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Abstract

The main objective of the thesis is the identification of flexibilities and nonlinear-
ities in mathematical models of industrial robots. In particular, a nonparametric
frequency-domain estimation method for the multivariable frequency response func-
tion (MFRF) has been evaluated and analyzed for the robot application. Nonlinear
gray-box identification has also been treated. Since identification in robotics is a
much studied problem, one important part of the thesis also is to give an overview
of earlier results.

For the MFRF estimation method, an approximate expression for the estimation
error has been derived which describes how the estimate is affected by disturbances,
the choice of excitation signal, the feedback and the properties of the system itself.
The MFRF estimation method has been evaluated using both simulation data and
experimental data from an ABB IRB 6600 robot. A number of different aspects
regarding excitation signals and averaging techniques have been studied. It is
shown, for instance, that the repetitive nature of the disturbances further limits
the choice of excitation signals. Averaging the estimates over several periods of
data or using experiments with identical excitation does not give any significant
reduction due to the repetitive disturbances.

A three-step identification procedure is also proposed for the combined identi-
fication of rigid body dynamics, friction, and flexibilities. The procedure includes
continuous-time nonlinear gray-box identification and is exemplified using experi-
mental data.
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Notation

Symbols, Operators and Functions

N The set of natural numbers
R The set of real numbers
C The set of complex numbers
t Time variable
s Laplace transform variable
z z transform variable

p Differentiation operator, pu(t) = du(t)
dt

q Shift operator, qu(t) = u(t + 1)
E(x) Expected value of the random variable x
ẋ(t) Derivative of x(t) with respect to time
∈ Belongs to
θ Vector of (unknown) parameters
M Model structure, see (3.20)
N Number of samples
T Sample time

ϕ Vector of joint coordinates, ϕ = (ϕ1, . . . , ϕn)T

τ Vector of motor torques
M(ϕ) Inertia matrix in the dynamic equations (2.6)
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x Notation

C(ϕ, ϕ̇) Velocity dependent term in the dynamic equations (2.6)
g(ϕ) Gravitational term in the dynamic equations (2.6)
ϕm, ϕa Joint coordinates for motor and arm
Jm, Ja Moments of inertia of the motor and arm
r Gear ratio
k, d Spring stiffness and damping
Fv, Fc Viscous and Coulomb friction parameters

u(t) Input signal at time t
y(t) Output signal at time t
vτ (t), vu(t) Input disturbances at time t
vϕ(t), vy(t) Output disturbances at time t
r(t) Reference signal at time t
r(t) Matrix of reference signals, where column i corresponds to the

reference signal applied in experiment i (cf. (6.5)).
T Permutation matrix r(t) = T r0(t) (cf. (6.5))
R(·) Frequency domain version of r(t)
R(·) Frequency domain version of r(t)
Φu(ω) Spectrum for the signal u(t)
Φyu(ω) Cross spectrum between y(t) and u(t)
F (·) Controller
G(·) Transfer function from input to output

Ĝ(·) Estimate of the transfer function G(·)
∆G(·) Relative error for Ĝ(·) (cf. (6.3))
ŷ(t|θ) A model’s prediction of y(t) given θ and data up to time t − 1
ε(t, θ) Prediction error, y(t) − ŷ(t|θ)

Abbreviations and Acronyms

CAD/CAM Computer Aided Design/Computer Aided Manufacture
DH Denavit-Hartenberg, a parameterization of kinematic models
DOF Degrees Of Freedom
FRF Frequency Response Function
IRB Industrial RoBot, used in names for ABB robots
LTI Linear Time Invariant
MFRF Multivariable Frequency Response Function
MFRFE Multivariable Frequency Response Function Estimate
MIMO Multiple Input Multiple Output
SISO Single Input Single Output
SVD Singular Value Decomposition
TCP Tool Center Point



1
Introduction

In the manufacturing industry of today, the three most important factors are qual-
ity, cost, and productivity. For an increasing number of applications, industrial
robots are used to meet these demands. Robot manufacturers must therefore re-
solve the conflicting requirements of price reduction and increased performance.

A standard industrial robot (see Figure 1.1) consists of a mechanical arm with
a number of links connected by joints, where each joint is actuated by an (electric)
motor via a transmission1. The movements are controlled by a computer system.
Usually the robot has six joints, giving six degrees-of-freedom and the ability to
control both the position of the tool and its orientation in the workspace. The
dynamics of a robot are coupled, which means that movements of one joint will
affect the other joints. A robot is therefore a truly multivariable system. The
dynamics are also nonlinear, both with respect to the operating point and other
nonlinearities such as, for example, friction, backlash, and nonlinear stiffness in the
transmission. In addition, the robot arm and transmission are more or less flexible2,
which introduces resonances in the system and also a measurement problem, since
only a subset of the system states typically are measured.

A trend is to build robots with a bend-over-backwards capability (like the ABB
IRB 6600 in Figure 1.1), which means that to reach something behind the robot,
you can simply swing the arm backwards instead of having to rotate the machine.

1Sometimes the transmission is left out and the motor shaft is connected directly to the joint.
This is often called direct drive.

2The word flexible have at least two different meanings. It is sometimes used to describe the
positive property of easy customization and the ability to adapt to new, different, or changing
requirements. Throughout this thesis, the word flexible will denote elastic effects, which is a
negative property.

1



2 Chapter 1 Introduction

Figure 1.1 The ABB IRB 6600 robot (ABB, 2004).

The mechanical structure of such a robot is typically non-symmetric, which in-
creases the dynamic coupling effects and therefore makes the robot control problem
harder.

One common solution to the conflicting requirements of price reduction and
increased performance is to use cheaper hardware, which gives deteriorated me-
chanical properties, in combination with a more advanced robot controller. Maybe
additional sensors are needed, but adding sensors will increase the price. The num-
ber of sensors is therefore usually kept at the minimum level of only measuring the
motor positions (before the transmission gearbox and flexibilities), even though
it is the tool position on the arm side (after the gearbox and flexibilities) that
is the objective to control. The relationship between motor and arm positions is
described using a dynamic model. For the design of an advanced robot controller,
accurate dynamic robot models are therefore crucial.

The development rate of new industrial robots is also high, with several kinds
of robots and different configurations to tune each year. For top performance,
there could also be a need to re-tune robots at the customer site due to wear or
other changing conditions. This means that there is an increasing need for an
automated way of estimating accurate dynamic models. Good models are also
needed for model based diagnosis of robots in order to increase reliability and
reduce maintenance time.
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Two main routes to obtain these models are physical modeling and system iden-
tification. For the modeling route, basic physical laws and other well-established
relationships are used to come up with a model. System identification, on the other
hand, uses experimental data to adjust parameters in a selected model structure.
Often, a combination of these two routes is used. A physical model is built where
some parameters and/or parts are unknown. These unknown parameters/parts are
then estimated using system identification methods. This procedure is often called
gray-box identification, to be compared with the system identification extreme when
the parameters have no immediate physical interpretation, called black-box identi-
fication.

1.1 Problem Statement

The ultimate goal for robot identification could be to find an accurate global non-
linear flexible model, suitable for, e.g., control design (both the controller structure
and tuning), simulation, analysis, and diagnosis. The identification of such a com-
plex model is a huge task, both in finding suitable model structures and efficient
identification procedures, and is still a topic for further research. However, under
certain simplifying assumptions, a subset of the parameters can be identified. By
for example using a low-frequency excitation, the flexibilities have a minor influence
and a rigid model is approximately valid. The parameters of a global nonlinear
rigid model can then be estimated. This is a much studied subproblem (see the
overview in Section 4.3).

Another common approximation is to use local linear flexible models. The term
local stems from the fact that the robot is excited locally around a certain operating
point in the workspace, and linear means that the influences from other nonlin-
earities, such as backlash, friction, and nonlinear stiffness, are ignored or reduced
by a certain excitation. An estimate of the global nonlinear flexible model can
hopefully be found by combining the knowledge gained from the global nonlinear
rigid model and a number of local linear flexible models from different operating
points. However, some nonlinearities might not show up in this way and there are
also possible problems of biased estimates and a too complex and time consuming
identification procedure. Therefore, more structured methods for the identification
of the global nonlinear flexible model are needed.

Identification can also be done in many ways. Using black-box or gray-box
models, linear or nonlinear models, linear or nonlinear optimization techniques,
time-domain or frequency-domain data/models, the excitation trajectories can be
optimized, and the number of sensors can vary. For the identification of rigid body
dynamics, all states are measured (or estimated by simple filtering and/or differen-
tiating) and one can therefore use linear regression models. For the flexible body
dynamics, all states are typically not measured and more advanced identification
methods are needed.

Figure 1.2 gives an overview of some common model structures and identifi-
cation procedures mentioned above. The global nonlinear flexible model is de-
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noted M(θRB , θFB , θNL) where the parameter vector θ is divided into rigid body
parameters, θRB , flexible body parameters, θFB , and parameters describing the
nonlinearities, θNL. The global nonlinear rigid model, MGNR(θRB , θNL), is ob-
tained by ignoring flexibilities (denoted by θFB = 0). For the local linear flexible
model, MLLF

X0
(θRB , θFB ), the global model M(θRB , θFB , θNL) is linearized around

the operating point X = X0 and nonlinearities are ignored (denoted by θNL = 0).
A number of different identification methods exist, based on these model ap-

proximations. Nonparametric frequency-domain methods give estimates of the
input-output transfer function G(Ω) at certain frequencies Ωk, where Ω = iω for a
continuous-time model and Ω = eiω for a discrete-time model. This can be used
together with a given model structure G(Ω, θRB , θFB ) and the unknown parame-
ters can then be estimated by curve fitting in the frequency domain. Estimated
rigid body parameters, θ̂RB , from the rigid body identification can be used to some
extent, giving mainly θFB left to estimate. Time-domain black-box methods give
a discrete-time model G(q) which, among many things, also can be used for curve
fitting in the frequency domain.

Summing up the mentioned ideas: The final goal for the robot identification
could be to find efficient procedures for automated tuning of flexible model structures
with a minimum number of additional sensors.

The focus in this thesis will be on identifying flexibilities and nonlinearities
(shaded boxes in Figure 1.2). In particular, a nonparametric frequency domain
estimation method, described in Guillaume et al. (1996), for the multivariable
frequency response function (MFRF) will be evaluated and analyzed. Nonlinear
gray-box identification will also be treated. Since identification in robotics is a
much studied problem, one important part of the thesis also is to give an overview
of earlier results.

1.2 Outline of the Thesis

The application studied in this thesis is the industrial robot. Chapter 2 gives an
introduction to the robotics area, including modeling and control.

In Chapter 3 different system identification methods and model structures are
presented. A survey on system identification in robotics can be found in Chapter 4.

System identification is based on measurements of input and output signals
and therefore the quality of these measurements is an important factor. Different
aspects of how to design a good experiment are treated in Chapter 5.

The nonparametric frequency domain estimation method for the MFRF is de-
scribed in Section 3.4.3. Chapter 6 presents an error analysis for the method.
Experimental results and simulation results using the MFRF estimation method
are shown in Chapter 7 and Chapter 8, respectively.

In Chapter 9 a three-step identification procedure is proposed for the combined
identification of rigid body dynamics, friction, and flexibilities. The procedure
includes continuous-time nonlinear gray-box identification and is exemplified using
experimental data. Finally some conclusions are drawn in Chapter 10.
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Rigid Body
Identification
methods

Global Nonlinear Rigid Model

Global Nonlinear Flexible Model

Local Linear Flexible Model

methods

Nonparametric
Freq.−domain

Gray−box

Time−domain
Nonlinear

methods

Curve fitting
Freq.−domain
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Time−domain
Black−box

methods

Time−domain
Gray−box

M(θRB , θFB , θNL)

MGNR(θRB , θNL) MLLF
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(θRB , θFB )
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θNL = 0
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Ĝ(Ωk) Ĝ(q)

θ̂RB , θ̂FB θ̂RB , θ̂FB , θ̂NL

G(Ω, θRB , θFB )

(θ̂RB)

θ̂FB , (θ̂RB)

Figure 1.2 Overview of the robot identification problem and some common
subproblems and identification methods. The shaded boxes
denote what will be treated in this thesis.
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1.3 Contributions

The main contributions of the thesis are

• The survey on system identification in robotics in Chapter 4.

• The error analysis for the MFRF estimation method (Guillaume et al., 1996)
in Chapter 6 from which some properties of the estimation error can be
explained.

• Insight into the choices of excitation signals and averaging techniques when
using the MFRF estimation method for closed loop identification of an in-
dustrial robot. This is illustrated in Chapter 7 for experimental data and
Chapter 8 using simulation data.

• The proposed three-step identification procedure in Chapter 9 for combined
estimation of rigid body dynamics, friction, and flexibilities using continuous-
time nonlinear gray-box identification. The procedure is illustrated using
experimental data.

Some of the material of this thesis has been, or will be, published elsewhere. The
modeling part in Chapter 2 is mainly based on Wernholt and Östring (2003).
The results in Chapter 6 will appear in Wernholt and Gunnarsson (2004b) and
Chapter 9 can also be found in Wernholt and Gunnarsson (2004a).



2
Robotics

In this chapter, some important properties of industrial robots will be examined.
First an introduction to robotics is given in Section 2.1, followed by a historical
background in Section 2.2. Modeling of industrial robots is described in Section 2.3
and finally some aspects of the robot control problem is presented in Section 2.4.

2.1 Introduction

Robotics is a quite general term and is concerned with the study of those machines
that can replace human beings in the execution of a task, as regards both physical
activity and decision making (Sciavicco and Siciliano, 2000). Here the term is
restricted to the discipline of industrial robotics concerning robot design, control
and applications in industry.

The word robot was first introduced by the Czech playwright Karel Capek in
his 1920 play Rossum’s Universal Robots, the word robota being the Czech word for
work. The term has been applied to a great variety of devices, such as humanoids
(trying to mimic humans), domestic robots like robot vacuum cleaners and robot
lawn movers, underwater vessels, military missiles, autonomous land rowers, etc.
Almost anything that operates with some degree of autonomy, usually under com-
puter control, has at some point been called a robot. This thesis deals with indus-
trial robots (see Figure 1.1 for an example), which consist of a mechanical arm with
a number of joints, where each joint is actuated by an (electric) motor via a trans-
mission. The movements are controlled by a computer system. This type of robot
is often called robot manipulator or just manipulator. According to a widely ac-
cepted definition of the Robot Institute of America (Spong and Vidyasagar, 1989),

7



8 Chapter 2 Robotics

Figure 2.1 The ABB IRB 6600 robot with its six revolute joints. Axes 1-3
position the end effector (not shown in this figure) and axes
4-6 constitute the wrist.

a robot is a reprogrammable multifunctional manipulator designed to move materi-
als, parts, tools or specialized devices through variable programmed motions for the
performance of a variety of tasks.

The mechanical structure of a robot manipulator consists of a sequence of rigid
bodies (links) connected by revolute or prismatic joints, also called axes. Prismatic
joints give relative translational motion between links, whereas the revolute joints
give relative rotational motion between the links. The manipulator is character-
ized by an arm that ensures mobility, a wrist that confers dexterity, and an end
effector that performs the required task. Usually the robot has six joints, giving
six degrees-of-freedom (DOF) and the ability to control both the position of the
end effector and its orientation in the workspace. See Figure 2.1 for an example.
The portion of the environment that can be reached by the robot’s end effector
is called the robot workspace. Its shape and volume depend both on the manip-
ulator structure and mechanical joint limits. The motors are typically electric or
hydraulic, and occasionally pneumatic. Both geared and and direct-drive robots
exist, with different pros and cons (see Section 2.3.3).

Many different manipulator structures exist, where the main differences are
due to the two different types of joints and how these are combined. Some clas-
sifying manipulator structures are: Cartesian, cylindrical, spherical, SCARA, and
anthropomorphic (Sciavicco and Siciliano, 2000). One can also distinguish between
manipulators with an open or closed kinematic chain, which refers to how the links
are connected. Here we will only consider manipulators with an open kinematic
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Figure 2.2 Picking sausages with the ABB Flexpicker (ABB, 2004).

chain (also called serial type). In particular, we will restrict our treatment to the
anthropomorphic manipulator, depicted in Figure 2.1, where only revolute joints
are used. This type of robot is also called elbow-type robot due to its similarities
with a human arm. See Figure 2.2 for an example of a robot with a closed kinematic
chain (also called parallel kinematics).

The area in which a robot works is called a robot cell or work cell. For many
applications it is common to use multiple robots in a work cell. A dedicated device,
called positioner, is often used to handle the work object. The positioner controls
the work object and all the other devices are coordinated to move relative to the
work object when it moves. The axes of the positioner are often referred to as
external axes and are usually controlled by the robot controller. An example of
a robot cell with multiple robots could be two robots welding the same workpiece
in different areas and on two different sides. A positioner first moves the work to
present its upper side while the robots wait. Then the robots perform their welds
while the positioner waits. Next, the positioner indexes the work to present its
lower side to the waiting robots. Finally, the robots perform their welds on the
lower side. See also Figure 2.3 for an example of a spot welding line with multiple
robots.

Three main factors for the use of industrial robots in the manufacturing indus-
try are: reduction of manufacturing costs, increase of productivity, and improve-
ment of product quality standards. In addition, a robot can eliminate harmful or
alienating tasks for the human operator. Industrial robots are therefore essential
components for the realization of automated manufacturing systems. Industrial
robots are nowadays used in a wide range of applications, like spot welding (see
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Figure 2.3 A spot-welding line using ABB IRB 6400 robots (ABB, 2004).

Figure 2.3), arc welding, material handling, gluing, painting, polishing, grinding,
and many more. Demands on productivity and cost cut in different types of indus-
try further increases the use of robots and they are rapidly applied to new areas.
One example is the food industry (see Figure 2.2) which, according to Westerlund
(2000), probably will become the second largest robot user after the automotive
industry.

As was mentioned in Chapter 1, a trend is to build weaker and less symmetric
mechanical structures in order to reduce cost and increase the robot workspace.
Simultaneously, much work is done to decrease the weight of the moving parts of
the robot due to cost and safety issues. This makes elastic effects in the robot
more evident, and the control problem typically gets much harder. Usually, the
only measured variables are the motor positions, which means that a dynamic
model is needed to compensate for the flexibilities in the transmission and in the
robot arm and to estimate the position of the tool. In this chapter, some important
properties of this type of robot will be examined starting from the modeling aspect
and then briefly mention some aspects of the robot control problem. Many books
and articles have been written on modeling and control of robots. See for example
Spong and Vidyasagar (1989), Craig (1989), Sciavicco and Siciliano (2000), and
Spong et al. (1993). First, however, a historical background of industrial robots
will be given.
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2.2 Historical Background

Industrial robots have become an essential component in the manufacturing indus-
try of today, reducing cost while increasing productivity and quality. Still, in a
historical perspective the industrial robot is a fairly new invention and a histori-
cal background could therefore be interesting. The historical background is by no
means complete. To reduce the scope, the manufacturer ABB and the European
market will be in focus, with some comments on other manufacturers and markets.
The facts are mainly based on Westerlund (2000).

Technically, one could say that the industrial robot originates from hydraulic as-
sembly machines that arrived in the 1950s and from the NC machines (numerically
controlled turning and milling machines). The first industrial robot, an Unimate
robot from the company Unimation, was installed in 1961 to serve a die cast-
ing machine in General Motor’s factory in Trenton, New Jersey. Unimation was
started by the great entrepreneur Joseph Engelberger, often called “The Father of
Robotics”, and the engineer and innovator George Devol. The big breakthrough
came in 1964 when General Motors ordered 66 Unimate robots. In Europe, the
first industrial robot was installed in 1967 when Svenska Metallverken in Upplands
Väsby, Sweden, bought a Unimate robot. In 1969, Unimation installed its first
large spot-welding line with 26 robots, used for spot-welding car bodies at General
Motors.

In the 1970s, more and more companies started using robots. In 1973, there was
a total of about 3000 robots in operation around the world, of which a third were
produced by Unimation. At that time, 71 companies worldwide manufactured
industrial robots. Technically, the robots mainly used hydraulic actuators and
usually combined revolute and prismatic joints.

A milestone in the history of industrial robots is when the Swedish company
Asea1 presented its first prototype of a robot in October 1973. The robot was
called IRB 6, which meant a lifting capacity of six kilos, and contained several
new technical innovations. It was fully electrical, both the drive and the control
systems, and it was an elbow type robot as well as being the first robot to be
controlled by a microcomputer. Another key feature was to use harmonic drive
planetary gears, which are compact and provide high gear ratio, in combination
with DC motors. The IRB 6 was a success and the start of the Asea department
for workshop automation. The IRB managed to carry out many more tasks than
the competing robots at that time, with advantages such as higher speed, higher
repetitive accuracy (thanks to a patented linkage system) and simpler program-
ming. The design of the IRB 6 became a model for robot development during the
1970s, and it is the most copied industrial robot in the world.

In Japan, they were very quick to apply the new technology of industrial robots,
which meant that they could increase productivity and take new market shares.
Pretty soon they developed their own robots and in 1980, 19000 industrial robots
were manufactured in Japan by approximately 150 different manufacturers, such as

1The Swedish company Asea merged with the Swiss company Brown Boveri in 1987, which
resulted in a change of name to ABB.
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Kawasaki, Yaskawa, Mitsubishi Heavy Industries, Kobe Steel and Fanuc. Between
1980 and 1988, the number of robots in operation worldwide increased tenfold and
1988, the figure was 256000. Of these, 175000, or 68%, had been installed in Japan.

Europe, apart from Scandinavia, awoke quite late to industrial robots. One rea-
son is that there was no shortage of labor there. The industrial robot made its big
breakthrough in Europe during the latter part of the 1970s. During the 1980s, the
automotive industry in Europe and America discovered that the Japanese invest-
ment in robotized spot-welding produced a more consistent quality and, therefore,
welding became a prioritized area. At the end of the 1980s, there was also a rapid
growth in the field of assembly.

By the end of the 1980s, most manufacturers with an annual production volume
below 1000 robots had to start looking for a partner. Usually large companies
bought up small, specialized companies. During the last decade of the twentieth
century, the largest companies on the European market were ABB, Fanuc, Yaskawa
(Motoman), Kuka, Comao, and Renault Automation/ACMA. ABB was more than
twice as big as its closest rival on the European market.

In the mid 1980s, a big shift in technology took place among the robot manufac-
turers when AC motors replaced the DC motors. AC motors offered better cooling,
which meant that the performance could be increased. Continuous improvements
in the robot control system also took place. In 1994, ABB launched a new control
system, S4, which greatly improved the robot performance with respect to accu-
racy and cycle time. With the S4 control system, the controller used a full dynamic
model and could control the six robot axes as well as all the welding parameters
and up to six external axes. The control system was also able to communicate
with other systems, making integration with other automation equipment possible.
ABB’s latest controller, IRC5, was released 2004 and offers many new features.
One powerful innovation is the MultiMove, allowing synchronized control of up to
4 robots from the same controller. The IRC5 controller and its ABB robot family
can be seen in Figure 2.4.

One might wonder what the future holds for the industrial robot? According
to ABB (see Westerlund, 2000), industrial robots are today employed in roughly
20 different fields, with around 900 potential fields of use in the future. It could
be that a “robot revolution” lies ahead of us. However, entering these new fields
will be a great challenge for robot manufacturers. Among several things, the robot
must, to a greater extent, be able to perceive what is going on in the environment
and then additional sensors will be needed. The robot must also be user friendly
and the software much easier to program. Probably a lighter mechanical structure
will be needed and, above all, the price must be reduced.

