frequency response of the linear model
while adjusting the parameters. Example of frequency
domain identified parameters are the dampers, remaining
springs and the distribution of link inertia. Finally, the
distribution of the axis length parameters were adjusted to
yield a similar time domain response for the tool position

when step disturbances were applied to the system during
closed loop control. The resulting parameters of the vali-
dation model are close to the parameters of the benchmark
model in Table III. The positions of the second and third
robot links were chosen to place the tool in the middle of
the working area, and the positions of the last three axes
were chosen to minimize the coupling with the first axis.
The frequency response was obtained by applying a multi-
sine reference to a speed controller of PI type for the first
axis and measuring the motor position and motor torque.
The excitation energy is distributed from 3 to 30 Hz. The
frequency response function (FRF) was then computed,
see e.g. computation of ETFE in [6]. The FRF’s for the
real robot and the linear model are shown in Figure 4, and
the agreement is good.
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Fig. 4. The frequency response function of the linear model (solid)
and of the real robot (dashed)

The first robot axis was then controlled by using a
reasonably tuned PID controller of the same type as the
default controller in this benchmark problem. All links
were controlled with similar controllers. Torque distur-
bances were applied and the tool position was measured
using a Leica laser measurement system LTD600 from
Leica GeoSystems described in [7]. The simulation model
was then simulated in closed loop with the same controller
and disturbance input as in the real robot system. Figure
5 shows the tool position when a constant torque distur-
bance acting on the tool is suddenly released.

Figure 6 shows the tool position when applying a step
in the motor torque. Note that some backlash for the real
robot link is seen in the second figure.

Finally, the loop gain of the real system was increased
until the stability limit was reached and the amplitude
margin could be determined. The amplitude margin of the
simulated system was in good correspondence with the
real system. The identification and measurements show
that the suggested model structure is valid for its use in
this benchmark problem. The use of a SISO semi physical
model and thus neglecting the interaction with other links
as well as neglecting the nonlinear friction, the motor
dynamics and the motor torque control is reasonably well
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Fig. 5. The tool position for a tool step disturbance. Nonlinear
simulation model (solid) and real robot (dashed)
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Fig. 6. The tool position for a motor step disturbance. Nonlinear
simulation model (solid) and real robot (dashed)

justified.

V. The Control Design Task

A. Introduction

The control problem can schematically be described as
in Figure 7.

Robot

Regulator

w,v,n z

u y

Fig. 7. Control system

The task can be expressed as a classical regulator
problem where the aim is to reject the influence of load
disturbances as much as possible, and at the same time

avoid too large input signal, and be able to handle varia-
tions in the system dynamics.

B. Load and measurement disturbances

In reality an industrial robot is affected by various dis-
turbances. One disturbance source is the electrical motor
itself which generates torque ripple, and in the model this
is modeled as a load disturbance w acting on the motor, i.e.
the first mass in the model. Another disturbance source is
the external forces that affect the tool during e.g. material
processing. This type of disturbance is modeled as a load
disturbance v affecting the last mass in the model. In order
to capture the various types of disturbances a specially
designed sequence of disturbances will be used. It consists
of torque disturbances acting on the motor and on the tool
according to Figure 8, and it is a combination of steps,
pulses and sweeping sinusoids (chirps). The measurement
disturbance n is modeled as a band limited random noise.
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Fig. 8. Torque disturbances on motor (dashed) and tool (solid)

Figure 9 shows the tool position when the disturbance
sequence in Figure 8 acts on the nominal system, and a
PID-type controller is used.
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Fig. 9. Tool position when using PID-control

Figure 10 shows the input signal (motor torque) under
the same conditions, and here also the influence of the
measurement disturbance is evident.

The various notations in Figures 9 and 10 will be used in
Section V-E, where a performance measure is formulated.
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Fig. 10. Motor torque when using PID-control

C. Parameter variations and model sets

The performance of the control systems will be evalu-
ated for both the nominal model Mnom and for two sets of
models which will be denoted by M1 and M2 respectively.
In Figure 11 the frequency response function amplitude
for of Mnom (torque to angular acceleration) is shown.
The solid line corresponds to the stiffest region of the gear
(k1,high) and the dashed line corresponds to the least stiff
region (k1,low).
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Fig. 11. Frequency response for Mnom. Stiff region (solid), least stiff
region (dashed).

