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Abstract

System identification deals with the problem of constructing models of sys-
tems from observations of the inputs and outputs to the systems. In this
thesis, a particular class of models, Wiener models, is studied. The Wiener
model consists of a linear dynamic block, followed by a static nonlinearity.

The prediction error method is formulated for the Wiener model case,
and it is discussed how the predictor depends on the noise assumptions. It
is shown that under certain conditions, the prediction error estimate is con-
sistent. Conditions that certify consistency for a simplified, approximative
predictor are also stated.

Consistent in theory, the prediction error estimate is much too compli-
cated to calculate analytically in practice, and numerical methods must be
used. Furthermore, the prediction error criterion may have several local
minima, so a good initial estimate is needed. A considerable part of this
thesis deals with how to calculate such an initial estimate.

By a particular choice of parameterization of the linear subsystem and
the inverse of the nonlinearity, it is possible to formulate an error criterion
where the parameters enter quadratically. It is discussed how this error
criterion may be minimized using linear regression, quadratic programming
or the total least squares method. This initial estimate may then be used
in the numerical minimization of the prediction error criterion.

An algorithm for identification of Wiener models is presented, and it is
shown that the algorithm under some conditions gives a consistent estimate.
The algorithm is also applied to both simulated and experimental data.
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1
Introduction

1.1 System Identification

This thesis deals with system identification , and a natural first question
is then: What is a system? Generally speaking, a system is an object we
want to study. It could be the Swedish economy, the learning rate of En-
glish students, or the calf mortality in highland cattle (Hagenblad, 1998b).
Central in our perception of a system is the concept of inputs and outputs.
An output is something of interest that we observe from the system. In
the above examples, it could be the interest rate, the students’ score on a
test, and the percentage of calves dead four days after the birth. Things
that affect the way the system behaves are called inputs or disturbances.
Inputs are the ones we can control. In the English student example this
could be the number of hours the students have studied, for the Highland
cattle it could be the amount of vitamins and minerals fed to the animals.
Disturbances also affect the system but we cannot control them. The study
hours can be more or less efficient, but we can only measure how many they
are, so the variations in efficiency are considered a disturbance. Also how
much vitamins and minerals the Highland cattle eat will not be the same
as how much they are fed; the variation can be thought of as a disturbance.
We can have several disturbances, as well as several inputs and outputs of
a system. Inputs, outputs, and disturbances are also called signals.

In system identification we want to find a mathematical relation between

1



2 Chapter 1. Introduction

the inputs, outputs and disturbances. This relation is what we call a model .
We measure the inputs and the outputs, possibly also the disturbances, and
we want to estimate, or identify, a model from our measurements. To be
able to do this, we start with a model structure. A model structure is an
idea about the relation between the input and the output. In the English
student example, we might suspect that the more hours a student studies,
the better he will score on the test. One possible model structure is then

y = ku (1.1)

where y is the output, the score on the test, and u is the input, the number
of hours studied. The constant k is an unknown parameter of the system.

To determine, or estimate, k, we collect measurements of y and u. Now
suppose one student studied for 3 hours and scored 30 points on the English
test, another one studied for 8 hours and scored 80 points. The estimate
k = 10 is then consistent with our measured data. Of course this is a very
simplified model. For one thing, a student’s score on the test will also be
affected by his prior knowledge. We may consider this as a disturbance and
disregard it, or we may try to measure the prior knowledge and use that
too in the model.

This is the essence of system identification: We are interested in a par-
ticular system. We decide what are the interesting outputs and inputs, and
what disturbances we want to include in the model. We select a model
structure. From measurements of the inputs and outputs, and possibly also
disturbances, we estimate the parameters in our model structure. We val-
idate our model, to see how accurate and useful it is, and we might then
go back to select other inputs, outputs and disturbances, or another model
structure, to estimate a better model.

1.2 The Wiener Model

This thesis treats models of a certain class: Wiener models. A Wiener model
is depicted in Figure 1.1. It consists of a linear dynamic system G followed
by a static nonlinearity f . The input u and the output y are measurable,
possibly with noise, but we cannot measure the intermediate signal x.

To relate the Wiener model to our previous example with the English
students, we suppose that we are interested in not only the result on a par-
ticular test, but on several tests, at different times, and we suspect that
these results are related. We give a test every week, and we let y(t) be the
score on the test week t. Instead of relating this directly to the number of
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G(q) f(.)
u x y

Figure 1.1: A Wiener model

hours studied that week, we will say that the score on a test is a function of
the knowledge that week. We assume that there is such a thing as “knowl-
edge”, but we cannot measure it directly. The knowledge week t is denoted
x(t), and the test score y(t) = f(x(t)). This is the static nonlinear part of
the Wiener model.