2.3 Modeling

We will here derive some models for the mechanical arm of the industrial robot.
The modeling will be carried out at different levels of complexity, starting with
rigid body kinematics and dynamics, then adding flexibilities to better mimic the



2.3 Modeling 13

Figure 2.4 ABB robot family with the IRC5 controller (ABB, 2004).

behavior of a real robot. These different modeling levels have corresponding system
identification levels, see Chapter 4. Finally, a short section on modeling of actuators
and sensors is given.

The material in this section is mainly based on Wernholt and Östring (2003),
Sciavicco and Siciliano (2000), and Spong and Vidyasagar (1989).

2.3.1 Kinematics

Kinematics of a robot refers to the geometric relationship between the joint vari-
ables and the end effector position and orientation in task space. The motion of the
end effector in task space is usually defined in Cartesian coordinates with respect
to a reference frame.

To be able to describe the robot kinematics in a convenient way, various coor-
dinate systems are needed. Therefore a coordinate frame is attached to each link,
to the base (base frame or reference frame), and to the end effector (end effector
frame or tool frame).

Joint coordinates are given by the vector ϕ = (ϕ1, ϕ2, . . . , ϕn)T , where n is the
number of joints. A realization of the vector ϕ is called a configuration of the robot.

The position of the tool frame, the tool center point (TCP), can be expressed
by a vector x ∈ R3. The orientation of the tool frame with respect to the base
frame is represented by a rotation matrix, R ∈ R3×3. The rotation matrix belongs
to a group of matrices called SO(3), where SO stands for Special Orthogonal group
with the properties RT R = I, detR = +1. Even though the matrix R has 9
elements, the SO(3) conditions makes it possible to parameterize it by a parameter
vector r of lower dimension. Many representations occur in the literature, like
the Euler angles and roll-pitch-yaw angles (using 3 parameters), and axis/angle
and unit quaternions (using 4 parameters). Using only three parameters will give
singularities for certain orientations, which would be cumbersome. In the ABB



14 Chapter 2 Robotics

controller, the unit quaternions are used for the representation of orientation. For
details on different representations, see, for example, Spong and Vidyasagar (1989)
and Funda et al. (1990).

Position Kinematics

The forward kinematic problem is to determine the mapping

X =

(
x(ϕ)

r(ϕ)

)

= f(ϕ) (2.1)

from joint space to task space, where X also is called the robot location. The
computation of this function is quite straightforward and can be done iteratively
from the base frame to the first link, then on to the second and so on until the tool
frame is reached. In each step, the relation is determined by geometric properties
of the links and a single joint variable.

The inverse kinematic problem is to determine the inverse of the mapping, i.e.,
given a position and rotation of the tool frame calculate the corresponding robot
joint configuration. This is a much harder problem and the problem has in general
many solutions while, for a serial link robot as in Figure 2.1, the forward kinematic
problem has a unique solution.

A systematic way of building kinematic models is the Denavit-Hartenberg rep-
resentation (see, for example, Spong and Vidyasagar, 1989). In Wernholt and
Östring (2003), the DH representation is illustrated for an ABB IRB 7600 robot.

Velocity Kinematics

The velocity kinematics gives the relationship between the joint velocities and the
corresponding end effector linear and angular velocities. Similar to (2.1) the veloc-
ity kinematics can be written as

V =

(
v

ω

)

= J(ϕ)ϕ̇ (2.2)

where J(ϕ) ∈ R6×n is the manipulator Jacobian, and V represents the linear and
angular velocities of the tool frame relative to the base frame. The Jacobian is
an important quantity in the analysis and control of robot motion. Since it is a
function of the configuration ϕ, those configurations for which it looses rank are
of special interest. They are called singularities and can be interpreted as points
in the workspace where a serial type robot looses one or more degrees of freedom.
When planning a trajectory, singular points should be avoided. The Jacobian
also describes the transformation from tool contact forces to corresponding joint
torques. One way of calculating the Jacobian is to differentiate (2.1) with respect
to time, see Spong and Vidyasagar (1989) for details.
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2.3.2 Dynamics

A dynamic robot model describes the time evolution of the robot joints as a function
of applied torques and forces. The main focus of this thesis is identification of
unknown parameters in this type of model, and therefore the structure of dynamic
robot models is of interest.

There are two common methods to obtain the dynamic model. The first is based
on the Euler-Lagrange formulation and is systematic and conceptually simple. This
method will be briefly described below. The second method is based on the Newton-
Euler formulation and allows obtaining the model in a recursive form. See, for
example, Spong and Vidyasagar (1989) for details.

First, the dynamic model for a rigid robot is derived (Equations (2.6), (2.9),
and (2.10)). This model will then be extended to include some flexibilities.

Rigid Body Dynamics

Mechanical systems can be described using the Euler-Lagrange formulation, given
that the system is subject to holonomic constraints and the constraint forces satisfy
the principle of virtual work. A constraint on the k coordinates r1, . . . , rk is called
holonomic if it is of the form g(r1, . . . , rk) = 0, and non-holonomic otherwise. If
a system is subject to l holonomic constraints, the constraint system has l fewer
degrees of freedom than the unconstrained system. Then a new set of, so called,
generalized coordinates ϕ1, . . . , ϕn is introduced where ri = ri(ϕ1, . . . , ϕn), n =
k − l, and all ϕi are independent. The principle of virtual work requires that the
constraint forces do no work during displacements that are consistent with the
constraints. If this is the case, only external forces need to be considered, which is
the case for the rigid bodies considered here.

For the industrial robot the joint variables, ϕ, are considered as generalized
variables since these define the degrees of freedom for the robot. Now define the
Lagrangian function according to

L(ϕ, ϕ̇) = K(ϕ, ϕ̇) − P (ϕ) (2.3)

where K(ϕ, ϕ̇) is the kinetic energy, and P (ϕ) is the potential energy of the system.

The total kinetic energy of the robot can be calculated as the sum of each link’s
kinetic energy like

K(ϕ, ϕ̇) =

n∑

j=1

[
1

2
mjv

T
j vj +

1

2
ωT

j Ijωj ] =
1

2
ϕ̇T D(ϕ)ϕ̇ (2.4)

where mj is the mass of link j, Ij is the inertia matrix of link j, and vj and ωj are the
linear and angular velocities of link j, which can be derived using Jacobian matrices
similar to (2.2). Ij and ωj must be expressed in the same coordinate system, and
usually a body fixed coordinate system is used which makes Ij constant in time.
The matrix D(ϕ) is symmetric and positive definite.



16 Chapter 2 Robotics

For a rigid robot, the potential energy P (ϕ) is due to gravity only. For a flexible
robot elastic effects need to be included as well. The dynamics of the robot are
described by Lagrange’s equations

d

dt

∂L

∂ϕ̇j
− ∂L

∂ϕj
= τj , j = 1, . . . , n (2.5)

where τ1, . . . , τn are generalized input forces. Inserting kinetic and potential energy
for the Lagrangian above gives the dynamic equations

M(ϕ)ϕ̈ + C(ϕ, ϕ̇)ϕ̇ + g(ϕ) = τ (2.6)

where M(ϕ) is the inertia matrix, C(ϕ, ϕ̇)ϕ̇ is referred to as the velocity dependent
term, containing the centrifugal and Coriolis effects, and g(ϕ) is the gravitational
term. The elements of the matrix C(ϕ, ϕ̇) are defined as (mij is the i, j element of
M(ϕ))

ckj =

n∑

i=1

1

2
{∂mkj

∂ϕi
+

∂mki

∂ϕj
− ∂mij

∂ϕk
}ϕ̇i (2.7)

and

g(ϕ) = −∂V

∂ϕ
(2.8)

The Lagrangian dynamics of (2.6) have a number of important properties that
are helpful in the analysis and design of the control system (Spong and Vidyasagar,
1989; Sciavicco and Siciliano, 2000). Of particular interest here is the linearity with
respect to the dynamic parameters, which are sometimes called the standard inertial
parameters. Each link gives ten inertial parameters: body mass, mass location, and
the inertia matrix (only six elements due to symmetry). The robot dynamic model
(2.6) can then be rewritten as

H(ϕ, ϕ̇, ϕ̈)θ = τ (2.9)

or as the energy difference model

∆h(ϕ, ϕ̇)θ = ∆H = H(tb) −H(ta) =

∫ tb

ta

τT ϕ̇dt (2.10)

where θ ∈ R10n is the parameter vector and n is the number of links (Kozlowski,
1998). H is the total energy of the system. Equations (2.9) and (2.10) will be
extensively used for identification of rigid body dynamics, see Section 4.3 for further
details.

Flexible Body Dynamics

In an industrial robot, there are various sources of flexibility, such as elastic de-
formation of bearings and gears and deflection of the links under load. For many
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Figure 2.5 The two-mass flexible model of the robot arm.

robots, particularly those using harmonic drives for the torque transmission (see
Section 2.3.3), the joint flexibility is significant.

A trend in robotics is to build lighter robots. The weight of the robot must
of course be but into relation to the allowed payload. The load-to-mass ratio also
depends on the size of the robot. The large ABB IRB 6600 robot can handle 225
kg and weights about 1700 kg, whereas their smallest robot IRB 140 can handle
5 kg and weights 98 kg. An example of a lightweight robot is the 7 DOF DLR
lightweight robot in Albu-Schäffer and Hirzinger (2001), which handles 7 kg and
weights 18 kg. This includes actuators as well as many additional sensors. This
lightweight robot will of course not have the same performance as the traditional
industrial robot regarding, for example, workspace, position accuracy, acceleration,
and stiffness. All these properties are crucial for most industrial applications.
There are however many reasons for using lightweight robots, like reduced mass
and power consumption as well as safety issues (reduced mass of moving parts).
Due to these reasons, it is also interesting to reduce the weight of industrial robots.
Lightweight manipulators are used today in a variety of applications, ranging from
space robotics to less known tasks like exploration of hazardous environments or
nuclear waste retrieval. Service robotics and health care are two other areas of
application. However, a lighter robot, will result in a weaker mechanical structure
and enhance the effects of the flexibility of the materials. In addition to joint
flexibilities, also flexibilities in the link structure then become important.

Flexible manipulators are actually described by partial differential equations,
characterized by an infinite number of degrees of freedom. Obviously, dealing
directly with infinite dimensional models is impractical both for estimation, sim-
ulation, and control design purposes. Hence it is necessary to introduce methods
to describe flexibility with a discrete number of parameters. Three different ap-
proaches are generally used: assumed modes, finite elements and lumped parame-
ters. See Theodore and Ghosal (1995) for a comparison of the first two approaches
and Khalil and Gautier (2000) for an example of the last approach. Assumed
modes are also treated in Bascetta and Rocco (2002), which, in addition, gives
a good overview of the three different approaches. Here, the lumped parameters
approach will be used, where each elastic link is divided into a number of masses,
connected by spring-damper pairs.

The simplest flexible modeling approach is to only consider joint flexibility, i.e.
elastic effects in the transmission between the motor and the joint. Considering
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only one joint, that results in a two-mass flexible model according to Figure 2.5,
where Jm and Ja are the moments of inertia of the motor and arm respectively,
r is the gear ratio, k and d are the spring stiffness and damping (modeling the
flexibility), fm is the viscous friction of the motor, and τ is the motor torque. The
equations describing the dynamics are

Jmϕ̈m + fmϕ̇m + rk(rϕm − ϕa) + rd(rϕ̇m − ϕ̇a) = τ (2.11a)

Jaϕ̈a − k(rϕm − ϕa) − d(rϕ̇m − ϕ̇a) = 0 (2.11b)

The two-mass flexible model can be generalized to multivariable systems. A com-
monly adopted approximation then is to model the motors as simple rotating in-
ertias, ignoring that the motors actually are moving due to the movements of the
arm. This simplified model is obtained under the assumption that the kinetic en-
ergy of each rotor is mainly due to its own rotation, as discussed in Spong (1987).
Gyroscopic forces between each rotor and the other links are then neglected. Such
an approximation introduce minor errors for a traditional industrial robot which
is fairly rigid. However, for lightweight robots where the masses of a flexible link
and of its actuator could be comparable, neglecting or oversimplifying the dynamic
effects of the motors could yield severe errors (Bascetta and Rocco, 2002).

For the generalized two-mass flexible model, the multivariable rigid body dy-
namics (2.6) is combined with a motor and a spring-damper pair for each joint,
giving the dynamic equations

Mmϕ̈m + Fmϕ̇m + RK(Rϕm − ϕa) + RD(Rϕ̇m − ϕ̇a) =τ (2.12a)

M(ϕa)ϕ̈a + C(ϕa, ϕ̇a)ϕ̇a + g(ϕa) − K(Rϕm − ϕa) − D(Rϕ̇m − ϕ̇a) =0 (2.12b)

where τ now is the vector of applied motor torques, ϕa is the vector of arm joint
variables (previously ϕ), and ϕm is the vector of motor joint variables. Diagonal
matrices describing the joint dynamics are defined as Mm = diag[Jm1, . . . , Jmn],
Fm = diag[fm1, . . . , fmn], D = diag[d1, . . . , dn], K = diag[k1, . . . , kn], and R =
diag[r1, . . . , rn]. See also Spong (1987) for a derivation of the dynamic equations.

2.3.3 Actuators and Sensors

Two basic components in the robot system are actuators and sensors. It is, of
course, outside the scope of this thesis to give an overview of all different actuators
and sensors used in various types of robot systems, including a description of their
pros and cons. Here, the focus will be on the actuators and sensors used for the
particular industrial robot used in the experiments, i.e., the ABB IRB 6600 (see
Chapters 7 and 9). See, for example, Sciavicco and Siciliano (2000, pp. 295-320)
for are more detailed overview.

Actuators

A robot actuating system is in general constituted by a power supply, a power
amplifier, a motor, and a transmission.
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The power amplifier (or power controller) has the task of modulating the power
flow (provided by the power supply) according to a control signal and transmit
this power to the motor in terms of suitable force and flow quantities. For electric
motors, it is common to use transistor amplifiers which are suitably switched by
using pulse-width modulation techniques.

The joint motion typically demands low speeds with high torques. A motor
usually provides the opposite, i.e., high speeds with low torques. To overcome
this, a transmission (gearbox) can be used. Various types are used depending
on the robot structure, desired performance, etc. One example is the harmonic
drives, which are very popular today due to their low backlash, compact size, and
high torque transmission. Using a transmission will reduce the nonlinear coupling
terms in the dynamic model but at the same time introduce gearbox flexibilities,
backlash and friction. In some (rare) cases the motor is directly connected to
the joint, without the use of any transmission, which is called direct drive. Using
direct drive will make the coupling effects significant and in addition the control
of the motors will be more difficult. The use of direct-drive actuators is not yet
popular for industrial robots in view of their cost, the size of the motors (as well
as the brakes), and a more difficult control problem. In addition, more accurate
(and expensive) sensors will be needed to measure the joint position, compared to
measuring the motor position before the gearbox (resolution increased by the gear
ratio).

Two types of motors are often used; namely electric motors (for small and
medium size robots) and hydraulic motors (for large size robots). In addition
pneumatic motors are sometimes used, for example, to open and close the jaws of
a gripper tool. Here, only electric motors will be considered and, in particular,
AC permanent magnet motors since these are used as actuators for the industrial
robot used in the experiments. AC permanent magnet motors are extremely fast,
compact, and robust. A drawback, however, is that the generated torque changes
periodically with the rotor position. The resulting torque ripple is caused by dis-
tortion of the stator flux linkage distribution, variable magnetic reluctance at the
stator slots, and secondary phenomena such as, for example, the power amplifier
(Holtz and Springob, 1996). The ripple caused by the variable magnetic reluctance
is proportional to the current, which here will be approximated by the commanded
torque, τc, from the robot controller (neglecting the fast power controller). Since
the torque ripple is periodic in the rotor position ϕ, it can be modeled as a sum of
sinusoids like

vτ (t) =
∑

n∈Na

an sin(nϕ(t) + φa,n) + τc(t)
∑

n∈Nb

bn sin(nϕ(t) + φb,n) (2.13)

where the number of components in Na and Nb depends on the specific motor
type and the level of approximation (Gutt et al., 1996). The applied torque τ can
therefore be seen as a sum of the commanded torque τc and a disturbance term vτ .
For an example, see Table 8.1 in Section 8.1.
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Sensors

Using sensors is of crucial importance to achieve high-performance robotic systems.
There are various types of sensors available, often divided into sensors that measure
the internal state of the robot (proprioceptive sensors) and sensors that provide
knowledge about the surrounding environment (heteroceptive sensors). Examples
of proprioceptive sensors are encoders and resolvers for joint position measurements
and tachometers for joint velocity measurements. Heteroceptive sensors include,
for example, force sensors for end effector force measurements and vision sensors for
object image measurements when the manipulator interacts with the environment.

It is common to restrict the number of sensors by only measuring the rotor
position (of the motor) for each joint. Due to the transmission and other sources
of flexibilities, advanced dynamic models can then be used to accurately estimate
the movements of the robot arm. Measurements of the rotor position is normally
obtained by using Tracking Resolver-to-Digital Converters (Hanselman, 1990). The
position error, due to non-ideal resolver characteristics, can be be described as a
sum of sinusoids like (Hanselman, 1990)

vϕ(t) =
∑

n∈Nc

cn sin(nϕ(t) + φc,n) + eϕ(t) (2.14)

where eϕ(t) is Gaussian noise, added to take into account measurement noise. vϕ is
hereafter denoted output disturbance. For an example, see Table 8.1 in Section 8.1.

2.4 Control

The robot motion control problem is the problem of determining the time history of
inputs to the actuators required to cause the end effector to execute a commanded
motion. In general, the motion control problem is divided into three stages,

• motion planning,

• trajectory generation, and

• trajectory tracking.

See also Figure 2.6. Each stage will now be described briefly.

2.4.1 Motion Planning

Motion planning on the highest level involves finding a path in the operational
space, which denotes the locus of Cartesian points or some other representation,
that the end effector has to follow in the execution of the assigned motion. In
industrial applications this part is either done by using a teach pendant (see Fig-
ure 2.7) or by using a system separate from the robot control system, for example
a CAD/CAM tool.
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Figure 2.6 Block diagram showing the components in the robot control
problem.

Figure 2.7 An example of a teach pendant: The ABB IRC5 FlexPendant
(ABB, 2004).

2.4.2 Trajectory Generation

The goal of the trajectory generation stage is to generate reference inputs to the
control system which ensures that the manipulator executes the planned trajecto-
ries.

Given the path representation in Cartesian space from the motion planning
stage, this path first has to be transformed into a path representation in joint
space. This is in general not possible to do analytically. Instead the path must
be transformed using the inverse kinematic model of the robot manipulator at
discrete points. These points are then interpolated, for example by using splines
as in Nyström and Norrlöf (2003).

The generated path is a pure geometric description of the motion. A trajectory,
on the other hand, is a path on which a time law is specified. Trajectory generation
therefore deals with the problem of generating a trajectory with position, speed,
acceleration, and jerk (derivative of acceleration) given as functions of time. Since
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the trajectories must be feasible, i.e., the manipulator must be able to follow the
generated trajectories, the actual robot dynamics and kinematics must be taken
into account. The goal often is to find optimal paths where the maximum speed and
acceleration are used. Therefore, the trajectory generation problem is important
for the performance of the robot.

2.4.3 Trajectory Tracking

The trajectory tracking problem can be defined as the problem of controlling the
robot joints according to the trajectory calculated by the trajectory generator.

There are many control techniques and methodologies that can be applied to
the control of manipulators. The control method and its implementation can have
significant impact on the performance of the manipulator and consequently on the
range of possible applications. The mechanical design of the manipulator will also
influence the type of controller needed. For example, the nonlinear coupling effects
between different joints varies greatly between a Cartesian robot and an elbow type
robot. If a gearbox is used or not will also greatly affect the control problem, as
was mentioned in Section 2.3.3. Using a gearbox will reduce the nonlinear coupling
effects but at the same time introduce flexibilities, backlash and friction. Using
a direct-drive robot, on the other hand, will make the coupling effects significant
and in addition the control of the motors will be more difficult. Here, we will
consider geared elbow-type robots. It is outside the scope of this thesis to give an
overview of all available control methods. For more details on different aspects of
robot control, there are numerous references, such as Spong and Vidyasagar (1989);
Craig (1989); Sciavicco and Siciliano (2000); Spong et al. (1993). However, to get
a feeling for the problem, some words will be said about a commonly used control
technique.

A standard procedure in robotics today is to measure only the motor position
(to increase performance, additional sensors are sometimes added). Due to the
gearbox flexibilities, there will be some dynamics between the motor position, ϕm,
and the arm position, ϕa. Therefore, the generated arm trajectory, ϕref

a , must be
transformed to a corresponding motor trajectory, ϕref

m , using a flexible dynamic
model. A common architecture for the robot controller is shown in Figure 2.8,
using both feedback and feedforward controllers. X is the end effector Cartesian
location which should follow the path created by the motion planner.

Since the trajectory is known beforehand, it can be used in a feedforward con-
troller. The generated trajectories are feasible so the feedforward controller should
ideally give zero tracking error on the motor side, e(t) = ϕref

m (t) − ϕm(t). Due to
model errors and disturbances, there will still be a non-zero tracking error and this
is handled by the feedback controller. A common choice for the feedforward con-
troller is to use computed torque (Spong and Vidyasagar, 1989) which in principle
means the inverse of the robot dynamics. For a rigid robot described by (2.6), the
feedforward controller would output

τf = M(ϕref )ϕ̈ref + C(ϕref , ϕ̇ref )ϕ̇ref + g(ϕref ) (2.15)
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Figure 2.8 Block diagram showing the controller and a robot with gearbox
flexibilities. The dashed block corresponds to the Controller
block in Figure 2.6.

where ϕref is the reference trajectory. This is a complicated expression that must
be evaluated at a high sampling rate and is therefore often approximated by re-
moving slowly varying parts. These are instead handled by the feedback controller.
Adding flexibilities further complicates the feedforward controller.

For the feedback controller, the simplest control strategy is called indepen-
dent joint control and means that each joint axis is controlled as a SISO system.
Coupling effects are then treated as disturbances and what is left to control is
a two-mass flexible system like (2.11). For example a simple PID controller will
usually give satisfactory behavior. Since the feedforward controller is expected to
give the main performance, the feedback controller is mainly tuned for disturbance
rejection. The controller must be robust to modeling errors as well as uncertain-
ties in the robot load and variations in the workspace. The arm inertia, Ja, in
(2.11) will, for example, vary as a function of the configuration, ϕ. To improve the
performance of the feedback controller, sometimes a gain scheduling technique is
used with the varying arm inertia, Ja, as one of the scheduling variables. A second
step would be to include some coupling effects of major influence. For example,
axes two and three are for some configurations highly coupled. Of course, more
advanced control strategies could be applied as well, see the previously suggested
references.
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3
System Identification

Linear time-invariant dynamic systems and models are the foundation of control
theory and system identification and are described in many textbooks (see, for
example, Rugh, 1996; Ljung, 1999). In Section 3.1, some useful properties will
be briefly reviewed. This section can be skipped by readers already familiar with
the subject. The system identification procedure is described in Section 3.2, with
details on model structures and how to compute the estimates in Sections 3.3 and
3.4, respectively. The chapter is ended by some notes on model validation, closed-
loop identification and bias and variance in the estimates.

3.1 Preliminaries

Consider a continuous-time system with a scalar input u(t) and a scalar output
y(t). The system is said to be time-invariant if its response to a certain input signal
does not depend on absolute time. It is said to be linear if its output response
to a linear combination of inputs is the same linear combination of the output
responses of the individual inputs. In addition, it is said to be causal if the output
at a certain time only depends on the input up to that time. In the following, only
causal systems will be treated.