The sets M1 and M2 contain ten models each. The set
M1 represents relatively small variations in the physical
parameters, and the set M2 represents relatively large
variations. The Figures 12 and 13 show the absolute value
of the frequency responses of the models m ∈ M1 and
m ∈ M2 respectively, for the stiffest region of the gear
(k1,high)1.

The uncertainty described by M1 can be motivated by
at least five sources of uncertainty:

I Model structure selection: The real robot is
of infinite order and the choice of model order

1In the simulation model, M1 and M2 also have the nonlinear gear
elasticity described in Section III-A.
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Fig. 12. Frequency response for all models in the set M1
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Fig. 13. Frequency response for all models in the set M2

always introduces errors. Non modeled or incom-
pletely modeled nonlinearities such as friction and
stiffness are other examples.

II Accuracy of nominal model parameters:

Model parameters can be obtained by identifica-
tion or by other types of measurements and their
values always have limited accuracy.

III Variation of model parameters for individ-

ual robots: Friction and stiffness are examples
of parameters that can differ significantly from
one robot individual to another. Temperature
dependent parameters and aging also belong to
this group.

IV Robot installation: The stiffness of the foun-
dation where the robot is mounted and the user
definition of tool and payload (e.g. mass and
center of mass) introduces uncertainty of this
type. Elasticity in the tool or payload increases
the uncertainty further.

V Controller implementation In a real imple-
mentation, the controller would probably be time
varying by e.g. gain scheduling. Errors due to gain
scheduling of controllers for different operating
points also adds to the total uncertainty.

The uncertainty described by M2 can be motivated by
the fact that a real control system must be stable even
for relatively large deviations between the model and the
real manipulator dynamics. It is important to understand
that the uncertainty is partly a design choice and depends
of the actual implementation of the robot control system.
One extreme is that the feedback controller has constant
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parameters for all configurations and all loads, and the
other is that an extremely accurate model of the robot
is implemented in the robot control system. This model
can then be used for gain scheduling or directly used in
the feedback controller. The first extreme would have a
considerably larger model set M1 and the second extreme
would have a smaller set.

D. The Design Task

The task of this benchmark problem is to minimize a
performance measure by designing one or two discrete time
controllers for the systems described above. The perfor-
mance measure is described in Section V-E and the general
requirements and some implementation constraints are
described in Section V-F. One of the controllers must be
capable of controlling all the models m ∈ Mnom∪M1∪M2

whereas the other controller should be able to control
Mnom alone. The controllers can be linear or nonlinear.
In order to investigate how well a controller can perform
when really good models are available it is recommended
to design two different controllers where one is optimized
for the control of Mnom only. This controller will in the
sequel be denoted by C1 and the other by C2. Note that
C1 and C2 can be identical, can have the same structure
and differ only by different tuning or can have completely
different structure and tuning parameters. The control
requirements put on the systems in M1 can be motivated
by the fact that robust performance is required for this
level of uncertainty. The use of the model set M2 is
motivated by robust stability as described above in the
previous section.

E. Performance Measures

From an industrial viewpoint, time domain performance
measures are to prefer when evaluating the control system.
It is then a task for the control designer to translate these
requirements to a form that suits the design method cho-
sen, e.g. frequency domain norms for H∞ design. Figures
9 and 10 show all the individual performance measures
that will be weighted together into one cost function. The
measures referring to the controlled output variable, tool
position, are

• Peak-to-peak error (e1 - e8).
• Settling times (Ts1 - Ts4),

and the measures related to the input signal, torque, are

• Maximum value TMAX

• Adjusted rms value TRMS

• Torque "noise" (peak-to-peak) TNOISE .

Note that TNOISE , which can be caused by measurement
noise and/or chattering caused by a discontinuous con-
troller, is measured by the simulation routines when the
system is at rest but that a good controller would keep the
chattering/noise on a decent level also when it operates
actively.