A linear time-invariant (LTI) system can be completely described by its impulse
response g(τ) as

y(t) =

∫ ∞

0

g(τ)u(t − τ)dτ (3.1)

An LTI system can also be represented by a transfer function G(s), which is ob-

25
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tained by taking the Laplace transform of the impulse response, i.e.,

G(s) =

∫ ∞

0

g(t)e−stdt (3.2)

We then have the relation
Y (s) = G(s)U(s) (3.3)

between Y (s) and U(s), the Laplace transforms of the output and input, respec-
tively. The function G(p), where p is the differential operator pu(t) = d

dtu(t), will
be called the transfer operator (sometimes, with abuse of notation, G(p) will be
called transfer function as well). This makes it possible to write (3.1) as

y(t) = G(p)u(t) (3.4)

We will exclusively work with observations of inputs and outputs in discrete-
time. We thus assume that y(t) and u(t) are observed at the sampling instants
tk = kT, k = 1, 2, . . . where the interval T will be called the sample time. Often
in computer controlled applications, the input signal u(t) is kept constant between
the sampling instants like

u(t) = uk, kT ≤ t < (k + 1)T (3.5)

which is called zero-order hold. Inserting (3.5) in (3.1) gives a relation between y
and u at the sampling instants

y(kT ) =

∞∑

l=1

gT (l)uk−l (3.6)

where gT (l) is the discrete-time impulse response defined as

gT (l) =

∫ lT

(l−1)T

g(τ)dτ (3.7)

Taking the z-transform of gT (l) gives the discrete-time transfer function

GT (z) =

∞∑

k=0

gT (k)z−k (3.8)

and replacing z with the shift operator q, qu(t) = u(t+T ), gives the corresponding
discrete-time transfer operator.

Evaluation of the transfer function at the point z = eiωT (s = iω for continuous-
time) will describe the system response to a sinusoidal input u(t) = cosωt like

y(t) = |GT (eiωT )| cos(ωt + argGT (eiωT )) (3.9)

The complex-valued function

GT (eiωT ), −π/T ≤ ω ≤ π/T (3.10)
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is therefore called the frequency response function or just the frequency function. It
is common to graphically display this function as log |GT (eiωT )| and arg GT (eiωT )
plotted against log ω (for 0 < ω ≤ π/T ) in a Bode plot. For continuous-time
descriptions, the frequency function G(iω) is defined for −∞ < ω < ∞.

One might wonder how the continuous-time and discrete-time frequency func-
tions are related. It is possible to show that

|G(iω) − GT (eiωT )| ≤ ω · T ·
∫ ∞

0

|g(τ)|dτ (3.11)

where g(τ) is the continuous-time impulse response (see, for example, Ljung and
Glad, 1994, p. 75). The frequency response functions agree quite well for low
frequencies and a rule of thumb is that the agreement usually is good enough for
frequencies below one tenth of the sampling frequency (ω < 2π/(10T )). A reason
for the difference is that the influence from the zero-order hold sampling (3.5) has
been neglected. One can show that a zero-order hold will give a contribution like

Gzoh(s) =
1 − e−sT

s
G(s) (3.12)

where Gzoh(s) is the new continuous-time transfer function where the sampling
effects are added (Phillips and Nagle, 1990).

Consider now the Fourier transform, defined as

U(iω) =

∫ ∞

0

u(t)e−iωtdt (3.13)

for a continuous-time signal u(t) and

UT (eiωT ) =

∞∑

l=0

ule
−iωT l (3.14)

for a discrete-time signal. These transforms are related as

UT (eiωT ) =
1

T

∞∑

k=−∞

U(i(ω − k
2π

T
)) (3.15)

If the bandwidth of the continuous-time signal is larger than half the sampling fre-
quency, higher frequencies will be shifted in and appear as lower frequencies. This
error is called alias error and can be avoided by using an anti-alias filter before
sampling the signal. If the bandwidth is less than half the sampling frequency, no
information will be lost and the continuous-time and discrete-time Fourier trans-
forms will coincide for −π/T ≤ ω ≤ π/T .

Of course, in a real situation, only a limited number of data points ul, l =
1, 2, . . . , N are collected. It is then common to consider the Discrete Fourier Trans-
form (DFT), defined as

UN (ωk) =
1√
N

N∑

l=1

ule
−iωkTl (3.16)
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Plant
u(t)

y(t)

v(t)

Figure 3.1 Plant subject to system identification. The signals u(t) and
y(t) are the system input and output, respectively, while v(t)
is a disturbance signal acting on the system.

with

ωk = k
2π

NT
, k = 1, 2, . . . , N (3.17)

Depending on the properties of the original infinite length signal, the DFT (3.16)
may differ from the discrete-time Fourier Transform (3.14). Assuming a periodic
signal and measuring an integer number of periods, (3.16) and (3.14) will coincide
for the DTF frequencies (3.17). In other cases, there will be leakage errors due to
the limited time window. This error can be reduced by using a windowed signal
(typically giving less attention to samples in the beginning and the end of the data
record). See, for example, Ljung (1999) and Pintelon and Schoukens (2001b) for
suggestions on suitable windows.

3.2 The System Identification Procedure

Consider the setting in Figure 3.1, where u(t) is the plant input and y(t) is the
measured plant output, corrupted by the disturbance v(t). Assume now that we,
for some reason, want to model this system. The model could be used both as a
means for achieving deeper knowledge about the system and as a design tool, for
example as a basis for simulations or for controller design. One common use of
models is prediction, where we want to predict future output values. This is, for
example, used in weather forecasts.

Two main routes for obtaining these models are physical modeling and sys-
tem identification. Modeling involves using basic physical laws and other well-
established relationships (which, in a sense, means using previous experience based
on previous empirical work). On the other hand, system identification uses exper-
imental data to find a suitable model. In this chapter the focus, obviously, will be
on the latter route.

The system identification procedure involves finding a model that describes the
input-output data sufficiently well, according to some criterion. The search for this
model will be carried out among a set of candidate models. System identification
therefore includes several steps, like:

1. Design the experiments.

2. Collect experimental data from the system.
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3. Select a set of models or the model structure to represent the system.

4. Determine the “best” model in the set, guided by the data.

5. Validate the model.

In each step, there are numerous options which inevitably cannot be described in
detail here. Still, some particular options with relevance to our studied problem
will be pointed out. For a detailed treatment, the reader is referred to, for example,
Ljung (1999), Söderström and Stoica (1989), and Pintelon and Schoukens (2001b).

The design of good experiments for use in identification is covered separately
in Chapter 5. The second step, the actual collection of experimental data, depends
on the considered system, measurement equipment, etc., and will not be treated
here. The last three steps are covered in the following sections.

3.3 Model Structures

As was mentioned previously, the identification procedure involves a search for the
best model among a set of candidate models, called the model set. The selection of
this model set is the most important and, at the same time, the most difficult choice
in the identification procedure. Physical insight and a priori knowledge about the
system are often of great assistance. The model set is just a collection of models.
In order to facilitate the numerical search, the model set can be parameterized by
a parameter vector θ belonging to the parameter set DM. This parameterization
of the model set is called a model structure and is denoted by M.

Some options to consider in the selection of a suitable model structure are:

• Linear versus nonlinear models.

• Parametric versus nonparametric models.

• Black-box versus gray-box models.

• Discrete-time versus continuous-time models.

• Linear-in-the-parameters versus nonlinear-in-the-parameters.

Most of these options can be combined, giving a wide range of possible model
structures to choose from. For each choice, there are a number of identification
methods for the computation of the parameter estimate. These methods will be
discussed in the next section. The model structure selection will also greatly affect
how hard the problem of computing the parameter estimate will be. Each of these
options will now be briefly explained.

Consider once more the setting in Figure 3.1 and the aim to find a model
describing the collected input-output data. The first choice to make is if to use
a linear or nonlinear model. Almost every real life system is nonlinear, including
the industrial robot that is studied in this thesis. The theory of nonlinear systems
is very involved and therefore nonlinear systems are often approximated by linear
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models. This is done under the assumption that the behavior can be linearized in
the operating region. Whether this is a valid assumption or not depends on the
application. For a detailed discussion on linear models of nonlinear systems, see
Enqvist (2003) and Pintelon and Schoukens (2001b, Ch. 3).

The second choice is between a parametric or nonparametric model. A non-
parametric model could, for example, be the impulse response (time domain) or
the frequency response function (frequency domain) at a large number of points.
The only assumption made then is that a linear input-output relation exists. For a
parametric model, on the other hand, some additional knowledge and/or assump-
tions are used to reduce the model’s degrees-of-freedom by parameterizing it by
a limited number of parameters. An example could be a transfer function model,
parametrized by its poles and zeros. For a parametric model, the physical insight
will typically be larger and it can be seen as a concentration of information. Usually
a nonparametric model is simpler to create since less knowledge about the system
is needed.

Assume now that the system in Figure 3.1 can be modeled by a parametric
linear time-invariant model like

y(t) = G(p, θ)u(t) + H(p, θ)e(t) (3.18)

in the continuous-time case and

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (3.19)

in the discrete-time case. The plant transfer function, G(·, θ), describes the input-
output relation and the term H(·, θ)e(t), where e(t) is a white disturbance signal
with zero mean, is used to describe the impact of the disturbance v(t) on the output
y(t). G(·, θ) and H(·, θ) are parametrized by the parameter vector θ. The model
structure M can then be written more formally as

M : DM ∋ θ → M(θ) = {G(·, θ), H(·, θ)} (3.20)

which means the mapping from the parameter vector θ, belonging to the param-
eter set DM, to a particular model M(θ). For details on model sets and model
structures, see Ljung (1999, pp. 107-108).

Sometimes the model structure M is obtained after careful modeling, with some
unknown parts or parameters left to estimate. This type of model structure is called
gray box. Similarly, a model structure whose parameters do not reflect physical
considerations in the system is called black box. Nonlinear gray-box models will be
treated in Chapter 9.

The transfer functions G(·, θ) and H(·, θ) can be parameterized in many dif-
ferent ways, e.g., as rational functions where the parameter vector θ contains the
coefficients in the numerator and denominator polynomials. The following general
black-box model structure is often used

A(·, θ)y(t) =
B(·, θ)
F (·, θ)u(t) +

C(·, θ)
D(·, θ)e(t) (3.21)
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where, in discrete-time,

A(q, θ) = 1 + a1q
−1 + . . . + ana

q−na (3.22)

and similarly for C(q, θ), D(q, θ), and F (q, θ), while

B(q, θ) = b1q
−nk + b2q

−nk−1 . . . + bnb
q−nk−nb+1 (3.23)

where nk is the number of time delays in the system. By setting some of the
polynomials to unity, different special cases are achieved. One common case is the
ARX model

A(q, θ)y(t) = B(q, θ)u(t) + e(t) (3.24)

A reason for its wide use is that the parameter estimate can be easily calculated,
see (3.38).

Another common model parametrization is the state space model

ẋ(t) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t) (3.25a)

y(t) = C(θ)x(t) + D(θ)u(t) + e(t) (3.25b)

or

x(t + T ) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t) (3.26a)

y(t) = C(θ)x(t) + D(θ)u(t) + e(t) (3.26b)

where here for simplicity the innovations form is considered (Ljung, 1999, p. 99).
In this description, x(t) ∈ R

n is the state vector and A(θ), B(θ), K(θ), C(θ), and
D(θ) are matrices (vectors) of suitable dimensions. A nice property for state space
models is that they work equally well for multivariable systems as for scalar systems.
The state space models (3.25) and (3.26) are just choices of parameterization of
the linear systems (3.18) and (3.19), respectively. Consider now the discrete-time
case. Using the shift operator, (3.26) can be rewritten as

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (3.27)

G(q, θ) = C(θ)(qI − A(θ))−1B(θ) + D(θ) (3.28)

H(q, θ) = C(θ)(qI − A(θ))−1K(θ) + I (3.29)

showing the relationship to the model (3.19). For a nonlinear system, like the
robot, the dynamics can be modeled using a nonlinear state space model like

ẋ(t) = f
(
t, x(t), θ, u(t), e(t)

)
(3.30a)

y(t) = h
(
t, x(t), θ, u(t)

)
+ e(t) (3.30b)

in the continuous-time case, with obvious modifications for the discrete-time case.
Here, f and h are nonlinear functions. This type of model will be used for nonlinear
gray-box identification in Chapter 9.
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3.4 Calculating the Estimate

Suppose now that a model structure has been selected, according to the previous
section. Depending on the choice of model structure, a number of different methods
exist. It is common to distinguish between parametric and nonparametric methods
and also between time-domain and frequency-domain methods. Here, we will briefly
discuss parametric time-domain methods, parametric frequency-domain methods,
and nonparametric frequency-domain methods. For nonparametric time-domain
methods like transient-response analysis and correlation analysis, see for example
Ljung (1999) and the references therein.

3.4.1 Parametric Time-domain Methods

With time-domain methods for system identification, we here mean methods that
compute estimates of the unknown parameters θ using measurements of the input
and output for a number of time instants, ZN = {u(1), y(1), . . . , u(N), y(N)}. (For
simplicity, we will assume sample time T = 1 in the sequel.) Several methods are
available in the literature but to limit the discussion, mainly the the prediction
error method will be considered. The idea behind the prediction error method is
to find the parameters that will minimize the prediction errors,

ε(t, θ) = y(t) − ŷ(t|θ) (3.31)

where ŷ(t|θ) is the model’s prediction of y(t) given Zt−1. For the discrete-time case
(3.19), the standard predictor is

ŷ(t|θ) = H−1(q, θ)G(q, θ)u(t) + (1 − H−1(q, θ))y(t) (3.32)

For the continuous-time case (3.18), a predictor can be calculated by, for exam-
ple, first sampling the model. For the discrete-time state space model (3.26), the
predictor ŷ(t|θ) is given by

x̂(t + 1, θ) =A(θ)x̂(t, θ) + B(θ)u(t)+

+ K(θ) [y(t) − C(θ)x̂(t, θ) − D(θ)u(t)] (3.33a)

ŷ(t|θ) =C(θ)x̂(t, θ) + D(θ)u(t) (3.33b)

For the minimization of the prediction errors (3.31), one could choose different
norms. A common choice is the quadratic criterion, given by

VN (θ) =
1

N

N∑

t=1

1

2
ε2(t, θ) (3.34)

Other norms than ε2 might be useful for, for example, robustness against outliers
(Ljung, 1999). The criterion is usually minimized by a numerical search method,
for example the Gauss-Newton method (Ljung, 1999, Ch. 10). This is the case also
for the nonlinear gray-box identification method used in Chapter 9.
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In some special cases, like the ARX model (3.24) with a quadratic criterion
(3.34), there exists an analytical solution. For an ARX model, the predictor can
be written as a linear regression

ŷ(t, θ) = φT (t)θ (3.35)

φ(t) = [−y(t − 1) · · · − y(t − na) u(t − nk) · · ·u(t − nk − nb + 1)]T (3.36)

θ = [a1 · · · ana
b1 · · · bnb

]T (3.37)

Since the prediction error here is linear in the parameters, the minimizing parameter
vector to (3.34) is the solution to a standard least-squares problem

θ̂N = arg min
θ

VN (θ) =

[

1

N

N∑

t=1

φ(t)φT (t)

]−1

1

N

N∑

t=1

φ(t)y(t) (3.38)

which is usually computed using a QR factorization (see Ljung, 1999)).

For state space models, there is also the possibility to use subspace methods,
which basically estimate the matrices of the state space model by solving a sequence
of least-squares problems. See, for example, the book Van Overschee and DeMoor
(1996) for an overview.

3.4.2 Parametric Frequency-domain Methods

A parametric frequency-domain identification method estimates the unknown pa-
rameters θ from frequency-domain data ZN which, in most cases, is obtained by a
DFT from the raw time-domain data like

ZN = {UN(ω1), YN (ω1), . . . , UN(ωN ), YN (ωN )} (3.39)

The data set could also be obtained directly from the system using a measurement
device providing frequency domain data.

If we assume that the system can be described by (3.18) or (3.19), we have the
following (approximate) relations

YN (ωk) = G(iωk, θ)UN (ωk) + H(iωk, θ)EN (ωk) (3.40)

in continuous time and

YN (ωk) = G(eiωkT , θ)UN (ωk) + H(eiωkT , θ)EN (ωk) (3.41)

in discrete time. For non-periodic signals, the relations are only approximate since
a transient term then should be added as well. For (3.40) to hold, we have also
assumed that the bandwidth of the original continuous-time signals is less than half
the sampling frequency such that the continuous-time and discrete-time Fourier
transforms, (3.13) and (3.14), coincide.
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A common criterion for the parameter estimate is the (weighted) least squares
criterion

VN (θ, ZN ) =
N∑

k=1

|YN (ωk) − G(iωk, θ)UN (ωk)|2 Wk (3.42)

for continuous time and

VN (θ, ZN ) =

N∑

k=1

∣
∣YN (ωk) − G(eiωkT , θ)UN (ωk)

∣
∣
2
Wk (3.43)

for discrete time, where the weight functions Wk can be selected using the noise
model H(·, θ). If the noise model depends on θ, an additional term should be
added as well (Ljung, 1999; Pintelon and Schoukens, 2001b). The criterion can be
made quadratic in θ by parameterizing the model G(·, θ) as a rational function and
multiply YN (ωk)−G(·, θ)UN (ωk) by the denominator, see Pintelon and Schoukens
(2001b) for details. For systems with a large dynamic range, which is the case for
the highly resonant industrial robot we are studying, the (weighted) logarithmic
least squares criterion is suggested

VN (θ, ZN ) =

N∑

k=1

∣
∣
∣
∣
log

YN (ωk)

UN(ωk)
− log G(eiωkT , θ)

∣
∣
∣
∣

2

Wk (3.44)

which has improved numerical stability as well as robustness with respect to out-
liers. From a theoretical point of view, logarithmic least squares will give incon-
sistent (biased) estimates, but for systems with a fairly good signal-to-noise ratio,
this is of minor practical importance. See, again, Pintelon and Schoukens (2001b,
pp. 206-207) for details.

Relationship Between Time-domain and Frequency-domain methods

First, one can note that there is a one-to-one relationship between time-domain and
frequency-domain data, so no information is lost by taking the DFT of the time-
domain data. The only difference is that some information is more easily accessible
in one domain than in the other. It is also possible to reformulate an identification
problem from time domain to frequency domain, and vice versa, so in that sense,
they are equivalent (see, for example, Ljung, 1999). However, the complexity of
the identification methods will vary depending on the selected domain and there
can also be some numerical differences.

For time-domain methods, discrete-time models are the natural choice. For
frequency domain methods, on the other hand, the choice of models is more general.
This is due to the fact that the differential or difference equations are replaced
by algebraic equations in the related frequency variable, and then there are no
major differences in the calculation of the model estimates. For a discussion on
similarities and differences using time-domain or frequency-domain identification
methods, see for example Pintelon and Schoukens (2001b, pp. 368-373) and Ljung
(1999, pp. 227-233).
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3.4.3 Nonparametric Frequency-domain Methods

Nonparametric frequency-domain identification methods means that the plant fre-
quency response function (FRF) is estimated without using a certain model set
described by a number of parameters. Most nonparametric estimation methods
consider only scalar systems, like the ETFE described below. Here we will also
consider an estimation method, described in Guillaume et al. (1996), for the mul-
tivariable frequency response function (MFRF).

Estimates of the FRF are an interesting intermediate step in the identification
process. Using these estimates, the quality of the measurements is assessed and
one gets a feeling for the complexity of the modeling problem. In a second step,
a parametric model can be estimated, e.g. by minimizing the distance between
the model and the estimated FRF, see (3.44), or directly from time-domain or
frequency-domain data, as was previously described.

The Empirical Transfer Function Estimate (ETFE)

Using the DFT of the input and output, UN (ωk) and YN (ωk), the empirical transfer
function estimate (ETFE) is defined as

ˆ̂
GN (eiωkT ) =

YN (ωk)

UN (ωk)
(3.45)

It is possible to show that the variance of this estimate does not approach zero
as the number of data tends to infinity, unless the data is periodic (Ljung, 1999).
Therefore, the estimate is often smoothed using a weighting function

ĜN (eiωT ) =

∑

k αk(ω)
ˆ̂
GN (eiωkT )

∑

k αk(ω)
(3.46)

The smoothing will reduce the variance but introduce a bias (see Section 3.7 for
bias and variance expressions). The width of the smoothing, i.e., the variance/bias
trade-off, is determined by the user. The ETFE is closely related to spectral
estimation, described next.

Spectral Estimation (SPA)

Using the DFT, the periodogram of a signal u(t) can be calculated as

ˆ̂
Φu(ω) = |UN (ω)|2 (3.47)

and is a (crude) estimate of the signal (power) spectrum (Ljung, 1999). Similarly

ˆ̂
Φyu(ω) = YN (ω)UN (ω) (3.48)

is an estimate of the cross spectrum, where (·) denotes complex-conjugate. The
periodograms are smoothed (see, for example, Ljung, 1999, pp. 180-183) to get
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estimates of the spectrum and cross spectrum, Φ̂u(ω) and Φ̂yu(ω), which are used
in the spectral analysis (SPA) to form an estimate like

ĜN (eiωT ) =
Φ̂yu(ω)

Φ̂u(ω)
(3.49)

The Multivariable Frequency Response Function Estimate (MFRFE)

For multivariable systems, nonparametric estimation methods are not that com-
mon. The identification method that will be described here can be seen as a gen-
eralization of the ETFE to multivariable systems and is described in for example
Guillaume et al. (1996). In the sequel, the estimate will be called the multivariable
frequency response function estimate (MFRFE).

Let UN (ωk) and YN (ωk) be the DFTs of the sampled signals, where ωk =
k 2π

NT , k = 1, 2, . . . , N . If the sampled signals are periodic, the following linear
relation will hold exactly

YN (ωk) = G(eiωkT )UN (ωk) (3.50)

where G(eiωkT ) ∈ Cp×m is the MFRF. Note that if the sampled signals are not
periodic, the DFT will introduce leakage errors due to the limited time window and
(3.50) will no longer hold exactly (see Pintelon and Schoukens, 2001b, Sec. 2.2.2).
This is the main reason why only periodic excitation is considered.

To be able to extract G(ωk) from data, at least m different experiments are
needed. The data vectors from the different experiments can then be collected into
matrices (bold face in the sequel) where each column corresponds to one experi-
ment. The relation between the input and output can then be written as

YN (ωk) = G(eiωkT )UN (ωk) (3.51)

where UN (ωk) ∈ Cm×m and YN (ωk) ∈ Cp×m. If UN (ωk) has full rank, an estimate
of G(ωk) can be formed as

ĜN (eiωkT ) = YN (ωk)U−1
N (ωk) (3.52)

Note that the full rank condition of UN (ωk) puts restrictions on the excitation
signals. See Guillaume et al. (1996) for some examples. Chapter 6 will also deal
with problem when selecting the reference signal for closed-loop identification. If
more than m experiments are carried out, UN (ωk)−1 can be replaced by the pseudo-
inverse.

When the measurements are corrupted by disturbances, the relation (3.51) will
no longer hold exactly. The estimator (3.52) can still be used, but the estimate will
contain errors due to the disturbances. For an analysis of the errors, see Chapter 6.
To reduce the variance of the estimate, averaged versions of YN (ωk) and UN (ωk)
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can be used like

ĜN,M(eiωkT ) = ŶN,M (ωk)Û−1
N,M (ωk) =

=

(

1

M

M∑

i=1

Y
[i]
N (ωk)

)(

1

M

M∑

i=1

U
[i]
N (ωk)

)−1

(3.53)

where U
[i]
N (ωk) and Y

[i]
N (ωk), i = 1, 2, . . . , M are the DFTs of M synchronized

input/output records (for example different periods in a periodic data set). It is,
of course, also possible to smooth the estimate similar to (3.46).

3.5 Model Validation

The estimation procedure will give the “best” model within the chosen model
structure. The problem of model validation is to decide whether the “best” model
is “good enough”. In Ljung (1999), three aspects of the problem is listed:

1. Does the model agree sufficiently well with the observed data?

2. Is the model good enough for my purpose?

3. Does the model describe the “true system”?

To answer these questions, one should confront the model with as much infor-
mation about the true system as is practical. This includes a priori information,
measurement data, and using the model. The last question is intriguing, but ac-
tually Question 2 is the one that matters in practice. Ljung (1999, Ch. 16) lists a
number of tools for model validation. One useful tool is residual analysis, which
involves an analysis of the prediction errors (also called model residuals). For phys-
ically parameterized models, the estimated parameters can also be compared with
what is reasonable values from a priori knowledge. An important validation tool is
to evaluate the model’s input-output behavior. For example, this can be done by
comparing model estimates in a Bode plot (both spectral analysis and parametric
models). The model’s ability to reproduce the input-output data in terms of simu-
lations and predictions is also an important tool. This is often measured using the
model fit, defined in Ljung (1999) as

fit = 100



1 −

√
∑N

t=1(y(t) − ŷ(t))2
√
∑N

t=1(y(t) − ȳ)2



 (3.54)

where y(t) is the measured output, ŷ(t) is the predicted (simulated) output and ȳ
is the mean value of the measured output.

Cross validation is another important point during model validation, which
means that the model should be evaluated on fresh data sets. It is not so impressing
that a model can reproduce the data used for the model estimation. Using fresh
data is a much harder test and passing such a test gives confidence in the estimated
model.
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3.6 Closed-loop Identification

It is sometimes necessary to perform identification experiments under the presence
of output feedback, i.e. in closed loop. The reason may be an unstable plant, or
that it is has to be controlled for production, economic, or safety reasons. Consider
a closed-loop system

y(t) = G0(q)u(t) + v(t) (3.55)

u(t) = r(t) − Fy(q)y(t) (3.56)

where Fy(q) denotes the controller and G0(q) is the true system. In this setting,
typically r(t) is considered the excitation signal. Depending on whether r(t) is
known or not, different identification methods can be used.

A problem with closed-loop data is that many of the identification methods
that work well in open loop, fail when applied directly to closed-loop data. The
reason is that there will be a nonzero correlation between the input signal and
the disturbance in the measured output signal. This is, for example, the case for
the nonparametric methods mentioned in Section 3.4.3. Prediction error methods
works fine as long as the true system can be described by the model and the
data is informative enough (see, for example, Chapter 5 for some notes regarding
informative data). Another problem with closed-loop data is that the data set
typically contains less information about the open-loop system.

A common classification of closed-loop identification methods are direct, in-
direct, and joint input-output methods. In the direct approach, the identification
method is directly applied to the measured input-output data without any assump-
tions on how the data was generated. Indirect methods assume that the controller
is known and the idea is to first estimate the closed-loop system from the reference
signal to the output signal. Using the known controller, the open-loop system can
then be calculated. Joint input-output methods estimate the controller and the
open-loop system by considering the input and output jointly as outputs from an
augmented system driven by the reference signal. The controller must then be pa-
rameterized as well. A drawback for the last two approaches is that the controller
must be linear in order to use linear models for the estimate of the closed loop
system and the augmented system, respectively.

As was previously mentioned, the direct approach gives problems for many iden-
tification methods, with prediction error methods as one exception. The estimates
will typically get biased and the bias depends on the properties of the feedback
as well as the signal-to-noise ratio. Bias and variance expressions will be given in
Section 3.7 both for open-loop and closed-loop data. The indirect and joint input-
output approaches convert the closed-loop problem to an open-loop one, where the
reference signal plays the role of an input. Since the reference signal is uncorrelated
with the output disturbance, these approaches can be used together with all the
open-loop methods.

For a detailed treatment of the subject, the interested reader is referred to, for
example, Ljung (1999), Forssell (1999), and Forssell and Ljung (1999).
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3.7 Bias and Variance

The model quality is often measured by the statistical concepts bias and variance.
Bias can be defined as the (average) difference between the true system and the
estimated model, whereas variance is a measure of how much the estimate will vary
between different measurements (noise realizations).

The bias term is mostly affected by the model set. Small bias is obtained for
large, flexible model sets, and/or for model sets that are well-adapted to the given
system.

Consider a true system given by

y(t) = G0(q)u(t) + v(t) = G0(q)u(t) + H0(q)e(t) (3.57)

where u(t), for an open-loop system, is considered the excitation signal. For a
closed-loop system, the input is selected like

u(t) = r(t) − Fy(q)y(t) (3.58)

where Fy(q) is the controller and r(t) is the reference signal. Note that by setting
Fy = 0 gives us the open-loop case where u(t) = r(t). The input spectrum Φu(ω)
can be written as

Φu(ω) = |S0(e
iωT )|2Φr(ω)

︸ ︷︷ ︸

Φr
u(ω)

+ |Fy(eiωT )|2|S0(e
iωT )|2Φv(ω)

︸ ︷︷ ︸

Φe
u(ω)

(3.59)

where Φv(ω) is the noise spectrum, Φr(ω) is the spectrum of the reference signal
and S0(q) = (1 + Fy(q)G0(q))

−1 is the sensitivity function. Φr
u(ω) is the part of

the input spectrum originating from the reference signal and Φe
u(ω) is the part

originating from the output noise (due to output feedback). For open-loop data,
Φe

u(ω) = 0.
It is outside the scope of this thesis to present bias and variance expressions for

all methods presented in Section 3.4. However, to get a feeling for the problem,
one prediction error method and the nonparametric ETFE will be considered.

3.7.1 Parametric Methods

Assume now that we want to identify a model of (3.57) using a prediction error
method with the model

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (3.60)

For a fixed noise model H(q, θ) = H∗(q) the limiting model G∗ (N → ∞) is,
according to (13.53) in Ljung (1999),

G∗ = argmin
G

∫ π/T

−π/T

∣
∣G0(e

iωT ) + B(eiωT ) − G(eiωT , θ)
∣
∣
2 Φu(ω)

|H∗(eiωT )|2 dω

(3.61)

|B(eiωT )|2 =
λ0

Φu(ω)
· Φe

u(ω)

Φu(ω)
· |H0(e

iωT ) − H∗(e
iωT )|2 (3.62)
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where λ0 = Ee2(t) is the noise variance. The bias term B will be small in frequency
ranges where either (or all) of the following holds

• The noise model is good (H0 − H∗ is small)

• The feedback contribution to the input spectrum (Φe
u/Φu) is small

• The signal to noise ratio is good (λ0/Φu is small)

The variance of the estimated transfer function ĜN can be obtained from
asymptotic black-box theory (order of both G and H tend to infinity, as well as
N) like

Cov ĜN =
n

N

Φv(ω)

Φr
u(ω)

(3.63)

(see Ljung, 1999, Eq. (13.55)). The noise-to-signal ratio determines how well the
transfer function is estimated. The variance is also increased if more parameters
n are used, which highlights the trade-off between bias and variance (the bias is
typically reduced if more parameters are used). Note that it is only the part of the
input spectrum originating from the reference signal that will reduce the variance.

Prediction error methods will give consistent estimates, even for closed-loop
data, given that the true system can be described in the model set and that the
data is informative enough. In particular, it is important to have a flexible noise
model to reduce bias effects.

3.7.2 Nonparametric Methods

As an example of a nonparametric method, we will consider the ETFE. For open-
loop data, we have (Ljung, 1999)

E
ˆ̂
GN(eiωT ) = G0(e

iωT ) +
ρ1(N)

UN (ω)
(3.64)

Cov
ˆ̂
GN (eiωT ) =

1

|UN (ω)|2 (Φv(ω) + ρ2(N)) (3.65)

where ρ1 ≤ C1/
√

N and ρ2 ≤ C2/N for some constants C1 and C2. The properties
of the ETFE highly depends on whether the data is periodic or not. If the data is
periodic, C1 = 0 and |UN (ω)|2 increases like const · N for the excited frequencies.
This gives an unbiased ETFE and the variance variance decays like 1/N . If the
data is nonperiodic, the ETFE will be asymptotically unbiased and the variance
will be equal to the noise-to-signal ratio. In that case, the ETFE is a very crude
estimate.

Nonparametric estimation methods usually works under the assumption that
the input u(t) is uncorrelated with the output disturbance v(t). This is no longer
true for closed-loop data and therefore the estimates usually are biased. The esti-
mates using ETFE or SPA tend to (Ljung, 1999, p. 191)

Ĝ(eiωT ) =
G0(e

iωT )Φr(ω) − Fy(e−iωT )Φv(ω)

Φr(ω) + |Fy(eiωT )|2Φv(ω)
(3.66)
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as the number of data goes to infinity and where Φr and Φv denote the spectrum
of r(t) and v(t). If there is no noise in the system, the estimate will tend to the
true system. For systems with a large signal-to-noise ratio, the bias can also be
negligible. If, on the other hand, the noise dominates over the reference signal, the
estimate will tend to the inverse of the controller.
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4
System Identification in Robotics

There are many available system identification methods, and the techniques of sys-
tem identification have a wide application area. Therefore, one might ask the ques-
tion: Why dedicate a chapter for the topic of system identification in robotics? The
robot application is associated with many challenging problems for system identifi-
cation methods, such as a multivariable nonlinear system, closed loop identification
(to stay centered around the operating point), oscillatory behavior, (deterministic)
disturbances, and nonlinearities such as, e.g., friction and backlash. In addition,
the robot dynamics can be modeled quite accurately using known mechanical rela-
tions, as was pointed out in Chapter 2. These dynamic equations have particular
features that can be exploited by the identification method.

Since identification in robotics is a much studied problem, the purpose of this
chapter is to give an overview of earlier results related to the identification of
kinematics, rigid body dynamics, flexibilities and nonlinearities.

4.1 Introduction

System identification in robotics can be divided into, at least, three different levels
or application areas (see, for example, Albu-Schäffer and Hirzinger, 2001). These
levels involve the estimation of the

• kinematic description of the robot (including elastostatic effects)

• dynamic model of the robot, often divided into

– rigid body dynamics, and

43
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– flexible body dynamics

• joint model

The robot kinematics can, for example, be described by the DH-parameters, giving
four parameters for each link to estimate. The rigid body dynamics are described
by the center of mass, mass, and inertia matrix for each link. By flexible body
dynamics, we here mean elastic effects in the robot structure, for example in the
links. The joint model involves motor inertia, gearbox elasticity and damping,
backlash, motor characteristics, and friction parameters. In addition to these three
levels, one can also consider the estimation of load dynamics (Kozlowski, 1998,
Ch. 6) and adaptive control (Ortega and Spong, 1989) as parts of the system
identification problem. Another important area left out in this chapter is the
identification of sensor and actuator disturbances (Jahns and Soong, 1996). These
disturbances were briefly described in Section 2.3.3.

Nominal parameter values for the kinematics and rigid body dynamics can often
be obtained from CAD models on the basis of their geometry and type of material.
These values are often not accurate enough, due to simplifications in the model-
ing and complex dynamic effects, such as joint friction, that cannot be sufficiently
modeled. To obtain high accuracy, these parameters must be tuned by the use
of experimental data. Some parts of the joint model, like the motor characteris-
tics, can be measured before assembly whereas things like friction depends on the
assembly, and therefore must be estimated after assembly.

In a majority of the literature on robot identification (see, for example, Ko-
zlowski (1998) and the references in this chapter), a rigid body model is assumed
and flexibilities, if any, are assumed to be located at the joint level. This can partly
be explained by a previous use of fairly rigid robots. The assumption has also been
verified, for example by using modal analysis (Behi and Tesar, 1991). With the
increasing use of new mechanical structures (bend-over-backwards capability, non-
symmetric structure, lightweight robots) and new applications in industry where
higher performance is demanded with respect to position accuracy and speed, elas-
tic effects become even more evident and must be dealt with. Therefore, finding
procedures for the identification of flexibilities is important.

In Section 4.2, the identification of kinematics will be briefly described. Sec-
tion 4.3 gives an overview of rigid body identification. Finally, identification of
(joint) flexibilities and nonlinearities is covered in Section 4.4.

4.2 Kinematics

The kinematic parameters describe the geometric relation between joint variables
and the end effector location (position and orientation). These parameters also
define the inverse kinematics (see Section 2.3.1), which is used during the path
planning (see Section 2.4.1) to transform a Cartesian path to a corresponding path
in joint space. The quality of this mapping will determine the robot’s accuracy and
it is therefore crucial to have a correct kinematic description. The identification of
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kinematic parameters is also called kinematic calibration or robot calibration and
many different techniques exist, see Hollerbach (1989) for a survey.

However, the general idea is to consider the forward kinematics (2.1) of the
robot and perform a first order Taylor expansion of the location X with respect to
the kinematic parameters θ like

∆X =
∂f(ϕ, θ)

∂θ
∆θ (4.1)

where ∆X = X−f(ϕ, θ0) is the deviation in end effector location from the predicted
location and ∆θ = θ−θ0 is the corresponding parameter deviation from the nominal

value θ0. The matrix ∂f(ϕ,θ)
∂θ should be evaluated for θ = θ0. This system of

equations can be solved in a least-squares sense for ∆θ by considering a number of
locations (see corresponding solution below in (4.4) and (4.5)). In addition to the
robot link parameters (for example DH parameters), θ should include additional
parameters describing, for example, elastostatic effects (deflection due to gravity)
and the mounting of the robot base and the end effector.

To be able to calculate the deviation ∆X , measurements of the end effector
location X are needed. These measurements can be either relative or absolute.
Examples of relative measurements could be to approach the same point from
different directions or measuring an object with known geometry (but unknown
absolute position). Zhong et al. (1996) suggest the use of a trigger probe as end
effector to touch constraint planes in the workspace (the location of the planes
are not necessarily known exactly). Using relative measurements, many of the
kinematic error parameters ∆θ can be estimated. For absolute measurements, two
main routes can be seen. The first one uses some mechanical apparatus that allows
constraining the end effector at given locations with a priori known precision. The
second route uses direct measurement systems of the end effector location in the
Cartesian space, for example using a laser tracking system. This is the kind of
system used in Abderrahim and Whittaker (2000), where the Denavit-Hartenberg
parameters are estimated by combining measurements of the end-effector caused
by movements of each joint, one at a time. See also Khalil and Besnard (2002) for
a treatment of elastostatic effects due to joint and link flexibilities.

4.3 Rigid Body Dynamics

The identification of rigid body dynamics is based either on the robot dynamic
model (2.9), also called the differential model1

H(ϕ, ϕ̇, ϕ̈)θ = τ (4.2)

or the energy (difference) model (2.10), also called the integral model

∆h(ϕ, ϕ̇)θ = ∆H = H(tb) −H(ta) =

∫ tb

ta

τT ϕ̇dt (4.3)

1The names differential model and integral model are according to Kozlowski (1998).
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where θ ∈ R
10n is the parameter vector and n is the number of links. The two

models are both linear in the parameters, which are the same in the two models.
The integral model (4.3) consists of only one equation, compared to the n equations
in the differential model (4.2). The differential model is, in that respect, richer in
information than the integral model. An advantage with the integral model is that
the joint acceleration ϕ̈ is not needed. For easier treatment, only the differential
model will be considered from now on. See, for example, Gautier and Khalil (1988)
and Kozlowski (1998) for treatments of both the differential and integral models.

Traditionally, flexibilities are ignored during the identification of rigid body
dynamics, which is motivated by the use of low-frequency trajectories that do not
excite flexibilities. The identification of rigid body dynamics is usually combined
with the identification of a (simple) friction model in order to reduce bias in the
estimated parameters.

The model representation (4.2) is redundant, i.e., there are infinitely many
parameter values that give the same dynamic model. For a particular robot, a
number of the parameters are zero or linearly dependent, and all parameters are
therefore not identifiable. To find the minimum number of parameters, called
base parameters, that characterize the dynamic model, different approaches can be
found in the literature. The most basic distinction is if the problem is solved using
a numerical or analytical method.

Consider now N samples of data, {ϕ(ti), ϕ̇(ti), ϕ̈(ti), τ(ti)}, i = 1, 2, . . . , N ,
which are related according to (4.2) like







H(ϕ(t1), ϕ̇(t1), ϕ̈(t1))

H(ϕ(t2), ϕ̇(t2), ϕ̈(t2))

· · ·
H(ϕ(tN ), ϕ̇(tN ), ϕ̈(tN ))







︸ ︷︷ ︸

Φ

θ =







τ(t1)

τ(t2)

· · ·
τ(tN )







︸ ︷︷ ︸

Y

(4.4)

Numerical methods are mainly based on QR or SVD factorizations of the regres-
sor matrix Φ. The sequence {ϕ(ti), ϕ̇(ti), ϕ̈(ti)}, i = 1, 2, . . . , N , should then be
sufficiently rich so that all parameters are excited. One option is to use random
numbers for ϕ(ti), ϕ̇(ti), and ϕ̈(ti). See, for example, Gautier (1990) and Sheu
and Walker (1989) for details and Pfeiffer and Hölzl (1995) for an example. Many
analytical methods have also been proposed, based on symbolical manipulations
of the model equations. For closed form solutions, see for example, Mayeda et al.
(1990) and Gautier and Khalil (1990).

Having a minimal parameter-linear description Hbθb = τ , measurements from
a large number of time instants are needed to avoid an ill-conditioned regressor
matrix Φb (similar to (4.4)). Both joint position and velocity can be measured,
but it is common to only measure joint position. If the robot dynamic model
(4.2) is used, joint acceleration (and velocity) must be reconstructed. Since the
identification is done off-line, the reconstruction is typically done using anti-causal
filters (no phase shift) and central difference algorithms. The joint torques can,
in rare cases of torque sensors at the joints, be measured directly. Otherwise they
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can, for example, be estimated from current measurements in the case of electric
actuators.

To obtain the measurements, the robot is moved along a trajectory and joint
motion and torque are measured. Finally the base parameters can be estimated,
for example, by a weighted least squares (WLS) method like

θ̂b = arg min
θb

1

2
(Y − Φbθb)

T W (Y − Φbθb) = (ΦT
b WΦb)

−1ΦT
b WY (4.5)

where many different weighting matrices W occur in the literature, see Gautier and
Poignet (2001); Swevers et al. (1997) for examples. Other estimation methods are
for example treated in Gautier and Poignet (2001), which contains a comparison
between WLS and the extended Kalman filter. In Gautier et al. (1994), total least
squares estimation is used and Presse and Gautier (1993) use Bayesian estimation
techniques.

To make the parameter estimation problem (4.5) well conditioned, the excita-
tion trajectory is often generated using an optimization scheme to obtain maximum
excitation of all base parameters. This involves nonlinear optimization with motion
constraints on joint positions, velocities, and accelerations. Different optimization
criteria exists, for example to minimize the condition number of Φb (Pfeiffer and
Hölzl, 1995; Gautier and Khalil, 1991) or − log det(ΦT

b WΦb) (Swevers et al., 1997).
Often, a scaled version of the matrix Φb is used in the criterion to obtain parameter
estimates with approximately the same relative accuracy. The matrix is scaled like
Φ̄b = Φb diag(θ̄b) where θ̄b contains a priori known parameter values.

For the optimization, the excitation trajectory must be parameterized, which
can be done in many different ways. The most general one is perhaps Armstrong
(1989), where the optimization variables are a sequence of joint accelerations. Gau-
tier and Khalil (1991) use a sequence of joint positions and velocities as variables.
Afterwards, a continuous trajectory is obtained by interpolating a 5th order polyno-
mial between these points, assuming zero initial and final acceleration. A problem
is to be sure that the resulting trajectory fulfills all constraints and also there is no
guarantee of optimality. In Swevers et al. (1997), the trajectory is parameterized
as a finite Fourier series, and the optimization variables are then the coefficients in
this series. Pfeiffer and Hölzl (1995) instead optimize the trajectory such that the
trajectory always follows the steepest descent of the optimization criterion (time is
discretized).

Grotjahn et al. (2001) suggest that the base parameters are divided into three
groups; gravitational parameters θg, diagonal parameters θMd, and off-diagonal
parameters θMod. Equation (4.2) is then rewritten like

HMd(ϕ, ϕ̈)θMd + HMod(ϕ, ϕ̈)θMod + HMg(ϕ, ϕ̈)θg
︸ ︷︷ ︸

M(ϕ)ϕ̈

+ Hc(ϕ, ϕ̇)θ
︸ ︷︷ ︸

C(ϕ,ϕ̇)ϕ̇

+ Hg(ϕ)θg
︸ ︷︷ ︸

g(ϕ)

= τ

(4.6)
where references to (2.6) are shown as well. The parameter groups are identified one
at a time by simple trajectories with trapezoidal velocity profile and a weighted
least-squares method. The method has been successfully applied to the 6 DOF
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industrial robot manutec-r15. Grotjahn et al. claim that they do not require a
priori identification of the friction model, but assumes symmetric friction during
the estimation of gravitational parameters and a friction model is identified later
during the identification of θMd. A drawback might be that in their example, they
needed measurements from 165 configurations with a total duration of about 45
min.

A different approach is taken in Chenut et al. (2000) where additional sensors
are used to improve the parameter estimates. They present a parameter estimation
scheme where internal and external measurements are combined. Internal refers to
the previously used joint motion and joint torque measurements and external refers
to torque/force measurements of the base platform. The method is illustrated in
simulations and yields improved parameter estimates.

4.4 Flexibilities and Nonlinearities

As was mentioned in Section 2.3.2, there are various sources of flexibility in an
industrial robot, such as elastic deformation of bearings and gears and deflection
of the links under load. For many robots, particularly those using harmonic drives
for the torque transmission, the joint flexibility is dominant. A two-mass model
like (2.11) is then often sufficient to describe the dynamics (or coupled two-mass
models for multivariable cases). As was pointed out in Section 2.3.2, a trend is to
build weaker robot arms which also introduces significant flexibilities in the links
and their connections. Therefore higher order models are sometimes needed in
order to get a sufficiently accurate description of the system.

Identification of flexibilities is more involved than the identification of rigid
body dynamics. The main reason is that now typically only a subset of the state
variables are measured and one can therefore not use linear regression. This could
of course be solved by adding sensors (Pfeiffer and Hölzl, 1995; Albu-Schäffer and
Hirzinger, 2001). A problem is that this solution is expensive and the experiments
quite involved. For a standard industrial robot where the price is constantly re-
duced, this solution is probably not applicable. Also, as was mentioned in the
problem statement in Section 1.1, the final goal for our robot identification is to
find procedures for automated tuning of flexible model structures with a minimum
number of additional sensors.

In addition to flexibilities nonlinear effects like friction and backlash have to
be taken into account during the identification of the joint model. These effects
will significantly influence the identification of the dynamics if not properly han-
dled. Backlash and Coulomb friction will in general reduce the notch and peak
frequencies in transfer function estimates and the Coulomb friction will in addition
reduce the amplitude for low frequencies (Aberger, 2000). In addition, nonlineari-
ties can have major effects on the system operation, for example when the rotation
changes direction, and accurate models describing these phenomena are therefore
of importance.