For the nominal system Mnom using controller C1 the
cost function Vnom is given by

Vnom = γ

15
∑

i=1

αiei (16)

where ei represents a generalized "error" (i.e. position
error, settling time or torque), γ and αi are weights. For
the set M1 using controller C2 the maximum error from
the simulations are used and the cost functions V1 is given
by

V1 = γ

15
∑

i=1

αi max
m∈M1

(ei) (17)

Similarly, for the set M2 using controller C2 the maximum
error from the simulations are used and the cost functions
V2 is given by

V2 = γ

15
∑

i=1

αi max
m∈M2

(ei) (18)

The total cost function V is given by

V = βnomVnom + β1V1 + β2V2 (19)

It might then seem strange to weight performance for the
set M2 into the total cost function but it is motivated by a
desire to reward the robustness of the proposed controller.
It is unavoidable that this type of performance measures
will be subjective, but they have been found to be relevant
for a general purpose robot from an application viewpoint.

F. Implementation and Specifications

To evaluate a proposed control design a set of files
has been developed. A control system in form of a
SimulinkTM -model has been developed, and it is shown
in Figure 14.

Fig. 14. The control system

In the implementation the following conditions hold:

• Sampling time 0.5 ms
• Time delay Td 0.5 ms
• Torque saturation limits ±20 Nm (the saturation

function in the controller block should not be re-
moved)

The control task is then formulated as minimizing the
overall cost function V in (19) subject to the conditions
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• Settling times for Mnom (C1) and M1 (C2): Ts1,2,3,4

< 3 s, error band ± 0.1 mm
• Settling times for M2 (C2): Ts1,2,3,4 < 4 s, error band

± 0.3 mm
• Torque noise TNOISE < 5 Nm for all systems
• Stability2 for all systems
• Stability for Mnom when increasing the loop gain by

a factor 2.5 for C1 and C2

• Stability for Mnom when increasing the delay Td from
0.5 ms to 2 ms for C1 and C2

In addition some conditions concerning the implementa-
tion have to be considered:

• Only the blocks Controller1 and Controller2 and
the files Controller_1.m and Controller_2.m are
allowed to be changed.

• No continuous-time blocks are allowed be added.
• No knowledge of deterministic nature about the noise

and disturbances is allowed to be used in the con-
troller.

• The controller C2 must have the same initial states
and parameter values for all the simulations of m ∈

Mnom ∪ M1 ∪ M2

The control system and the models are described in
detail by MatlabTM and SimulinkTM files available for
download at [8]. The system comes with a simple PID-

controller. The MatlabTM products used are described in
e.g. [9].

VI. Suggested Solutions

This benchmark problem was first presented as "Swedish
Open Championships in Robot Control". See [10] and [11].
On request, the benchmark problem was spread outside
Sweden. The four most interesting solutions were:

A A QFT controller proposed by P.-O. Gutman, Israel
Institute of Technology, Israel.

B A QFT controller of order 13 proposed by O. Roberto,
Uppsala University.

C A Polynomial Controller proposed by F. Sikström
and A.-K. Christiansson, University of Trollhät-
tan/Uddevalla, Sweden.

D A so called Linear Sliding Mode Controller proposed
by W.-H. Zhu, Canadian Space Agency, Canada.

For the solutions A, C, and D the controllers are of
order 3 to 7. The QFT approach is generally described
in [12] and the linear sliding mode approach in [13] and
[14]. The polynomial controller is optimized for the given
cost function and the optimization procedures used are
described in [15]. The frequency responses of the con-
trollers are shown in Figure 15 and 16. The overall shape
of the frequency functions are similar with a clear lead-
lag character. Solution A differs due to the peak in the
magnitude curve around 10 Hz and the essentially higher
high frequency (above 100 Hz) gain.

The cost function V1 and the generalized errors for
model set M1 are shown in Table I. The table shows that

2The stability requirement also includes that limit cycles larger
than 10 µm peak-to-peak are not allowed.
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Fig. 15. The absolute value of the frequency response of the
controllers C2
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Fig. 16. The argument of the frequency response of the controllers
C2

no solution is in general better than all other solutions. For
example, solution A gives better performance measured
via the quantities e1 to e8 but higher values for the other
measures.