The research on modeling and control of friction has come quite far, see for
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example the survey article Armstrong-Hélouvry et al. (1994). However, a problem
is to be able to identify all unknown parameters in these complex friction models.
Hence, the traditional model with the three components; viscous, Coulomb and
static friction, is still often used. This model describes the stationary velocity-force
relation fairly well, whereas important dynamic effects are completely missed. For
control purposes and analysis of stick-slip, limit-cycles, etc., a better friction model
is often needed. A fairly simple dynamic model for friction that captures most of
the friction behavior is presented in Canudas de Wit et al. (1995) and is often
called the LuGre model. This includes the Stribeck effect, hysteresis, spring-like
characteristics for stiction, and varying break-away force. Still, most of the friction
models considered in the literature on identification in robotics are fairly simple.
One reason might be that the model is sufficient during the identification of the rigid
body dynamics, even though there are already some results on biased estimates due
to a too simple friction model (Grotjahn et al., 2001). Another reason might be
lack of measurements or that many friction problems are solved by better hardware
(for example, lubricants). From now, when talking about friction, we mean more
than just viscous friction, which give minor difficulties during identification and
can be described by a linear model.

Backlash in mechanical systems is, for example, described in the survey article
Nordin and Gutman (2002), where they use the definition: “the play between
adjacent movable parts (as in a series of gears)”. The width of the backlash is
the most essential parameter. This width can experimentally be determined only
by additional position sensors. Controlled systems with backlash often exhibit
steady-state errors or, even worse, limit cycles whereby the system oscillates.

There is a vast amount of literature available concerning the identification of
joint parameters, strongly differing in both the model’s level of detail and identi-
fication methods. The identification is done in time domain or frequency domain,
based on physical or unstructured models, using linear or nonlinear optimization
techniques. There are also major differences in how the nonlinearities are handled.
Some estimate friction separately in a first step, and then in a second step estimate
the joint dynamics. In this second step, they either compensate for the estimated
friction, or use special excitation that will give minor frictional contribution. Using
this route, linear identification methods can be applied. The other route is to use
a nonlinear model structure describing the joint dynamics as well as friction and
other nonlinearities.

In Pham et al. (2001) the estimation of physical parameters in a two-mass
flexible model is treated through a least-squares technique similar to the one used
in the estimation of rigid body dynamics. The linear-in-parameters formulation
with only motor measurements is obtained through a nonlinear transformation
and certain approximations that are justified by using a special trajectory that do
not excite certain parameters. The identification experiments are carried out by
moving one axis at a time.

In Östring et al. (2003), a method is applied where a gray-box model describ-
ing both inertial parameters and flexibilities can be identified directly in the time
domain. This is done by utilizing a user-defined model structure in the System
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Identification Toolbox (Sitb) and experimental data from closed-loop experiments
for axis 1 of an ABB IRB 1400 robot. Both black-box models and physically pa-
rameterized models are identified. Östring et al. suggest that a 3-mass model is
sufficient to describe the dynamics. See also Nissing and Polzer (2000), where the
identification of a physically parameterized two-mass model in state space form
is treated. The three unknown physical parameters are estimated by using an
iterative Gauss-Newton method. The experimental data comes from an 1 DOF
hydraulic flexible arm.

In Berglund and Hovland (2000), a general method is described for the identifi-
cation of masses, springs and dampers. The identification is based on an estimated
Frequency Response Function (FRF) in combination with the solution of an inverse
eigenvalue problem. See also Hovland et al. (2001) for an extension to systems con-
taining coupled inertia terms, which is the case for multivariable systems. Another
frequency-domain method is used in Khorrami et al. (1995), where recursive estima-
tion of a two-mass model (for each joint) is treated. The parameters are estimated
in the frequency domain using the ETFE or a time-varying version of the ETFE.
The model is used for input pre-shaping (for example a notch filter for the reference
signal).

In Johansson et al. (2000) they apply and evaluate different subspace identifica-
tion methods (N4SID and MOESP) for identification of axis 1 and 4 of an ABB IRB
2000 robot. They suggest the use of the MOESP algorithm for the identification
of a black-box state-space model combined with a friction model.

Black-box identification is also treated in Ferretti et al. (1994b), where a 6
DOF industrial robot is considered. A third order black-box transfer function is
estimated for each joint. The excitation signal, applied as velocity reference for
the controller, is a constant (to avoid effects of static friction) plus white noise. To
eliminate, or at least minimize, the dynamic coupling among the links, different
configurations are used for the identification of each joint dynamics. This is done
by using a CAD model and symbolic manipulations of the robot dynamic equa-
tions. They also compute a physically parameterized expression of the transfer
functions obtained from symbolic manipulations of the dynamic equations. They
outline that a comparison of the estimated and physically parameterized transfer
functions yields a system of nonlinear equations which could be solved for the phys-
ical parameters. No physical parameters are presented, but a similar procedure is
used in Isaksson et al. (2003) for the estimation of initial values.

As was previously mentioned, there are some solutions where additional sensors
are used for the identification. In Pfeiffer and Hölzl (1995), the joint parameters
(stiffness, damping, and motor inertia) are estimated by fixation of the links. Be-
tween each link and link fixation a force sensor is applied. A slightly different
procedure is used in Ferretti et al. (1994a), where joint stiffness is estimated by
constraining the robot end effector and using a force sensor to measure the con-
straint forces. Another method, requiring additional sensors, is experimental modal
analysis. It is a widespread method in the mechanical engineering society used
to determine a structure’s dynamic characteristics; namely, resonant frequencies,
damping values, and the associated pattern of structural deformation called mode



4.4 Flexibilities and Nonlinearities 51

shapes. Parametric identification using experimental modal analysis is, for exam-
ple, treated in Behi and Tesar (1991). Using accelerometers in 11 points and an
impact hammer, transfer functions are estimated and modal parameters and mode
shapes are obtained by curve fitting the system transfer functions. The oscillation
of the system is produced by the deformations of the shoulder and elbow joints
(joints 2 and 3) about their axes of rotation and the deflection of the base plate
relative to the foundation (giving two DOF). Therefore, four spring-damper pairs
are used and springs, dampers and masses are then derived from the estimated
modal matrix. See also Avitabile (2001) for a good introduction to modal analysis.

For the identification of nonlinearities such as friction and backlash, a number
of references could be given. One interesting method is presented in Chen et al.
(2002) which is based on open loop experiments with binary input signals. By
using the difference of the input-output signals from two experiments with different
magnitudes, the friction can be ignored while doing the identification of the linear
system. In a second step, the friction is estimated using the dc level of the linear
system and a constant input. Isaksson et al. (2003) consider gray-box identification
of a two-mass model with backlash, where black-box modeling is used to find initial
parameter values. See also Hovland et al. (2002) for estimation of backlash and
spring stiffness using an extended Kalman filter (EKF). Identification of backlash
and friction is also treated in Angerer et al. (2004) and Kara and Eker (2004).
In Chapter 9 of this thesis, nonlinear gray-box identification will also be treated,
using a model that includes Coulomb friction and nonlinear spring stiffness.
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5
Experiment Design

The design of an identification experiment includes several choices, like where and
what to measure, when to measure the signals, what signals to manipulate and
how to manipulate them in an optimal way. Obviously, this cannot be treated in
depth here, but still some comments will be made. The material is mainly based on
Ljung (1999); Pintelon and Schoukens (2001b). The interested reader is therefore
referred to these books and the references therein.

5.1 Introduction

For a complex process, questions like where and what to measure must be answered.
It might not even be obvious what are the input and output signals. When these
things have been cleared out, another question is when to measure. This typically
involves what sampling time T to use in the sampling process. For a successful
sampling, also presampling filters should be considered to avoid alias effects (Ljung,
1999, Sec. 13.7). The optimal sampling time depends both on the system and what
kind of models/methods to use. It is usually no problem to sample (too) fast during
the data acquisition. However, when estimating a parametric discrete-time model,
very small sampling times (compared to the natural time constants of the system)
might lead to numerical problems and model fits in high-frequency bands. This
can often be solved by decimating the data before the estimation. A too large
sampling time, on the other hand, will lead to very bad results. An advice is to
use a sampling frequency about ten times the bandwidth of the system. Related
to this choice is also the number of data points, N , which often will determine the
variance in the estimates as will be described below.
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The choice of input signals has a very substantial influence on the observed
data, and therefore also on the estimated models. This choice will determine the
operating point of the system and which parts and modes of the system that will
be excited. A general advice here is to let the experiment condition resemble the
situation for which the model is going to be used.

There are two different aspects often associated with the choice of input u(t);
the second-order properties, like its spectrum Φu(ω) (and cross spectrum Φue(ω)
in the case of output feedback), and the “shape” of the signal. For a linear system,
asymptotically only the spectrum will have effect. For a limited number of data,
and especially for a nonlinear system, the signal shape will have influence as well.
Both these properties will be treated. First, however, we will introduce the concept
of informative experiments.

5.2 Informative Experiments

Informative experiments relates to the concept of informative data sets (see Defi-
nitions 8.1 and 8.2 in Ljung (1999) for details). If a data set is informative enough
with respect to a model set, we can discriminate between different models in the
set. An informative data set can discriminate between all LTI models. A related
concept regarding the input signal is persistently exciting (of order n) (see Ljung,
1999, Definition 13.1), which relates to the number of parameters that can be esti-
mated. A sum of n sinusoids will be persistently exciting of order 2n, which makes
it possible to identify all parameters in an nth order SISO system (numerator and
denominator polynomials of order n). The input u(t) is called persistently exciting
if its spectrum Φu(ω) > 0 for almost all ω. Such a signal will give an informative
data set in the open loop case.

A problem when talking about optimal excitation signals (with respect to bias
and variance in the estimates) is that this often is in conflict with another important
property, namely validation power. For an nth order system, the optimal signal
might be a sum of n sinusoids, but this signal will not be able to reveal if the true
system is of a higher order. The signal should therefore be rich enough to be able
to validate (and invalidate) the estimated models.

For closed loop identification, there are a number of fallacies that must be
avoided. First, some identification methods, like for example ordinary spectral
analysis, will give erroneous results since the input now is correlated with the
output noise. The experiment can also be non-informative even if the input in itself
is persistently exciting. The guiding principle is to avoid a too simple controller and
use a reference signal which is rich enough for the system (similar to the discussion
about the input signal for the open loop case).

5.3 Selection of Power Spectrum

When selecting an excitation signal we should first make sure that the estimated
model will be acceptable in terms of bias. When the bias may be significant it is
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wise to let the experiment resemble the situation under which the model is going to
be used. Once this is achieved, the signal spectrum can be further optimized with
respect to variance. What is an optimal spectrum will also depend on the chosen
modeling approach. In a nonparametric frequency response estimate, there is no
relation between the estimates at different frequencies and the excitation should
then be designed to achieve a predefined accuracy in the frequency band of interest
(for example maximizing the absolute or relative accuracy). From (3.65) we get
that the spectrum

Φu(ω) = const · Φv(ω) (5.1)

will give about the same absolute accuracy in the estimate. To instead get the
same relative accuracy,

Φu(ω) = const · Φv(ω)

|G0(eiωT )|2 (5.2)

could be used. This corresponds to an output spectrum approximately proportional
to the noise spectrum.

For the parametric case, loosely speaking, an optimal power spectrum is such
that the available power is used at the frequencies where it contributes most to
the knowledge of the system. According to Ljung (1999), the parameter covariance
matrix Pθ will be

Pθ ∼ λ0

[

E

(
d

dθ
ŷ(t|θ)

)(
d

dθ
ŷ(t|θ)

)T
]−1

which shows that interesting parameters must have a clear effect on the output
predictions. For the open loop case, we also have the expression

M̄(Φu) =

∫ π

−π

M̃(ω)Φu(ω)dω + Me (5.3)

M̃(ω) =
λ0G

′

θ(e
iωT , θ0)[G

′

θ(e
iωT , θ0)]

T

2πκ0Φv(ω)

for the average information matrix per sample M̄(Φu) (Ljung, 1999, pp. 416-417).
Here G

′

θ is the gradient of G with respect to the parameters, κ0 depends on the se-
lected norm in the criterion, and Me is a term independent of Φu. The information
matrix should be large in order to get a small covariance matrix. To achieve this,
the input power should be spent at frequencies where M̃(ω) is large, that is where
the Bode plot is sensitive to parameter variations (G

′

θ large). Often a sufficient
guidance on where to spend the input power is found by varying the parameters in
the model and checking how the Bode plot changes.

A problem is that in many cases the true system (which we want to identify)
is needed in order to calculate the optimal input spectrum. In a practical situa-
tion, this can be approximately solved by using a two-step procedure where first
a preliminary system model is estimated using a flat amplitude spectrum for the
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input signal. In a second step, the preliminary system model is used to calculate
an optimal input spectrum.

Calculating the optimal input spectrum is quite involved, especially for closed
loop experiments, and outside the scope of this thesis. The optimal spectrum will
depend on the criterion, limits on the input and output signals, and the true system,
including the noise characteristics. See, among many references, Ljung (1999) and
Pintelon and Schoukens (2001b).

5.4 Selection of Excitation Signal

Given an (optimal) input spectrum and limitations on the input amplitude and
other constraints, we must now select a particular excitation signal that fulfills all
the requirements.

For signals that have a specified maximum peak value, it is convenient to use the,
so called, crest factor (Pintelon and Schoukens, 2001b) as a measure of the signal
quality. The crest factor of a signal is given by the ratio of the peak value of the
signal to its effective root mean square (rms) value, where effective means that only
the signal power in the frequency band of interest is used for the rms calculation.
The crest factor gives an idea of the compactness of the signal. Signals with an
impulsive behavior have a large crest factor and will, for a given peak value, inject
much less power into the system than a signal with a small crest factor. Typically,
the crest factor will get larger for signals with only a few spectral lines, compared
to a flat signal spectrum. The goal could now be rephrased as: Achieve a desired
input spectrum for a signal with as small crest factor as possible.

One way of achieving a certain spectrum could be to use a stepped sine excita-
tion, consisting of a series of single sine measurements at the specified frequencies.
Advanced digital signal processing algorithms (especially the Fast Fourier Trans-
form) have lead to the use of more complex input signals. Instead of exciting the
system frequency by frequency, broadband spectrum signals are generated. This
gives considerable reduction of measurement time. Many different kinds of signals
exist, which can be divided into general purpose signals and optimized signals.

The general purpose signals have a flat amplitude spectrum and a quite low
crest factor and can be applied without any optimization. The only parameters to
be selected are the bandwidth of the excitation signal and the frequency resolution
of the measurement (typically 1/T0 for periodic signals with period T0 and 1/(N ·T )
for nonperiodic signals). Some common choices are swept sine (chirp), Schroeder
multisine (sum of sinusoids), pseudo-random binary sequence (PRBS), random
noise, random burst, and pulse-impact testing (see Pintelon and Schoukens, 2001b,
for details).

Periodic signals have certain advantages which can be used to avoid leakage and
reduce variance in nonparametric estimates like, for example, the ETFE. Leakage is
also avoided by using burst, or time-limited signals where the whole system response
is captured. In this thesis, we will exclusively use periodic signals since most of
the results are on nonparametric frequency response estimates. In particular, chirp
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and multisine signals will be considered.
A chirp signal is a sinusoid with a frequency that changes continuously over a

certain frequency band f1 ≤ f ≤ f2 like

u0(t) = A sin(2πf1t + π/T0(f2 − f1)t
2 + φ) , 0 ≤ t ≤ T0, (5.4)

with amplitude A, and phase φ. In order to get a periodic signal, f1 and f2 must
be a multiple of f0 = 1/T0. The chirp signal will usually have a crest factor of 1.45,
which is about the same as for a single sinusoid which have

√
2.

The multisine signal can be written as

u0(t) =

F∑

k=1

Ak sin(2πfkt + φk), (5.5)

with amplitudes Ak, phases φk, and frequencies fk = lkf0 = lk/T0 with lk ∈ N.
The phases φk are chosen to get a low crest factor. For the Schroeder multisine,
the phases are selected according to (Schroeder, 1970)

φ1 arbitrary

φk = φ1 −
k(k − 1)π

F
, 2 ≤ k ≤ F

For a flat amplitude spectrum, Ak = A, the crest factor typically gets 1.7. The
signal is preferably calculated using FFT. The multisine signal is very flexible since
the user can specify exactly which frequencies to use. The Schroeder phases are
however calculated under the assumption of a flat amplitude spectrum. In other
cases, the crest factor can get fairly large. To solve this, we have to look for
optimized signals.

In Pintelon and Schoukens (2001b), two different algorithms are proposed for
optimizing the crest factor of a multisine signal. Here we will use the iterative
optimization procedure described in Van der Ouderaa et al. (1988), which is referred
as the clipping algorithm in the literature. The algorithm works as follows:

Algorithm 5.1 (Clipping algorithm)

1. Start with a given amplitude spectrum and initial phases.

2. Combine amplitude and phases.

3. Inverse DFT.

4. Clip time signal.

5. DFT.

6. Reset amplitude spectrum to its original value, but keep the new phases.

7. Exit if crest factor does not decrease any longer,
otherwise continue from step 2.
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The clipping level is changed from a low value in the beginning (e.g., 0.7 ·umax) to
almost no clipping in the end (e.g., 0.999 · umax). Depending on the required crest
factor, the algorithm could need a few hundred iterations to several thousands. To
further reduce the crest factor, the concept of snowing could be used, which means
that additional frequencies are added. This will often allow a higher input power
at the user specified frequencies to the price of “wasting” some of the total power.
See Pintelon and Schoukens (2001b) for details. They also give examples of other
optimized signals like, for example, the discrete interval binary sequence, where
the switching sequence is optimized to achieve the user specified spectrum.

5.5 Experiment Design in Robotics

The design of experiments in robotics has already been briefly mentioned in Chap-
ter 4 when talking about system identification in robotics. As was pointed out
there, the identification is usually divided into kinematics, rigid body dynamics,
and flexibilities. The experiment design for each of these stages will now be briefly
mentioned.

The experiment design will of course differ depending on the robot structure.
Here, the anthropomorphic manipulator will be considered (see Figure 2.1 for an
example). For this kind of robot it is necessary to use feedback control while data
are collected, both for safety reasons and in order to compensate for gravitational
effects1. The proposed excitation signals in the literature usually differs depend-
ing on where in the robot control system excitation signals can be applied. Using
an experimental control system, like in Chapter 7, makes it possible to use any
kind of off-line computed reference signals. In other cases, one is restricted to the
movements that are possible to program in the commercial robot system, typi-
cally point-to-point movements along lines and arcs with a specified velocity and
acceleration.

For the kinematic calibration, the experiment design involves the selection of a
number of robot configurations. For each of these configurations, the end effector
location, X , is measured together with the motor joint angles, ϕ. Each configura-
tion gives a collection of equations like (4.1). Combining these gives a system of
equations similar to (4.4) which can be solved in a least squares sense. The robot
configurations could be optimized in order to give a well-conditioned problem.

For rigid body dynamics identification, the excitation signal is a trajectory that
should excite the rigid body dynamics and friction parameters without introduc-
ing any oscillations due to flexibilities. Therefore a low frequency excitation is
preferred. The trajectory is often optimized to give a well-conditioned problem.
For the optimization, the excitation trajectory is parameterized, for example as a
sequence of joint positions and velocities (Gautier and Khalil, 1991) or as a finite
Fourier series (Swevers et al., 1997). See Section 4.3 for details.

1The feedback control is actually necessary only for those axes that are affected by gravitation.
Axis one could therefore be estimated in open loop.
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Identification of flexibilities is quite involved and it is therefore common to
estimate local linear flexible models (see Figure 1.2) for a number of different
configurations. Combining these estimates with an estimated global nonlinear rigid
model might give enough knowledge about the global nonlinear flexible model. For
the local model approximation to be valid, the resulting movements of the robot
arm should be of fairly low amplitude. Nonlinear effects must also be handled.
The influence of static friction can, for example, be reduced by using an excitation
signal which avoids zero velocity as much as possible (for example, by using a square
wave as velocity reference). Suitable excitation signals for the identification of a
local linear flexible model can be obtained using the ideas presented in the previous
sections. For example by using a broadband signal in the whole frequency band
where notch and peak frequencies in the frequency function are expected. The
broadband signal is then superimposed onto the square wave. Excitation signals
for flexibilities can be optimized both regarding which configurations to consider
and what type of broadband signal to use, including the signal spectrum.

5.6 Dealing with Transients

When applying an input signal to a system, the system response will contain tran-
sient effects as well as the system steady state response as will be illustrated by
the following example.

Example 5.1 (Transients)
Consider a simple scalar system

ẏ(t) = y(t) + u(t), y(0) = 0

where the input is selected as

u(t) =

{

0 if t < 0

sin(2πt) if t ≥ 0

The output signal y(t) from this system is plotted in Figure 5.1 for the first five
periods of data. As can be seen, the output signal differs quite much from the
steady state response (dotted line) for the first periods. In the same figure, the
output spectrum is plotted for five periods. In steady state there should only be
output power at 1 Hz.

For parametric methods, usually transient effects are handled by estimating the
initial conditions of the system using additional parameters (Ljung, 1999; Pintelon
and Schoukens, 2001b).

The nonparametric methods mentioned in Section 3.4.3, assume that (3.50)
holds in order to avoid errors. This will hold as long as the difference between the
initial and final conditions of the system is zero (Pintelon and Schoukens, 2001b,
Sec. 5.3.2.2). This is, for example, the case with periodic excitation in steady state
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Figure 5.1 Illustration of the transient effects in Example 5.1. Top: The
output signal for five periods of data (solid line) together with
the steady state response (dotted line). Bottom: The output
spectrum for the five different periods (top line, period one,
bottom line, period 5).

(no difference between the output signal from one period to the next). The same
is true for burst excitation if the whole system response is collected.

The waiting time to reach steady state mainly depends on the damping of the
system. In a real situation, it is enough to wait until the transient effects are less
than other sources of errors, such as disturbances. According to Schoukens et al.
(2000), the required waiting time, Tw, can be approximately estimated by

Tw =
τ

2
ln

(

ǫ2
τ

2Ttot

)

(5.6)

where τ is the dominating time constant of the system in the considered frequency
band, Ttot is the length of the data record (typically one period of data), and ǫ2 is
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the system signal-to-noise ratio

ǫ2 =
|G(iω)U(ω)|2

σ2(ω)
(5.7)

where σ(ω) is the noise power. In case of very low noise levels, 1/ǫ can be chosen as
the desired relative error. Transient effects will also be illustrated in Section 7.2.1
for the MFRF estimation method (3.52) using experimental data.
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6
MFRF Estimation – Error

Analysis

Accurate dynamic models are needed in many applications and it is therefore crucial
to use identification methods that produce good model estimates. In this chapter,
we will study the method for estimating the multivariable frequency response func-
tion (MFRF), described in Section 3.4.3. In particular, an approximate expression
for the estimation error for closed loop identification is derived. Using this ex-
pression some properties of the estimation error can be explained. Of particular
interest is how the model quality is affected by the properties of the disturbances,
the choice of excitation signal in the different input channels, the feedback and the
properties of the system itself. The expression will be illustrated in Chapter 7 using
experimental data from a real industrial robot and in Chapter 8 using simulation
data.

The chapter is organized as follows. Section 6.1 presents the frequency domain
identification method that will be used in the chapter and Section 6.2 deals with
the problem of selecting the excitation signals. Finally, the approximate error
expression is derived in Section 6.3.

6.1 The Identification Method

Consider the setting in Figure 6.1, where F is the controller and G is the plant to
identify. The plant has m input channels and p output channels. The controller
takes as input the difference between the reference signal r and the measured plant
output y, and u is the commanded plant input. Due to disturbances vu and vy,
the plant input will be up = u + vu and the measured plant output y = yp + vy,
i.e., the sum of the true output yp and the output disturbance vy.
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Figure 6.1 Block diagram showing the setup for closed loop identification.

The identification method, described more in detail in Section 3.4.3, requires
input-output data (u and y in Figure 6.1) from (at least) as many experiments as
the number of input channels. The sampled data are transformed using DFT and
collected into matrices UN (ωk) ∈ Cm×m and YN (ωk) ∈ Cp×m, where each column
corresponds to one experiment. The relation between the input and output can
then be written as

YN (ωk) = G(eiωkT )UN (ωk) (6.1)

where G(eiωkT ) ∈ Cp×m is the multivariable frequency response function (MFRF).
We will in the sequel use G(ωk) as a short notation for G(eiωkT ). If UN (ωk) has
full rank, an estimate of G(ωk) can be formed as

ĜN (ωk) = YN (ωk)U−1
N (ωk) (6.2)

The MFRF estimation method assumes that (6.1) holds, which is the case
for periodic data from the system steady state response (also called stationary
response). The error analysis conducted in this chapter will only consider stationary
errors, i.e., transient errors are neglected.

In order to evaluate the quality of the estimated models, some quality measures
are needed. In this thesis we will mainly look at the relative error of the estimate,
defined as

∆GN (ωk) =
ĜN (ωk) − G(ωk)

G(ωk)
(6.3)

For MIMO systems, which is the case here, the relative error is calculated element-
wise. For an easier comparison, the magnitude of the relative error, |∆GN (ωk)|, is
averaged over the excited frequency interval, Ω, as in

|∆GN | =
1

NΩ

∑

ωk∈Ω

|∆GN (ωk)| (6.4)

where NΩ is the number of excited frequencies. The subscript N will from now on
be omitted for easier notation.

For bias and variance expressions, see, for example, Pintelon and Schoukens
(2001a), which handles the SISO case in the presence of correlated input/output
errors (closed loop data).
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6.2 Excitation Signals

The selection of excitation signals is an important step in the design of good ex-
periments, which has already been discussed in Chapter 5.

As was mentioned in Section 6.1, we need (at least) the same number of ex-
periments as the number of inputs. Consider therefore the matrix r(t) ∈ Rp×m

of reference signals, where column i corresponds to the reference signal applied in
experiment i. How should r(t) be selected? To be noted is that we need p ≥ m in
order to make UN (ωk) full rank (see (6.8) where Gu(ωk) ∈ Cm×p). In addition to
the reference signal, the controller could be considered as a tuning parameter for
the identification experiment. That is not considered here.

We will here restrict our selection of r(t) to

r(t) = T r0(t) (6.5)

where r0(t) is a scalar signal (for example a multisine signal), and T is a permuta-
tion matrix. Two cases of T will be used for comparison1

T1 =





1 0 0

0 1 0

0 0 1



 T2 =





1 1 1

1 −1 1

1 1 −1



 (6.6)

where the second matrix maximizes det T (only the set (-1,0,1) is allowed for the
elements) and is suggested in Guillaume et al. (1996) for the open loop case.

6.3 Error Analysis

Consider once more the block diagram in Figure 6.1 for the case vy 6= 0 and/or
vu 6= 0. How is the relative error (6.3) affected by the disturbances? We will
here mainly consider the DFT matrices (bold face) of the signals, where column i
corresponds to experiment i. Now let V(ωk) denote the sum of the contributions
from both input and output disturbances, i.e.

V(ωk) = Vy(ωk) + G(ωk)Vu(ωk) (6.7)

As measurements, we will consider the control signal, u, and the measured output
signal, y, given by

U(ωk) = Gu(ωk)(R(ωk) − V(ωk)) (6.8)

Y(ωk) = G(ωk)U(ωk) + V(ωk) = Gc(ωk)R(ωk) + S(ωk)V(ωk) (6.9)

respectively, where

S(ωk) = (I + G(ωk)F (ωk))−1 (6.10)

Gu(ωk) = (I + F (ωk)G(ωk))−1F (ωk) (6.11)

Gc(ωk) = G(ωk)F (ωk)S(ωk) (6.12)

1Assuming p = m = 3, which is the case in this thesis.
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Lemma 6.1
Consider the setting in Figure 6.1 with the estimator Ĝ(ωk) given by (6.2) and
p = m. The estimation error (neglecting leakage effects in the DFT:s) is

G̃(ωk) = Ĝ(ωk) − G(ωk) = V(ωk)U−1(ωk)

with V(ωk) and U(ωk) given by (6.7) and (6.8), respectively.

Proof: From (6.2) one gets

G̃(ωk) = Ĝ(ωk) − G(ωk) (6.13)

= (Y(ωk) − G(ωk)U(ωk))U−1(ωk) (6.14)

Inserting Y(ωk) = G(ωk)U(ωk) + V(ωk) from (6.9) then immediately gives the
desired result. 2

Using (6.8) the error expression can be rewritten as

G̃(ωk) = V(ωk)((R(ωk) − V(ωk))−1G−1
u (ωk) (6.15)

where
G−1

u (ωk) = G(ωk) + F−1(ωk) (6.16)

For large signal-to-noise ratios one can use the approximation (R(ωk)−V(ωk))−1 ≈
R−1(ωk), which gives

G̃(ωk) ≈ V(ωk)R−1(ωk)(G(ωk) + F−1(ωk)) (6.17)

From Lemma 6.1, one immediately notes that U should be large in order to get
a small estimation error. To fulfill this, one could either increase the amplitude
of the reference signal, or make the transfer function Gu large. From (6.15) and
(6.16) one can see that a high gain controller will give a smaller estimation error.
This could at first seem to be in conflict with standard results for spectral analysis,
see Section 3.7.2, claiming that F should be as small as possible. The difference is
explained by the fact that here the controller u(t) = F (q)(r(t − y(t)) is used.

By choosing F = −G−1 (which corresponds to a marginally stable system), the
estimation error would be zero. Of course, that is unrealistic since the true system
is unknown and the signal amplitudes would be infinitely large. A more practical
point is that close to instability, where an accurate model is needed the most, the
estimation error will be smaller.

Consider now the case described in (6.5), Section 6.2, that the same scalar
reference signal r0(t) is used in all experiments and for all channels using the
permutation matrix T . Equation (6.17) then gives

G̃(ωk) ≈ 1

R0(ωk)
V(ωk)T −1(G(ωk) + F−1(ωk)) (6.18)

Using this expression, three properties of the relative error will be described:
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• Non-symmetric relative error.

• Larger relative error for small elements (given that the disturbances Vij have
similar character).

• Relative error dependent on T .

6.3.1 Non-symmetric Relative Error

For easier notation, consider the T1-case and a diagonal controller. Equation (6.18)
then implies the expressions

G̃1,3 =
1

R0
(V1,:G:,3 + V1,3F

−1
3,3 ) (6.19)

G̃3,1 =
1

R0
(V3,:G:,1 + V3,1F

−1
1,1 ) (6.20)

where V1,: is row 1 in V, G:,3 is column 3 in G, etc. (argument (ωk) omitted
for easier notation). In these equations Vi,j denotes the DFT of the disturbance
acting on channel i in experiment j.

Equations (6.19)–(6.20) explain why the relative error will be non-symmetric.
The error G̃3,1 is influenced by the elements in the first column of G. The error

G̃1,3 is on the other hand influenced by the elements in the third column of G, and
this will obviously not give the same result.

6.3.2 Larger Relative Error for Small Elements

The relative error will in general be larger for small elements in G, which can be
seen as follows. By comparing the expression

G̃1,1 =
1

R0
(V1,:G:,1 + V1,1F

−1
1,1 ) (6.21)

with G̃3,1 from (6.20) and using the assumption that all Vij have same character,

the magnitude of G̃1,1 and G̃3,1 will be approximately the same. Dividing by G1,1

and G3,1, respectively, then gives that the relative error will be larger in magnitude
for the smaller element, typically for the off-diagonal element.

6.3.3 Dependence on T
If the Vij are independent of the excitation, the T2 case will give lower relative
error than the T1 case. This is due to the fact that VR−1 = 1/R0VT −1 for the T2

case involves averaging two elements in V, which obviously, in average, will reduce
its value. In particular, if the Vij are uncorrelated, the value will be reduced by a
factor 2.

For the robot application, Vij depends on the movement of the robot, and hence
also on the excitation (see Section 8.1 for details). This will affect the assumption of
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same magnitude for all Vij and in addition make the components in V correlated.
The choice of permutation matrix T is therefore much more involved for the robot
application.



7
MFRF Estimation – Experimental

Results

The aim of this chapter is to find out how different properties of the excitation
signals as well as different averaging techniques affect the estimated multivariable
frequency response function (MFRF) for experimental data from an ABB IRB6600
robot. Section 7.1 describes the data collection, including the experimental setup
and experiment design. The results are presented in Section 7.2 and finally Sec-
tion 7.3 contains some conclusions and suggestions.

7.1 Data Collection

The data used for identification are collected from an ABB IRB6600 robot (see
Figure 7.1) using an experimental controller. The experiments are carried out
in the research lab of ABB Automation Technologies AB – Robotics, Väster̊as,
Sweden, which is gratefully acknowledged.

The first three axes are considered, giving a multivariable system with three
inputs (commanded motor torques) and three outputs (motor joint velocities).
For this kind of application it is necessary to use feedback control while data
are collected, both for safety reasons and in order to keep the robot around its
operation point. An experimental control system is used, which makes it possible
to use off-line computed reference signals for the joint controllers (similar to ϕref

m

in Figure 2.8).
The excitation signals are applied as reference signals for the motor joint ve-

locities. The experimental controller can approximately be seen as a diagonal
PI-controller for the joint velocities.

The identification method, described more in detail in Section 3.4.3 and Chap-

69
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Figure 7.1 The ABB IRB6600 robot.

ter 6, requires input-output data from (at least) as many experiments as the number
of inputs channels. Consider therefore the matrix r(t) ∈ R3×3 of reference signals,
where column i corresponds to the reference signal applied in experiment i. The
properties of the excitation signal r(t) will of course affect the quality of the esti-
mated parameters. In particular, the corresponding DFT matrix, RN(ωk), must
have full rank for all excited frequencies. One way of creating r(t) is to use a
scalar reference signal r0(t) and a permutation matrix T like r(t) = T r0(t), as was
described in Section 6.2. Since the system is nonlinear, not only the spectrum will
matter, but also the amplitude and the actual waveforms. See Chapter 5 for details
on the experiment design.

The aim here is to estimate the multivariable frequency response function in
the whole frequency band where notches and peaks are expected. For this purpose,
a broadband excitation signal will be used which excites the frequency band [1, 40]
Hz with a flat amplitude spectrum. Of course the spectrum could be optimized
as well, but that is not considered in this study. Many different signals exist, but
here mainly the multisine signal will be considered. Another option is to use a
chirp signal, which gives approximately the same behavior, which can be seen in
Section 7.2.6. A problem then is that the signal “shape” is fixed, compared to
the multisine signal that depend on the phases. See Section 7.2.7 for a continued
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discussion on the use of different signal shapes.
The influence of static friction should also be reduced, so an excitation signal

with as few zero velocity crossings as possible is preferred. This is solved by using
a (smoothed) square wave in all channels and then superimpose the broadband
signal in certain channels. The reference signal (matrix) can therefore be seen as a
sum of the broadband signal and the square wave like

r(t) = rbb(t) + rsq(t) (7.1)

where

rsq(t) =





1 1 1

1 1 1

1 1 1



 rsq(t) (7.2)

and rsq(t) is a scalar signal that is smoothed by using an anti-causal moving average
filter with a triangular weighting like

rsq(t) =
l∑

k=−l

wkx(t + kT ), wk =
l + 1 − |k|
(l + 1)2

(7.3)

where x(t) is a square wave, T is the sample time and l is the filter length. In the
sequel, we will use l = 40 and T = 0.5 · 10−3 s.

The broadband signal rbb(t) will be selected according to Section 6.2 like

rbb(t) = T rbb(t) (7.4)

where T is a permutation matrix and rbb(t) is a scalar signal. Here, a diagonal
permutation matrix T = T1 will be used most of the time. For the scalar rbb(t) the
periodic multisine signal (see (5.5)) rms(t) will be used according to

rms(t) =

F∑

k=1

Ak sin(2πfkt + φk) (7.5)

with amplitudes Ak, phases φk, signal period T0, and frequencies fk = lkf0 =
lk/T0 with lk ∈ N. In the experiments, the filtered square wave, rsq(t), and the
multisine signal, rms(t), will have a period time of 5 s, giving a frequency resolution
of 0.2 Hz. Their amplitudes are 14 rad/s and 12 rad/s, respectively. For the
multisine, the phases φk are chosen to get a low crest factor (approximately 1.55) by
using random initial phases combined with the clipping algorithm (see Section 5.4).
About five periods of data are collected. To reduce (eliminate) transient effects,
only the last four periods are used as estimation data. Transient effects are therefore
insignificant. See Section 7.2.1 for results on transient effects.

7.2 Results

In this section, estimates of the multivariable frequency response function (MFRF)
will be presented for a number of different properties of the excitation signals as
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well as different averaging techniques. Of course, this is just a small collection of
cases, but can still give useful insight into the problems involved.

Even though motor velocity is considered as output during the experiment
design (velocity controllers), we will exclusively present estimates of the MFRF
from motor torque to motor acceleration, Gτϕ̈, in this chapter. The main reason
is that physical properties are more easily seen in Gτϕ̈, compared to the MFRF
from motor torque to motor velocity, Gτϕ̇. In a Bode plot, Gτϕ̈ should be flat (no
integrators) except for resonances and friction. Note also their close correspondence

Gτϕ̈(iω) = iωGτϕ̇(iω) (7.6)

corresponding to an amplitude scaling of ω and a phase shift of π/2 rad. (Ac-
tually, the presented estimates in the chapter are calculated according to (7.6),
where Gτϕ̇(iω) is estimated from the measured data.) See also Section 8.1 for a
comparison between Gτϕ̈ and Gτϕ̇.

7.2.1 Transient Effects

The considered MFRF estimation method is based on the assumption that the
measurements come from the steady state system response. Transients will there-
fore introduce errors in the estimates. To reduce the transient effects, a periodic
excitation signal can be applied and then wait until transients have declined. The
required waiting time, Tw, has been discussed in Section 5.6.

In Figure 7.2 the estimates can be seen for Tw = 0 s and Tw = 5 s. The
main differences can be seen for low frequencies, in particular in the off-diagonal
elements. If the estimates are plotted for a number of waiting times, one can hardly
see any differences in the estimate for Tw ≥ 1 s, compared to the Tw = 5 s case. In
the sequel, a waiting time of at least 2 s will be used.

7.2.2 Averaging Over Periods

As was mentioned in Section 3.4.3, a way of reducing the variance in the estimates
is to average the DFTs from different synchronized data records like in (3.53). Here,
each period is considered as a data record and these are of course synchronized.
The excitation signals described in Section 7.1 will now be used, i.e., we have four
periods of steady state data. In Figure 7.3 the estimates from each individual period
are plotted. As can be seen, the estimates are hardly separable. Averaging will in
this case make almost no difference compared to just using the estimate from one
period of data (see the thin lines in Figure 7.13). The underlying assumption for
averaging over periods is that the disturbances acting on the input and output are
independent over the periods. Here, this is probably not the case. The randomness
in the estimates is therefore caused by other phenomena, which will be further
discussed in Section 7.2.7.
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Figure 7.2 Magnitude of the estimated MFRF with waiting times Tw = 0
s (thin lines) and Tw = 5 s (thick lines).
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Figure 7.3 Magnitude of the estimated MFRF for four different periods of
data. The estimates are hardly separable.
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Figure 7.4 Magnitude of the estimated MFRF using an excitation signal
with square wave (thin lines) and without square wave (thick
lines).

7.2.3 Using a Square Wave

Adding a square wave to the excitation signal will both increase the energy in
the excitation signal at certain frequencies as well as change its wave form. In
particular, the number of zero velocity crossings is reduced. In Figure 7.4 the
influence of using a square wave can be seen. Comparing the estimates with and
without a square wave, one can clearly see the importance of using the square
wave. Without it, the resonance peaks almost disappear and the locations of the
notch frequencies are also lower. The (1,1) element is an exception, which could
be explained by less friction for axis one.

7.2.4 Amplitude Dependence

The signal amplitude will, for a linear system, mainly affect the variance in the
estimate. For a nonlinear system, on the other hand, the estimated linear ap-
proximation will depend on the operating point and therefore also on the signal
amplitude.

The influence of different amplitudes can be seen in Figure 7.5, where the low
amplitude excitation signal has the same shape as the normal amplitude excitation
signal, but the amplitude is halved. It might be hard to see any differences, but
zooming in on the (1,1) and (2,2) elements show that the notch frequency is re-
duced when the amplitude is decreased. This is in correspondence with test bench
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Figure 7.5 Magnitude of the estimated MFRF for different amplitudes.
Thin lines: normal amplitude, thick lines: low amplitude.

measurements of gearbox stiffness, which gets stiffer for larger amplitudes.

7.2.5 Different Permutation Matrices T
We will here compare the estimates using excitation signals with different permu-
tation matrices T1 and T2 (see (6.6)). The estimates can be seen in Figure 7.6.
From this figure, it is hard to draw any immediate conclusions about which one to
use. A peculiar result is that for the T2 case, the notch frequency is larger in the
(1,1) element but smaller in the (3,3) element, compared to the T1 case. The T2

case gives slightly lower estimates for the (1,2) and (1,3) elements, which actually
are closer to the true values (see Section 7.2.9).

7.2.6 Multisine Versus Chirp

We will here compare the estimates using the multisine signal and the chirp signal
(see (5.4)). The frequency of the chirp signal is linearly swept from 40 Hz to 1 Hz
during 5 s. Repeating this signal gives a periodic signal with period time 5 s. The
peak value is the same as for the multisine signal. The averaged (over four periods
of data) estimates can be seen in Figure 7.7. From this figure, it is hard to draw
any immediate conclusions about which signal to use.

To be noted is that for the chirp signal, a small DC-level is present (can be
removed by tuning φ in (5.4)) which gives a slightly improved estimate due to
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Figure 7.6 Magnitude of the estimated MFRF for different permutation
matrices, T1 (thin lines) and T2 (thick lines).
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Figure 7.7 Magnitude of the estimated MFRF using the chirp signal (thick
lines) and the multisine signal (thin lines).
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the averaging. Compare Section 7.2.8 where a DC-level is added to the multisine
signal.

7.2.7 Averaging Over Experiments

In Section 7.2.2 the averaging was done over multiple periods of a single periodic
data set. Here, data from different experiments will be considered as well. [A data
set/experiment will now denote the result from applying the reference matrix r(t)
which, to be precise, actually corresponds to three separate experiments.]

A problem when averaging signals like in (3.53) from multiple data sets is
synchronization. This must be handled, otherwise the estimate can get worse by
the averaging. Consider, e.g., the scenario of taking the average of two equal
periodic signals (except for noise) with a phase shift of one half of the period time.
This would only leave the noise components left for the estimation. Often the
signals can be synchronized by using some trigger signal or by analyzing the data.
If this is not the case, one can average the estimated MFRF since the phase shifts
then are eliminated. Note that the inversion in the MFRF estimation method is
a nonlinear operation so averaging before or after the inversion will give different
results.

Here, the data sets are not synchronized so the estimated MFRFs from each
data set will be averaged. The averaging can be done in different ways. Here, two
ways will be considered. The first one is a simple arithmetic mean like

Ĝ(Ωk) =
1

nexp

nexp∑

j=1

Ĝ[j](Ωk) (7.7)

where nexp is the number of experiments, Ωk is either iωk or eiωkT , and Ĝ[j](Ωk)
is the estimate from data set j, calculated according to (3.53). The second way of
averaging will be denoted logarithmic mean and is defined as

| Ĝ(Ωk) | = exp




1

nexp

nexp∑

j=1

log | Ĝ[j](Ωk) |



 (7.8)

arg Ĝ(Ωk) = arg




1

nexp

nexp∑

j=1

Y [j](ωk)U(ωk)



 (7.9)

which is suggested in Pintelon and Schoukens (2001b) as a more robust averaging
technique, compared to (7.7) which is prone to give larger bias errors. For a MIMO
system, the phase cannot be calculated like in (7.9), but one way is to use

arg Ĝ(Ωk) =
1

nexp

nexp∑

j=1

arg Ĝ[j](Ωk) (7.10)

or (7.7) for estimating the phase and (7.8) for the estimation of the magnitude.
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Figure 7.8 Magnitude of the estimated MFRF for five experiments with
the same excitation.

In Section 7.2.2, the averaging over periods was unable to remove the random-
ness in the estimates. Using five data sets with the same reference signal r(t) give
averaged estimates (over the periods) according to Figure 7.8. These estimates are
also almost identical and no averaging will be able to reduce the randomness in the
estimates.

So, where does the randomness come from? It cannot be caused by stochastic
disturbances, since then the estimates would differ between each period and exper-
iment. What is left is nonlinear effects and repetitive disturbances. According to
Pintelon and Schoukens (2001b, Ch. 3), nonlinearities will give both systematic and
stochastic contributions to the estimated frequency response function (FRF), even
in the absence of other disturbances. These can be seen as bias and variance in the
estimates. The stochastic contribution is actually a deterministic signal once the
excitation signal is fixed, but is called stochastic since it behaves as uncorrelated
(over the frequencies) noise. For a multisine excitation signal, changing the phases
will give a different realization of this stochastic contribution. It is therefore sug-
gested to use different realizations of the multisine and average the FRF over these
experiments. In addition, one should only use certain frequencies (e.g. only odd
frequencies) to reduce the nonlinear effects. See Pintelon and Schoukens (2001b)
for details.

Following the suggestion, five experiments with different multisine signals rms(t)
are carried out. The multisine signals all have the same amplitude spectrum, but
the initial phases are randomly picked and therefore the optimized phases will be
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Figure 7.9 Magnitude of the estimated MFRF for five experiments with
different multisines (same amplitude but different phases).

different in the five experiments. The corresponding five averaged estimates (over
the periods) can be seen in Figure 7.9. Compared to the estimates in Figure 7.8,
these estimates now vary quite much depending on the specific multisine realization.

In Figure 7.10, the averaged estimates according to (7.8) can be seen for the two
cases of equal and different multisines. To be noticed is the reduced randomness in
the estimate for the case of different multisines. The randomness would be further
reduced if more experiments would be carried out. In addition one could of course
apply some smoothing of the estimates, like in (3.46), but then there is always
a trade-off between bias and variance. Figure 7.11 shows the differences between
using the arithmetic mean (7.7) and the logarithmic mean (7.8). One can notice
that the logarithmic mean (7.8) gives a smoother estimate and is therefore the
preferred choice.

7.2.8 Averaging Over Periods with Varying Operating Point

Assuming that the disturbances can be described according to Section 2.3.3, the
disturbances will depend on the actual motor position. Averaging over periods with
a slightly varying operating point would then be a way of reducing the influence
from such repetitive disturbances. A varying operating point can be obtained
by adding a small DC-level to the velocity reference signal. Figure 7.12 shows
the estimates from the four different periods of data where the motor position is
changed about π/2 rad between each period. Due to a large gear ratio, this gives
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Figure 7.10 Magnitude of the estimated MFRF, averaged over the five
experiments in Figure 7.8 (thin lines) and Figure 7.9 (thick
lines) using the logarithmic mean (7.8).
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Figure 7.11 Magnitude of the estimated MFRF using the arithmetic mean
(7.7) (thin lines) and the logarithmic mean (7.8) (thick lines)
for the averaging.
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Figure 7.12 Magnitude of the estimated MFRF for four different periods
of data with a slightly varying operating point.

an insignificant change in operating point for the robot arm.

Comparing these estimates with the ones in Figure 7.3, a considerable difference
can be noted. Averaging according to (3.53) for these two cases can be seen in
Figure 7.13. This shows that the randomness in the estimates are reduced by using
the slightly varying operating point.