TABLE I
Numerical result for model set M1

Solution A B C D
e1 [mm] 8.22 8.57 9.75 9.11
e2 [mm] 2.56 2.43 3.41 3.22
e3 [mm] 5.39 5.56 5.34 5.28
e4 [mm] 1.58 1.74 2.12 1.77
e5 [mm] 7.78 8.22 9.37 8.64
e6 [mm] 2.82 2.82 4.02 3.68
e7 [mm] 4.88 5.13 4.20 4.59
e8 [mm] 1.40 1.56 1.90 1.57
Ts1 [s] 2.04 2.13 1.79 1.68
Ts2 [s] 1.25 1.47 1.52 1.05
Ts3 [s] 1.04 0.77 0.71 0.77
Ts4 [s] 0.95 0.55 0.69 0.71
TNOISE [Nm] 2.67 1.05 1.85 1.66
TMAX [Nm] 12.1 12.0 11.0 11.3
TRMS [Nm] 1.53 1.52 1.43 1.46
V1 82.5 80.8 84.8 80.5
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Fig. 17. The frequency response of the original controller D its PID
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Table II shows a summary of the results. The final
performance measure, defined by (19), contains weights
which allow some freedom in the interpretation of the
results. The weights used for computing the performance
measure in Table II were selected in order to reflect
good performance with respect to the original industrial
problem.

TABLE II
Summary of total result

Solution A B C D
Vnom 64.6 58.8 64.8 62.0
V1 82.5 80.8 84.8 80.5
V2 82.6 84.2 84.1 81.6
V 146.0 141.4 148.9 142.2

Inspection of the frequency response of controller D
suggests a realization by a PID controller with derivative
filter, i.e. the same structure as the default controller
of the benchmark problem. In Figure 17 the frequency
response of a manually tuned PID controller is compared
with controller D. The performance of the PID controller
is 143.4. One interesting observation is that this PID
controller has complex zeros and must thus be realized as
a parallel PID controller (non-interacting), see e.g. [16].

It seems hard to improve the performance further and
reaching a performance index below 140 by using motor
position feedback only. One possibility is to use additional
or improved sensors on the motor side, e.g. speed sensors
or position sensors with decreased measurement noise.
Another possibility is to use additional sensors on the link
side, e.g. acceleration or position sensors for the links or
the tool. In [17] a performance index of 105 was reached
by using tool acceleration feedback.

VII. Conclusions and Future Work

A benchmark problem for robust control has been
presented. The purpose of the problem is to formulate
a problem that is industrially relevant in terms of both

the system description and the performance requirements.
Four proposed solutions, using different design methods,
have been presented. Although the solutions use different
approaches the resulting performance from all four solu-
tions end up on the same level. For future work it would
be interesting to extend the problem to a multivariable
case since a real manipulator has multiple inputs and
outputs. Another direction for future work could be to
translate the time domain performance measures to the
frequency domain, in order to enable the use of frequency
domain methods for robust control design. Finally there is
a potential to improve the performance by using additional
sensors.
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Appendix

TABLE III
Nominal parameter values

Parameter Value Unit
Jm 5 · 10

−3 kg · m2

Ja1 2 · 10
−3 kg · m2

Ja2 0.02 kg · m2

Ja3 0.02 kg · m2

k1,high 100 Nm/rad
k1,low 16.7 Nm/rad
k1,pos 0.064 rad
k2 110 Nm/rad
k3 80 Nm/rad
d1 0.08 Nm · s/rad
d2 0.06 Nm · s/rad
d3 0.08 Nm · s/rad
fm 6 · 10

−3 Nm · s/rad
fa1 1 · 10

−3 Nm · s/rad
fa2 1 · 10

−3 Nm · s/rad
fa3 1 · 10

−3 Nm · s/rad
n 220
l1 20 mm
l2 600 mm
l3 1530 mm
Td 0.5 · 10

−3 s
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