The result using a varying operating point also gives an indication that the
disturbances acting on the system are indeed of the repetitive character described
in Section 2.3.3. Still, the averaging over different multisine realizations is more
effective than the averaging over varying operating point (compare Figures 7.10
and 7.13).

7.2.9 Single Sinusoid Versus Broadband Excitation

A possible problem with broadband excitation signals is that the injected signal
power at a certain frequency is fairly low, compared to if a single sinusoid is used
as excitation signal. To see the difference, a single sinusoid with the same peak
value as the multisine signal is superimposed on the smoothed square wave. The
single sinusoid has about the same total signal power as the multisine, which gives
a much higher signal power for the excited frequency.

In Figure 7.14 the estimates from five experiments with different single sinusoids
can be seen together with the averaged estimate using different multisines (thick
lines in Figure 7.10). There is a close correspondence between the estimates, except
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Figure 7.13 Magnitude of the estimated MFRF using averaging over pe-
riods (cf. (3.53)) for a varying operating point (thick lines)
and fixed operating point (thin lines).
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Figure 7.14 Magnitude of the estimated MFRF using a single sinusoid
(diamonds) compared to multisine signals (solid lines). Both
signals are superimposed on the smoothed square wave.
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for the low frequency part of the coupling elements between axis one and axes two
and three. Theoretical expressions for the low frequency coupling can be derived
from the rigid body dynamics model. According to discussions with ABB, the single
sinusoid estimates are closer to the theoretical values for this particular robot. Some
possible reasons for this discrepancy will be further discussed in Section 8.3.2.

7.3 Conclusions

Data have been collected from an ABB IRB6600 robot using an experimental con-
troller. Many different aspects of excitation signals and averaging techniques for
the multivariable frequency response function estimate have been covered. To sum-
marize:

• For accurate estimates, transient effects must be dealt with by a suitable wait-
ing time until a steady state system response is reached. For this particular
robot, a waiting time of 1-2 s seems to be enough.

• Static friction must also be handled and therefore a square wave, or a signal
with similar properties, is needed in order to reduce the number of zero
velocity crossings.

• The amplitude of the excitation signal will affect the location of notch and
peak frequencies.

• The permutation matrix will also have some effect, but it is hard to draw any
immediate conclusions about which one to use from these experiments.

• Another observation is that in order to reduce the randomness in the esti-
mates, one should average estimates from several experiments with random
multisines with different realizations. Since the averaging over several peri-
ods (and experiments with identical excitation) does not give any significant
reduction, it is better to use many short data records, containing one period
of data from the steady state response. In order to further reduce nonlin-
ear effects, it would be interesting to try odd multisines, or other versions
suggested in Pintelon and Schoukens (2001b).

• Finally, in order to estimate the coupling elements between axis one and
axes two and three for low frequencies, a broadband excitation signal is not
sufficient, at least not with the current power spectrum. This is probably
caused by a too poor signal-to-noise ratio (SNR). Since we are mainly dealing
with repetitive disturbances, the SNR is not significantly improved by using
a longer data set. A single sinusoid applied for a very short time will thus
give a better estimate. A stepped sine excitation for the low frequency part
might then be a good alternative. Another option to consider is to increase
the injected power for low frequencies when using the multisine signal.
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8
MFRF Estimation – Simulation

study

In this chapter, the multivariable frequency response function (MFRF) estimation
method will be evaluated using simulation data. Of particular interest is how
different properties of the excitation signals as well as different averaging techniques
will affect the estimates. These are the same questions that were considered in
Chapter 7 using experimental data from a real industrial robot.

The reason for using a simulation model is that it makes it possible to study
the different aspects separately and is a way of trying to explain the experimental
results from Chapter 7. By, for example, keeping the character of the excitation
signal fixed, and changing the properties of the disturbances, and, in addition,
having the true system available, it is possible to get insight into the properties of
the estimated model. The results are evaluated using the approximate, but explicit,
expression for the estimation error from Chapter 6.

The simulation model is described in Section 8.1 and the experiment design
is treated in Section 8.2. Various results from the simulations are presented in
Section 8.3. Finally, Section 8.4 contains some conclusions.

8.1 Simulation Model

The robot simulation model used in this chapter corresponds to an experimental
robot with a load capacity of 250 kg (similar to the ABB IRB 6600 robot). The
model is a linearized version of a nonlinear state-space model with 20 states, de-
scribing the dynamics of joints 1, 2 and 3 (see Figure 8.1) from applied motor torque
τ to achieved motor position ϕ. The nonlinear model is similar to (2.12), but at
joints 2 and 3, two additional spring-damper pairs have been added to describe

85
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Figure 8.1 The ABB IRB 6600 robot.

flexibilities in other directions than the joint directions (giving 8 additional states).
The nonlinear robot model is linearized at zero position and velocity, correspond-
ing to the position in Figure 8.1. The motor torque τ is considered as input. As
output, it is common to both consider the motor velocity, ϕ̇, and acceleration, ϕ̈.
In Figure 8.2 Bode plots can be seen for the two transfer functions Gτϕ̇ and Gτϕ̈.

The reason for considering velocity as output is that the controllers usually are
velocity controllers. However, viewing the transfer function from motor torque to
motor acceleration is sometimes more informative since this should be flat (no in-
tegrators), except for resonances and friction. Note also their close correspondence

Gτϕ̈(iω) = iωGτϕ̇(iω) (8.1)

corresponding to an amplitude scaling of ω and a phase shift of π/2 rad. In the
sequel, mainly the transfer function from motor torque to motor acceleration will
be estimated.

The data collection will be carried out in closed loop, which is schematically
depicted in Figure 8.3. For this kind of application it is necessary to use feedback
control while data are collected, in order to keep the robot around its operation
point. Limitations according to real life experiments are imposed on the exper-
iments, such as limitations in amplitude and bandwidth for the motor torque,
velocity, and acceleration.

The input disturbance, vτ , and the output disturbance, vϕ, are modeled ac-
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Figure 8.2 Bode plot of the transfers functions Gτϕ̇ (thin lines) and Gτϕ̈

(thick lines).

−
+

Controller Robot
ϕref

ϕmeasϕ

vϕ

ττc

vτ

∑∑∑

Figure 8.3 Block diagram illustrating the simulation setup.

cording to Section 2.3.3 like

vτ (t) =
∑

n∈Na

an sin(nϕ(t) + φa,n) + τc(t)
∑

n∈Nb

bn sin(nϕ(t) + φb,n) (8.2a)

vϕ(t) =
∑

n∈Nc

cn sin(nϕ(t) + φc,n) + eϕ(t) (8.2b)

(see Section 2.3.3 for details.) The input disturbance is torque ripple from an
AC permanent magnet motor and the output disturbance is resolver ripple from a
Tracking Resolver-to-Digital Converter. Numerical values which are considered to
be relevant for the robot application can be seen in Table 8.1. A small stochastic
part, eϕ(t), is added in order to model various noise sources in the measurement
equipment. eϕ(t) is chosen as Gaussian white noise with zero mean and a variance
of 1.5 · 10−10.

Some simplifying conditions in the system setup are that the simulation model
does not include nonlinearities such as, e.g., backlash in the gearbox, Coulomb
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Table 8.1 Numerical values for the disturbances in (8.2). Values partly
from (Uddeholt, 1998).

n an (Nm) φa,n (rad)

3 0.06 1.45

36 0.11 0.9

72 0.08 0.2

n bn (-) φb,n (rad)

18 0.04 0

n cn (mrad) φc,n (rad)

2 0.40 -1.84

10 0.20 0.81

12 0.22 2.94

48 0.18 2.94

friction, or nonlinear stiffness in the springs. These nonlinearities would affect the
estimation quality, which has been studied in for example Aberger (2000) for black-
box identification of an industrial robot, and would be interesting to incorporate
in a future study. See also Chapter 9 for nonlinear gray-box identification using a
model that includes Coulomb friction and nonlinear spring stiffness.

8.2 Experiment Design

A similar experiment design will be used for the simulation study as was used
in Chapter 7 for the experimental data. For details, the reader is referred to
Section 7.1.

For the experiment design, the motor velocity ϕ̇(t) will be used as output y(t),
and the excitation signal r(t) is therefore applied as reference velocity for the con-
troller, which can be seen as a PI-controller for the joint velocities. Hence, ϕref (t)
in Figure 8.3 is the integral of the reference signal r(t). The controller used in the
experiments is diagonal, and the diagonal elements are of PI-type.

The identification method, described more in detail in Section 3.4.3 and Chap-
ter 6, requires steady state input-output data from (at least) as many experiments
as the number of inputs channels. Consider therefore the matrix r(t) ∈ R3×3 of
reference signals, where column i corresponds to the reference signal applied in
experiment i. The reference signal (matrix) will be selected similar to Section 7.1
as a sum of a broadband signal and a square wave like

r(t) = rbb(t) + rsq(t) (8.3)

where rsq(t) is a smoothed square wave applied in all channels and rbb(t) is selected
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according to Section 6.2 like
rbb(t) = T rbb(t) (8.4)

where T is a permutation matrix and rbb(t) is a scalar signal. For the scalar rbb(t)
the periodic multisine signal rms(t) will be used (see (5.5)).

In all the experiments, the filtered square wave has a period time of 5 s and
an amplitude of 9.6 rad/s. The multisine signal has a peak value of 8 rad/s,
period time T0 = 10 s, and its frequency contents in the interval [1, 40] Hz. This
gives a frequency resolution of 0.1 Hz for the multisine signal. For the multisine,
random initial phases are used in combination with the clipping algorithm, giving
a crest factor of approximately 1.55. To reduce (eliminate) transient effects (see
Section 5.6), we will here wait until no difference can be seen in the estimates from
one signal period to the next.

8.3 Results

In this section, estimates of the multivariable frequency response function (MFRF)
will be presented for a number of different properties of the excitation signals as
well as different averaging techniques. The main purpose is to find out how the
estimates are affected by these different choices and possibly explain some of the
experimental results from Chapter 7.

8.3.1 Influence of T and Square Wave

During the experiment design there are numerous choices on how to select the
excitation signal. Here the choices of permutation matrix T and the use of a
square wave will be evaluated. Figures 8.4 to 8.7 (see the following pages) contain
the magnitude of the relative errors, |∆G|, (see (6.3)) in the MFRF estimates for
the following combinations of excitation signals:

Without square wave With Square wave

T1 Figure 8.4 Figure 8.6

T2 Figure 8.5 Figure 8.7

The averaged (over frequencies) version of |∆G|, denoted |∆G|, can be seen in
Table 8.2. These values might be easier to use for the comparison of the different
excitation signals. In practice, the square wave is needed to reduce the effects of
static friction (see the experimental results in Chapter 7). In these simulations
no static friction is present. Instead we can study how the square wave affect
the estimates via the repetitive disturbances, since these depend on the excitation
signal.

Without Square Wave

First, consider the case of not using a square wave in Figures 8.4 and 8.5. From
these figures and Table 8.2, a number of observations can be made:
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Table 8.2 Averaged (over frequencies) magnitude |∆G| of the relative er-
ror |∆G| in the MFRF estimate (in %) for different excitation
signals (cf. Figures 8.4 to 8.7).

Without square wave With square wave

T = T1

9.23 23.41 32.20 8.17 59.67 92.50

24.40 18.27 24.28 55.53 17.10 60.35

33.95 31.07 18.49 80.83 61.41 15.77

T = T2

10.13 42.20 47.00 7.76 27.15 39.11

198.96 15.84 55.81 92.74 12.38 61.57

186.22 69.55 14.79 165.69 61.26 11.35

• Even though the multivariable system itself, shown in Figure 8.2, is symmetric
the relative error is non-symmetric (compare, for example, the (1,3) and (3,1)
elements in Figure 8.5).

• The relative error is larger for small elements (compare, for example, the
(1,1) and (1,2) elements in Figure 8.5).

• For the diagonal elements, the T1 and T2 cases are about the same, but for
the off-diagonal elements, T1 is better (cf. Table 8.2).

The first two observations are in correspondence with the error analysis in Chap-
ter 6. The last observation needs further analysis. If the disturbances would have
been stochastic, independent of the excitation, then the observation in Section 6.3.3
would be valid, i.e., T = T2 would give better estimates in all elements. This can
be seen in Appendix A.1, which also illustrates the other mentioned observations.
Here, the properties of the disturbance will depend on the excitation, which will
be analyzed next.

Analysis of Repetitive Disturbances

The repetitive disturbances (8.2) used in the simulation model will depend on the
movement of the robot and hence also on the excitation. For simplicity, only the
output disturbance case will be analyzed. Similar results can be obtained for the
input disturbance. Since the motor velocity ϕ̇(t) is considered as output during
the experiment design, the corresponding output disturbance, denoted vy(t), will
therefore be the derivative v̇ϕ(t) of the repetitive disturbance vϕ(t) in (8.2b) like

vy(t) = v̇ϕ(t) = ϕ̇(t)
∑

n∈Nc

cnn cos(nϕ(t) + φc,n) +
d

dt
eϕ(t) (8.5)

which hints that vy(t) is highly correlated with ϕ̇(t). Due to the controller we
have, in the sample points, the relation ϕ̇(t) = Gc(q)r(t) and we therefore get the
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Figure 8.4 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T1 and repetitive disturbances.
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Figure 8.5 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T2 and repetitive disturbances.
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approximation
Vy(ωk) ≈ const · Gc(e

iωkT )R(ωk) (8.6)

which gives useful understanding. To be noted is that the nonlinear relation (8.5)
introduces leakage to neighboring frequencies and therefore Vy(ωk) 6= 0 even though
R(ωk) = 0. Using R(ωk) = T R0(ωk) gives

Vy(ωk) ≈ const · Gc(e
iωkT )T R0(ωk) (8.7)

which shows that the disturbances will be drastically different in the T1 and T2

cases. With Gc ≈ I, Vy will be approximately diagonal in the T1 case, whereas in
the T2 case, all elements in Vy will have approximately the same size. This partly
explains the differences.

With Square Wave

Consider now the square wave case in Figure 8.6 and Figure 8.7. Comparing the
estimates using T1 and T2 shows that T2 gives more accurate estimates when a
square wave is present (except for the (2,1), (2,3) and (3,1) elements). This can
also be seen in Table 8.2. Why this remarkable difference compared to when no
square wave was used?

A square wave with frequency f0 can be represented by a Fourier series with
non-zero components at frequencies (2k + 1)f0, k = 0, 1, . . .. For the square wave
case, these frequencies will be excited in all channels. A problem then is that the
square wave will excite the repetitive disturbances in all channels as well. Since
the disturbances are nonlinear, they will “leak” to neighboring frequencies so the
square wave will in addition cause disturbances even at not excited frequencies.
What this means in practice is that the disturbance matrices Vu and Vy will be
fairly equal for T1 and T2, which was not the case when no square wave was used
(the off-diagonal elements were then at least a factor five lower for the T1 case).

Recall now the relationship (6.1)

Y(ωk) = G(eiωkT )U(ωk) (8.8)

between the measured input and output matrices, U(ωk) and Y(ωk). This is
the disturbance free case. Adding input and output disturbances according to
Figure 6.1 gives

Y(ωk) = G(eiωkT )
(
U(ωk) + Vu(ωk)

)
+ Vy(ωk) (8.9)

From this expression, it becomes evident that the signal-to-noise ratio (SNR) for
the input and output matrices are important to investigate. These are defined as

[SNRU(ωk)]ij =
|[U(ωk)]ij |2

|[Vu(ωk)]ij |2
(8.10)

[SNRY(ωk)]ij =
|[Y(ωk)]ij |2

|[Vy(ωk)]ij |2
(8.11)
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Figure 8.6 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T1, square wave, and repetitive disturbances.
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Figure 8.7 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T2, square wave, and repetitive disturbances.
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where |U(ωk)]ij |2 is an estimate of the input spectrum for element (i, j), etc.
Consider now the frequencies not included in the square wave. For the T1

case, the off-diagonal elements of the output and input matrices will then only
contain coupling effects. The coupling between axis one and axes two and three are
fairly weak for low frequencies, which results in low signal values in elements (1,2),
(1,3), (2,1), and (3,1). As was previously mentioned, the disturbances are present
at all frequencies and therefore, the SNR for these elements will be poor. See
Appendix A.2 for plots of the input and output spectrum together with disturbance
spectrum and SNR.

The poor SNR values at low frequencies for the off-diagonal elements are also
evident in the relative error. Compare, for example, Figure 8.4 (without square
wave) and Figure 8.6 (with square wave).

As can be noted from the presented relative errors, the square wave will some-
times result in improved estimates for certain elements and frequencies. Compare,
for example, the (2,2) elements in Figure 8.4 and Figure 8.6. The relative error is
about the same except at the frequencies corresponding to the square wave where
the relative error is lower in the square wave case.

Conclusions

If no square wave is present, T = T1 gives the best estimates, except for the (2,2)
and (3,3) elements where T2 gives slightly better estimates (cf. Table 8.2). When
the square wave is added, T2 gives more accurate estimates, except for the (2,1)
and (3,1) elements (cf. Table 8.2). It also seems that the differences for the T2 case
are fairly small between using a square wave and not, with a small improvement
by using the square wave.

Even though it seems that T = T2 should be the preferred choice, we will from
now on mainly consider the T1 case together with the smoothed square wave to get
comparable results to the ones in Chapter 7.

8.3.2 Single Sinusoid Versus Broadband Excitation

As was noted in Section 7.2.9, a single sinusoid resulted in more accurate estimates
for experimental data. This was particularly evident for the off-diagonal elements at
low frequencies. In Figure 8.8 the estimates using a single sinusoid and a multisine
signal can be seen together with the true system. For both signals, T = T1 is used
and the signals are superimposed on a smoothed square wave (The relative error
using the multisine can be seen in Figure 8.6). It is evident, by comparing Figures
7.14 and 8.8, that the same phenomena is present in the simulations. The difference
in the estimates using the multisine and the single sinusoid can be explained by
analyzing the signal spectrum and signal-to-noise ratio (SNR). The single sinusoid
has the same peak value as the multisine signal, which gives a much higher signal
power for the excited frequency.

In Table 8.3, the SNR can be seen for the input and output matrices at the
single sinusoid frequency. Comparing the SNR for the multisine and single sinusoid
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Figure 8.8 Magnitude of the MFRF estimate for a single sinusoid (dia-
mond) and multisine (thin lines), using T = T1 and a square
wave. Thick line: true system.

Table 8.3 Signal-to-noise ratio (SNR) in dB (10·log10(SNR)) for the input
and output matrices (see (8.10) and (8.11)) in the single sinusoid
and multisine cases (evaluated at the single sinusoid frequency).

Sinusoid Multisine

Input
SNR

49.1 57.9 50.4 14.3 8.8 −1.9

50.9 53.1 52.7 4.9 26.1 31.7

54.1 53.8 51.2 −0.8 33.2 21.4

Output
SNR

85.3 66.7 54.8 65.1 53.3 37.8

67.3 86.2 78.2 39.2 62.9 66.9

51.1 82.0 85.8 33.8 61.6 62.7

Table 8.4 Magnitude of the relative error, |∆G|, in the MFRF estimate (in
%) for the multisine and sinusoid cases (evaluated at the single
sinusoid frequency).

Sinusoid Multisine

0.36 0.60 0.81 19 163 309

0.29 0.32 0.42 225 19 29

0.34 0.45 0.37 431 29 23
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cases shows a remarkable difference. The SNR is on average improved by a factor
100 (20 dB) using the sinusoid. Note especially the difference in the input SNR for
the off-diagonal elements (except the (2,3) and (3,2) elements). For the multisine
these elements are way too low. The corresponding relative errors can be seen
in Table 8.4, which further emphasizes that the single sinusoid gives much more
accurate estimates compared to the multisine signal. Note, however, that the
multisine signal excites 400 frequencies in one experiment. Using single sinusoids
will therefore drastically increase the required measurement time in order to cover
all these frequencies.

8.3.3 Averaging Over Experiments

Averaging over experiments using the same excitation signal will give no improve-
ment in the estimates for repetitive disturbances. Adopting the same idea as in
Section 7.2.7, i.e., averaging over experiment with different realizations of the mul-
tisine, will make a difference. For simplicity, only the T1 case with square wave
will be considered. As could be seen in Figure 8.8, the estimate is biased due to
the square wave, especially for the low frequency part of the (1,2),(1,3),(2,1) and
(3,1) elements. Performing 250 experiments and averaging over these will give av-
eraged estimates according to Figure 8.9 using the arithmetic mean and according
to Figure 8.10 for the logarithmic mean. As can be noted, the logarithmic average
technique still gives biased estimates for the low frequency part of the off-diagonal
elements. In this respect, the arithmetic mean is the preferred choice.

Since 250 experiments is unrealistic in practice, it might be interesting to see
what happens for a smaller number. Figure 8.11 shows the estimate for 20 realiza-
tions using the arithmetic mean. As can be seen, the estimate is already fairly close
to the true system and actually less biased than the estimate using the logarithmic
mean over 250 realizations in Figure 8.10.

8.4 Conclusions

In this chapter, a number of different aspects regarding excitation signals and
averaging techniques have been studied. Especially interesting is that the same
phenomena can be seen in simulations as in Chapter 7 where experimental data
was used. For the analysis of the estimation errors, the expressions from Chapter 6
have been used. In addition, the signal-to-noise ratio (SNR) has been studied. The
following conclusions can be made:

• The square wave will excite the repetitive disturbances in all channels.

• Permutation matrix T = T2 gives more accurate estimates, compared to using
T1, except for the (2,1) and (3,1) elements (cf. Table 8.2).

• The relative error is non-symmetric. This is particularly evident in the T2

case where the elements (2,1) and (3,1) in general are much worse than the
(1,2) and (1,3) elements.
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Figure 8.9 Magnitude of the MFRF estimate averaged over 250 realiza-
tions using the arithmetic mean for T = T1 and a smoothed
square wave (thin lines). Thick lines: true system.
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Figure 8.10 Magnitude of the MFRF estimate averaged over 250 realiza-
tions using the logarithmic mean for T = T1 and a smoothed
square wave (thin lines). Thick lines: true system.
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Figure 8.11 Magnitude of the MFRF estimate averaged over 20 realiza-
tions using the arithmetic mean for T = T1 and a smoothed
square wave (thin lines). Thick lines: true system.

• Using a single sinusoid will give improved SNR, and therefore more accurate
estimates. This is crucial mainly for the low frequency part of the off-diagonal
elements of the MFRF. The improvement must, however, be put into rela-
tion to the drastically increased total measurement time to cover all wanted
frequencies, compared to using a multisine signal.

• Averaging over experiments using different multisines will improve the the
estimates, also for the off-diagonal elements. To be noted is that averaging
using the logarithmic mean is prone to give biased estimates for the off-
diagonal elements. That is not the case for the arithmetic mean.

Remark: In all the simulations, a linear simulation model has been used (together
with a nonlinear disturbance description). This is mainly done to reduce the sim-
ulation time, but is also a way of reducing the number of possible error sources.
Simulations have also been performed using the nonlinear model for a number of
cases, showing minor differences compared to the presented results for the linear
model.



9
Nonlinear Gray-box Identification

System identification in robotics is a vast research area, as was discussed in Chap-
ter 4. It can be divided into, at least, three different levels or application areas.
These levels involve the estimation of the kinematic description, the dynamic model
(often divided into rigid body and flexible body dynamics), and the joint model
(e.g., motor inertia, gearbox elasticity and backlash, motor characteristics, and
friction parameters). In this chapter, the latter two areas will be covered.

In the work presented here, a three-step identification procedure is proposed in
which parameters for rigid body dynamics, friction, and flexibilities can be identi-
fied only using measurements on the motor side of the flexibility. The main point is
the last step, where the parameters of a nonlinear physically parameterized model
(a nonlinear gray-box model) are identified directly in the time domain. The first
two steps give special attention to the problem of finding good initial parameter
estimates for the iterative optimization routine. The procedure is exemplified using
real data from an experimental industrial robot.

The work reported here is closely related to the problems considered in, for
example, Östring et al. (2003) and Isaksson et al. (2003). Östring et al. (2003) use
a method where inertial parameters as well as parameters describing the flexibility
can be identified directly in the time domain. This is done by utilizing a user-
defined model structure in the System Identification Toolbox (Sitb). However,
only linear models were treated in their work. Isaksson et al. (2003) consider gray-
box identification of a two-mass model with backlash, where black-box modeling is
used to find initial parameter values.

The chapter is organized as follows. In Section 9.1 the nonlinear gray-box
identification problem is briefly described and Section 9.2 shows the nonlinear robot
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model used for identification. The three-step identification procedure is presented
in Section 9.3. In Section 9.4 the data collection is described, and Section 9.5 shows
the results from applying the proposed identification procedure to the experimental
data. Finally, Section 9.6 contains some conclusions and notes on future work.

9.1 Nonlinear Gray-box Identification

The starting point for the nonlinear gray-box identification is the continuous-time
state space model structure

ẋ(t) = f(t, x(t), θ, u(t)) (9.1a)

y(t) = h(t, x(t), θ, u(t)) + e(t) (9.1b)

where f and h are nonlinear functions, x(t) is the state vector, u(t) and y(t) are
input and output signals, e(t) is a white measurement disturbance signal, and t
denotes time. Finally θ is the vector of unknown parameters. Given a set of
input/output-data the aim is to determine the parameter vector that minimizes
the criterion

VN (θ) =
1

N

N∑

t=1

ε2(t, θ) (9.2)

where ε(t) denotes the prediction error

ε(t, θ) = y(t) − ŷ(t, θ) (9.3)

The experiments presented in this chapter will utilize the nonlinear gray-box model
structure nlgrey, available in a beta version of a nonlinear extension to the System
Identification Toolbox (Sitb), (Ljung, 2003). The model structure nlgrey is
similar to the idgrey model structure in Sitb. The model can be either a discrete-
time or continuous-time state space model, and it is defined in a Matlab m-file/mex-
file. In the current version of the software, only OE-models can be used, i.e., only
additive white noise, e(t), on the output. The prediction ŷ(t|θ) then becomes the
simulated output of the model (9.1) with the input u(t) (without e(t)) for the
current parameter vector θ. The data set, {y, u}, is put into an iddata object and
θ is estimated by applying a prediction error method, which performs a numerical
optimization of the criterion (9.2) by an iterative numerical search algorithm. This
search algorithm involves simulation of the system for different values of θ. The user
specifies an initial parameter vector and it is also possible to fix some components
in θ. To speed up the numerical optimization, the simulation model is implemented
in a mex-file (C-code).

9.2 Robot Model

The industrial robot that will be studied in this chapter is, for movements around
an axis not affected by gravity, modeled by a nonlinear two-mass flexible model



9.2 Robot Model 101

τ, ϕm

ϕa

Jm

Ja

τf

τs, d
r

Figure 9.1 The two-mass flexible model of the robot arm.

which is illustrated in Figure 9.1. A two-mass model is probably too simple to
describe the true system (see, for example, Östring et al. (2003) or Figure 9.3), but
it can still be used as an illustration of the proposed identification procedure.

The differential equations describing the dynamics of the robot arm are

Jmϕ̈m + rd(rϕ̇m − ϕ̇a) + τf + rτs = τ (9.4)

Jaϕ̈a − d(rϕ̇m − ϕ̇a) − τs = 0, (9.5)

where Jm and Ja are the moments of inertia of the motor and arm respectively, r is
the gear ratio, τ is the motor torque and d is the damping parameter. The spring
and gear friction torques, τs and τf respectively, are often approximately modeled

by linear models (see, for example Östring et al., 2003). In this work, nonlinear
models will be used to capture the effect of the Coulomb friction and to get a more
realistic model of the spring. The torque of the spring is modeled as

τs = k1(rϕm − ϕa) + k3(rϕm − ϕa)3 (9.6)

where ϕm and ϕa are the angles of the motor and arm respectively, and k1 and k3

are the parameters of the spring. The torque due to friction is modeled as

τf = Fvϕ̇m + Fc sgn(ϕ̇m) (9.7)

where Fv and Fc are the viscous and Coulomb friction coefficients. A third nonlin-
earity of practical importance is the presence of backlash in the gearbox, but this
problem is left for future work. See also Isaksson et al. (2003). Using (9.4) to (9.7),
a nonlinear state space model of the system can be derived. The motor torque, τ ,
is used as input signal, u, and with the states defined as

x =





x1

x2

x3



 =





rϕm − ϕa

ϕ̇m

ϕ̇a



 (9.8)

the state space equations become

ẋ1 = rx2 − x3 (9.9a)

ẋ2 =
1

Jm

(
−Fvx2 − Fc sgn(x2) − rd(rx2 − x3) − rk1x1 − rk3x

3
1 + u

)
(9.9b)

ẋ3 =
1

Ja

(
d(rx2 − x3) + k1x1 + k3x

3
1

)
(9.9c)
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9.3 Identification Procedure

The aim is to identify all parameters in the robot model, described in Section 9.2,
using experimental data and the nonlinear gray-box identification procedure de-
scribed in Section 9.1. An inherent problem of iterative search routines is that
only convergence to a local minimum can be guaranteed. In order to converge to
the global minimum, a good initial parameter estimate is important. In Chap-
ter 4, an overview of different aspects of identification in robotics has already been
given. Combining some of the mentioned methods makes it possible to find good
initial parameter estimates for the nonlinear gray-box identification. Therefore, a
three-step identification procedure is proposed where the first two steps find ini-
tial parameter values and in the third step, the nonlinear gray-box identification
procedure is applied.

9.3.1 Step 1: Initial Values for Rigid Body Dynamics and

Friction

Identification of rigid body dynamics and friction has already been covered in
Section 4.3. The standard procedure includes a dynamic model, linear in the pa-
rameters, that is characterized by a minimum number of parameters called base
parameters. Usually a friction model with two parameters per link is used, de-
scribing viscous and Coulomb friction. The robot is moved along an (optimized)
trajectory and applied torque and joint movements are recorded. The parameters
are then estimated using linear regression. Since the main interest here is to find
initial values, parts of this step could also be replaced by nominal values from CAD
models. If, on the other hand, (some) parameters can be estimated with high ac-
curacy in this step, they could be fixed during the third step, leading to a lower
dimensional iterative search.

For the robot model in Section 9.2, the rigid body dynamics and friction is
described by

(Jm + r2Ja)ϕ̈m + Fvϕ̇m + Fc sgn ϕ̇m = τ (9.10)

which can be written as a linear regression

(
ϕ̈m ϕ̇m sgn ϕ̇m

)





Jm + r2Ja

Fv

Fc



 = τ (9.11)

Considering N samples of data, the parameter vector can be determined as the
solution to a standard least-squares problem (cf. (4.4) and (4.5)).

9.3.2 Step 2: Initial Values for Flexibilities

As was mentioned in Section 4.4 the major flexibility in an industrial robot is nor-
mally located at the joint level, due to the transmission. Weaker (more compliant)
robot structures will in addition introduce significant flexibilities in the links and
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their connections. Therefore higher order models are sometimes needed in order to
get a sufficient description of the system. Many different methods were described
in Section 4.4, differing in, for example, assumed model structure, required mea-
surement signals, and complexity of the identification method. One interesting
method was proposed by Berglund and Hovland (2000) for the identification of
masses, springs and dampers, only using applied torque and joint movements. The
identification was based on an estimated Frequency Response Function (FRF) in
combination with the solution of an inverse eigenvalue problem. Here, a similar
method will be used to obtain initial values for the flexibilities, see Section 9.5.2.
One could also apply the method proposed by Isaksson et al. (2003), based on
black-box identification.

9.3.3 Step 3: Nonlinear Gray-box Identification

Combining the estimates from steps 1 and 2 gives an initial parameter estimate,
and the nonlinear gray-box identification method described in Section 9.1 can now
be applied.

9.4 Data Collection

The data used for identification comes from the same experimental setup as in
Chapter 7, i.e., from an ABB IRB6600 robot with an experimental controller. The
identification will therefore be carried out using closed loop data, which might lead
to biased estimates (Ljung, 1999).

For the different steps in the identification procedure, different excitation signals
are needed. In step 1, the rigid body dynamics and friction parameters should be
excited without introducing any oscillations due to the flexibilities. Therefore a low
frequency excitation is preferred. In step 2, on the other hand, the whole frequency
band should be excited where notch and peak frequencies in the frequency response
function are expected. The influence of static friction should also be reduced, so
a broadband excitation with as few zero velocity crossings as possible is selected.
Finally, for step 3 a data set (or a combination of data sets) is needed that excite
all free parameters in the model.

The properties of the excitation signal will of course affect the quality of the
estimated parameters. Since the system is nonlinear, not only the spectrum will
matter, but also the amplitude and the actual waveforms. It is common to optimize
the excitation signal according to some criterion, see Section 4.3, but that is outside
the scope of this work. The following three excitation signals will be used as
reference speed for the controller. They are all sampled at 2 kHz (T = 0.5 ms).

Data set 1: Triangle wave signal, 6.25 s of data, with amplitude 40 rad/s and
period time 5 s.

Data set 2: Multisine signal (sum of sinusoids), 5 s of data, with flat amplitude
spectrum in the frequency interval 1-40 Hz with a crest factor of 1.55, period
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time 5 s and a peak value of 5 rad/s. The multisine signal is superimposed
on a square wave with amplitude 8 rad/s and period time 5 s.

Data set 3: Similar to data set 2, but the multisine signal has a peak value of
10 rad/s and the amplitude of the square wave is 12 rad/s.

The last two data sets mainly differ in amplitude and can therefore be used to
see nonlinear effects on the estimates. For details on the excitation signals, see
Chapter 5.

9.5 Results

The physical parameters in the robot model from Section 9.2 will be identified by
applying the proposed three-step identification procedure from Section 9.3, using
the experimental data described in Section 9.4. The gear ratio r = 1/224.3 is
known.

9.5.1 Step 1

Using data set 1 together with the linear regression (9.11) gives the following pa-
rameter estimates 



Jm + r2Ja

Fv

Fc



 =





0.0280

0.0136

0.642



 (9.12)

The velocity and acceleration used in the regressor, see (9.11), are obtained from
position measurements using non-causal low-pass filtering (filtfilt in Matlab) and
central difference algorithms.

9.5.2 Step 2

The FRFs for data sets 2 and 3 from motor torque to motor acceleration can be
seen in Figure 9.2. Note especially that the notch frequency is higher for the data
set with larger amplitude. For a linear system, these estimates should be similar
(except for noise). For a linear two-mass model, the approximate transfer function
(ignoring the damping, d) from motor torque to motor acceleration is given by

s(Jas2 + k)

s3JaJm + s2JaFv + s · k(Jm + r2Ja) + kFv
(9.13)

with 1/Jm as the high frequency gain and ωn =
√

k/Ja as the notch frequency.
Using the FRFs in Figure 9.2, the following numerical values are achieved. For

data set 2, J
[2]
m = 0.0126 and ω

[2]
n = 35.19, and for data set 3, J

[3]
m = 0.0120 and

ω
[3]
n = 37.70. The estimate of Jm is taken as the average value for the two data sets,

Jm = 0.0123. Since the gear ratio, r, is known, an estimate Ja = 790 is found by
combining (9.12) and Jm = 0.0123. Knowing Ja, the spring stiffness k[i] for data
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Figure 9.2 Magnitude of the FRF for data sets 2 (thin line) and 3 (thick
line) from motor torque to motor acceleration.

set i is derived by using the approximate relation ω
[i]
n =

√

k[i]/Ja, which for the two
data sets gives k[2] = 9.78 · 105 and k[3] = 1.12 · 106. Since the two amplitudes give
different spring constants, it is probably fair to conclude that there is a nonlinear
effect present in the experimental data. The damping is hard to estimate and its
initial value is here simply set to zero. For a higher order model, the procedure
described in Hovland et al. (2001) can be used in this step.

To find initial estimates for k1 and k3, the following ad hoc procedure is used.
The spring constant k from the FRFs can, in some sense, be regarded as an “av-
erage spring constant”. Reasonable estimates for k1 and k3 can then be found by
minimizing

3∑

i=2

N∑

l=1

((
k[i]x

[i]
1 (lT )− k1x

[i]
1 (lT ) − k3(x

[i]
1 (lT ))3

)2
)

(9.14)

where k[i] and x
[i]
1 (t) are the estimated spring constants and spring deflection,

respectively, for data sets i = 2, 3. Since the state x1 is not measured, it is simulated
using the model (9.9) with the estimated nominal parameters and a linear spring
model τs = kx1.

9.5.3 Step 3

Combining the estimates from steps 1 and 2 gives the initial model m0 in Table 9.1.
The quality of the estimated models is assessed using the model fit (3.54), consid-
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Table 9.1 Estimated parameters, where the initial model m0 comes from
the first two steps and the other models are estimated in step
three using the data sets denoted in the table.

Model: m0 m1 m2 m3

Est. data: Init. 1,2 1,3 1,2,3

Jm 1.23 1.26 1.22 1.21 (·10−2)

Ja 0.79 1.07 1.11 1.13 (·103)

k1 0.814 1.42 1.46 1.46 (·106)

k3 5.4 3.77 4.69 3.72 (·1010)

d 0 2.73 3.08 2.63 (·103)

Fv 1.36 1.18 1.36 1.3 (·10−2)

Fc 0.642 0.668 0.623 0.644

Table 9.2 Model fit when validating the estimated models on data sets 1,2
and 3.

m0 m1 m2 m3

Data set 1 84.44 97.12 97.46 96.39

Data set 2 32.8 61.54 60.59 62.33

Data set 3 49.95 74.43 74.42 74.94

ering the motor velocity as the measured output. For the estimation, data set 1 is
combined with data sets 2 and/or 3 (using merge in Sitb) according to Table 9.1.
Including data set 1 is motivated by the fact that if only data sets 2 and/or 3 are
used, the model fit is improved when validating on data sets 2 and 3, but the esti-
mated parameters are unrealistic (e.g., negative Coulomb friction) and the model
fit for data set 1 is low. The optimization is carried out for 30 iterations, giving
parameter estimates and models shown in Table 9.1. The estimated models are
validated using the three data sets and the model fit is given in In Table 9.2.

Comparing the model fit for the different models in Table 9.2, one can notice
that the model fit is substantially improved by the nonlinear gray-box identification
step. However, to be fair, the initial estimates from step 1 and 2 (the m0 model)
could probably be improved by using optimal excitation. There are no major
differences in model fit when validating with estimation data compared to cross
validation. This is also reasonable since the signal-to-noise ratio is quite large. For
the m3 model, the relative importance of data set 1 gets lower, which also shows
up in the increased model fit for data sets 2 and 3.

To analyze the relative importance on the model fit for each parameter, the
estimated model m3 is used and each parameter is perturbed ±20%, one at a
time. In Table 9.3 the difference in model fit can be seen for the three data sets.
For data set 1, one can note that the parameters describing the flexibility have
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Table 9.3 Difference in model fit for the m3 model, compared to Table 9.2,
when each parameter is perturbed +20%/−20% (one at a time).

Data set 1 Data set 2 Data set 3

Jm −4.51/−0.81 0.77/−8.09 −0.94/−10.7

Ja −8.51/−5.34 5.03/−9.45 1.08/−7.36

k1 0.13/ 0.02 −2.73/−2.55 −3.93/−4.14

k3 −0.01/−0.01 −0.05/ 0.06 −0.11/ 0.08

d 0.03/−0.06 −0.09/ 0.02 0.12/−0.38

Fv −5.79/−1.65 2.46/−4.23 0.70/−1.84

Fc −14.7/−8.23 −0.11/−21.5 −1.25/−9.13

a small influence, compared to the rigid body dynamics and friction parameters.
The nonlinear stiffness parameter, k3, does not significantly affect the model fit.
Removing it gives almost no reduction in model fit. This is a puzzling result,
since estimated FRFs (see Figure 9.2) as well as test bench measurements shows
an amplitude dependent gearbox stiffness. A more detailed analysis of how the
nonlinearities affect the estimate is therefore needed, including more experiments
and other model structures.

In Figure 9.3 a Bode plot for the estimated model m3, ignoring the nonlinear
model parameters (k3 and Fc), can be seen together with the estimated FRFs
for data sets 2 and 3. One can clearly see the close correspondence, which further
validates the estimated model. However, to capture the two resonance peaks around
60 and 80 rad/s in the FRF, (at least) a three-mass model would be needed.

9.6 Conclusions

A three-step identification procedure has been proposed for the identification of
rigid body dynamics, friction, and flexibilities, only using measurements on the
motor side. The procedure has been exemplified using real data from an experi-
mental industrial robot together with a flexible two-mass model where nonlinear
spring stiffness and Coulomb friction have been added. The estimated physical pa-
rameters have realistic numerical values and give a model with high model fit and
fairly good correspondence to FRF measurements. However, the nonlinear spring
stiffness is not significant in the selected data sets.

There are a number of aspects of the presented results that are subjects for
future work. One important problem is to find a model structure that explains
the amplitude dependent properties of the system. This will probably involve
higher order models as well as additional nonlinearities. A further topic could be
to apply the method for a multivariable system. There are no principal problems
in the proposed identification procedure, but the last step involving the iterative
numerical search would be more time consuming and possibly numerically sensitive.
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Figure 9.3 Magnitude of the FRF for data sets 2 (thin line) and 3 (thick
line) from motor torque to motor velocity together with the
estimated model m3 (dash-dotted line).



10
Conclusions

In the thesis, an introduction and background to industrial robots have been given,
including modeling and control. An overview of system identification methods has
also been given, with a dedicated chapter on system identification in robotics.
The identification problem is often simplified by considering subproblems like rigid
body identification or identification of local linear flexible models. The focus of
this thesis has been on identifying flexibilities and nonlinearities. In particular,
a nonparametric frequency-domain estimation method for the multivariable fre-
quency response function (MFRF) has been evaluated and analyzed for the robot
application. Nonlinear gray-box identification has also been treated.

For the MFRF estimation method, an approximate expression for the estimation
error has been derived. The expression describes how the estimate is affected by
disturbances, the choice of excitation signal, the feedback and the properties of the
system itself. Three properties of the estimation error have been pointed out; non-
symmetric estimation error, relative error larger for small elements, and dependence
on the excitation signal in the different input channels (permutation matrix T ).

The MFRF estimation method has also been evaluated using both experimental
data from an ABB IRB 6660 robot (Chapter 7) and simulation data (Chapter 8).
A number of different aspects regarding excitation signals and averaging techniques
have been studied. The most important insights are that:

• For accurate estimates, transient effects must be dealt with by a suitable
waiting time until a steady state system response is reached.

• Static friction must be handled and therefore a square wave in the velocity
reference is needed (or a signal with similar properties). A problem then is
that the square wave will excite the repetitive disturbances in all channels.

109
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• In simulations, the permutation matrix T2 gives more accurate estimates,
compared to using T1, except for the (2,1) and (3,1) elements (cf. Table 8.2).

• The estimation error is non-symmetric. This is particularly evident in the T2

case where the elements (2,1) and (3,1) in general are much worse than the
(1,2) and (1,3) elements (cf. Table 8.2).

• Averaging estimates from several experiments will improve the estimates on
condition that random multisines with different realizations are used as ex-
citation. Averaging over several periods or using experiments with identical
excitation does not give any significant reduction due to the repetitive dis-
turbances. Therefore, many short data records containing one period of data
from the steady state response should be used.

• Finally, for the estimation of the coupling elements between axis one and
axes two and three for low frequencies, a broadband excitation signal is not
sufficient, at least not with a flat power spectrum. A single sinusoid gives
remarkably better estimates. A stepped sine excitation for the low frequency
part might then be a good alternative.

Nonlinear gray-box identification has also been treated. A three-step identifi-
cation procedure has been proposed in which parameters for rigid body dynamics,
friction, and flexibilities can be identified only using measurements on the motor
side of the flexibility. Using experimental data, the estimated physical parameters
have realistic numerical values and give a model with high model fit and fairly good
correspondence to frequency response function measurements.

Future Work

As was mentioned in the introduction, the ultimate goal in robot modeling is to
find an accurate global nonlinear flexible model. Nonlinear gray-box identification
could in principle tackle this complex problem by using the proposed three-step
procedure in Chapter 9 to handle the estimation of initial values. Thus, it would
be interesting to extend the nonlinear two-mass flexible model example in Chap-
ter 9 to incorporate higher order flexible models, multivariable systems, additional
nonlinearities such as backlash, etc.

An interesting area for further research is that of identifiability. Is it possible
to uniquely determine the model parameters given the measured data? Maybe
additional sensors are needed, like joint angle measurements after the gearbox
and accelerometers attached to the tool and links. This also relates to optimal
excitation. Even if additional sensors are used, identifiability can be lost if the
excitation signal is poorly chosen.

The experimental work in this thesis is carried out in one operating point with
a fixed load. The robot dynamics change quite much with the operating point and
load. It would be interesting to study the effects in other operating points as a
step toward building the global nonlinear flexible model we are looking for.
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A
MFRF Estimation – Additional

Plots

A.1 Stochastic Disturbances

The results in this section can be used as a comparison to the results in Sec-
tion 8.3.1 where repetitive disturbances are treated. Here, stochastic input and
output disturbances will be used, constructed as low-pass filtered Gaussian noise
with a cut-off frequency of 40 Hz. The disturbances have similar power spectrum
as in the repetitive disturbance case with square wave, but now the disturbances
are independent of the excitation and have equal power spectrum in all channels.

As can be seen in Figures A.1 to A.4, the relative error is non-symmetric, small
elements in the MFRF give higher relative error, and T = T2 gives more accurate
estimates. The square wave gives slightly improved estimates at the corresponding
frequencies.
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Figure A.1 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T1 and stochastic disturbances.
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Figure A.2 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T2 and stochastic disturbances.
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Figure A.3 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T1, square wave, and stochastic disturbances.
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Figure A.4 Magnitude of the relative error, |∆G|, in the MFRF estimate
for T = T2, square wave, and stochastic disturbances.
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A.2 Input and Output Spectrum for Repetitive

Disturbances

Here, the spectrum (periodogram) of the input and output signals are presented
together with the spectrum of the input and output disturbances. The excitation
signal is a multisine signal (T = T1) superimposed on a smoothed square wave.
See Figure A.5 for the input signal and Figure A.6 for the output signal. The
corresponding signal-to-noise ratio (SNR) can be seen in Figure A.7 for the input
signal and Figure A.8 for the output signal. Note especially the poor SNR in the
(1,2), (1,3), (2,1), and (3,1) elements for low frequencies.
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Figure A.5 Spectrum of the input signal (thin lines) and the input dis-
turbance /thick lines) using the multisine signal (T = T1)
superimposed on a smoothed square wave.
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Figure A.6 Spectrum of the output signal (thin lines) and the output dis-
turbance (thick lines) using the multisine signal (T = T1) su-
perimposed on a smoothed square wave.
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Figure A.7 Input SNR using the multisine signal (T = T1) superimposed
on a smoothed square wave.
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Figure A.8 Output SNR using the multisine signal (T = T1) superimposed
on a smoothed square wave.
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