We now relate the knowledge x to the number of hours studied, u. The
knowledge week t is of course a function of the number of hours studied
week t, which we denote by u(t), but also a function of the knowledge last
week, week t− 1, and the number of hours studied last week, u(t− 1). The
following model structure might then be interesting:

x(t) = b0u(t) + b1u(t− 1) + a1x(t− 1) (1.2)

This is the linear dynamic part of the Wiener model; the knowledge de-
pends not only on the number of hours studied that week, but also other
weeks. The constants b0, b1 and a1 are the unknown parameters we want to
estimate. The subject of this thesis is how to use measurements of u and y
(number of study hours and test score) to estimate these parameters.

Wiener models naturally arise also in other situations. A linear system
where the measurement device has a nonlinear characteristics is one exam-
ple. In chemistry, pH control systems can be described as Wiener models
(see Kalafatis et al., 1995; Pajunen, 1992). Hunter and Korenberg (1986)
cites several biological examples. Zhu (1999a) uses a Wiener model to iden-
tify a distillation column. Boyd and Chua (1985) showed that a very large
class of systems, time invariant systems with fading memory , can be ap-
proximated arbitrarily well with a Wiener model where x as well as u and
y may be vectors. In this thesis we treat only scalar Wiener systems, i.e.,
x, u and y are scalars.

Our goal is to find a linear dynamic model relating u and x, and a nonlin-
ear static one relating x and y. We will consider parametric models, where
the output can be described as a function of the input and some parameters.
Different models are described by different values of these parameters. We
will also restrict ourselves to discrete time. For the linear dynamic system
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from u to x, we will write this as:

x(t) = G(q, θ)u(t) (1.3)

where q is the time-shift operator, qu(t) = u(t + 1) and θ is a parameter
vector describing the linear system. The nonlinear system relating x(t) with
y(t) is described as

y(t) = f(x(t), η) (1.4)

where f is a nonlinear function of x(t), determined by the parameters η.
We want to use measurements of the input u and the output y to estimate
the parameters, both θ and η.

In estimating the parameters of the linear and nonlinear system we want
to arrive at the “best” model in some sense. What is best depends of course
on what we want to use the model for. One often used approach is the
prediction error approach: we use the estimated model to predict the output
for a given input. For given values of the parameters θ and η and a given
input u we can calculate the predicted output, ŷ. ŷ will depend on the
parameters, as well as the time t, so we will denote it ŷ(t, θ, η).

To measure the quality of the estimate we will compare the predicted
output with the measured one. We do this by forming the following predic-
tion error criterion:

VN (θ, η) =
1
N

N∑
t=1

(y(t)− ŷ(t, θ, η))2 (1.5)

where y(t) is the measured output at the time instance t, ŷ(t, θ, η) is the
predicted output at the same time, and N is the number of data. We will
say that the best estimate of θ and η is the one that minimizes VN (θ, η),
and we want to find these values of θ and η.

For a well-defined model structure and given measurements, VN (θ, η)
may be formed explicitely as a function of θ and η. It is normally too
complicated to be minimized analytically, but there are reliable numerical
methods available. The numerical methods use an initial estimate, a guess,
of the parameter values to find a better estimate. A large part of this thesis
deals with how to make a good initial estimate, and convert it to a form
useful in the numerical minimization.
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1.3 A Motivating Example

Wiener models are quite similar to linear models - just remove the nonlinear
block. One might therefore ask how linear model identification perform on
data from Wiener models. Suppose we do not know that our system is
nonlinear, so we try to identify a linear model. A large number of well-
known methods exist; we may try a prediction error method (Ljung, 1999)
or a subspace-based method (van Overschee and De Moor, 1996). It can be
shown that if the input is Gaussian, the linear estimate will be consistent.
This relies on Bussgang’s theorem (Bussgang, 1952): the cross-correlation
of two Gaussian signals is proportional to the cross-correlation when one
of them has undergone a nonlinear transformation. This can be applied to
Wiener model: If the input u(t) is Gaussian, so is the intermediate signal
x(t), and according to Bussgang’s theorem, the cross-correlation between
u(t) and the output y(t) will then be proportional to the cross-correlation
between u(t) and x(t).

Modeling the system as linear also provides us with an approximation
of the linear subsystem. This approximation can be used to simulate the
intermediate signal x. If the linear model is reasonably accurate, we may
plot the simulated x(t) versus the measured y(t), and get a visual represen-
tation of the nonlinearity. We can then estimate the nonlinearity from this
plot, i.e., form the simulated and measured {x(t), y(t)} data.

A small example will show that this is not necessarily the best procedure,
and motivate the method that is the focus of this thesis. The example
consists of a second order linear system, and an exponential nonlinearity.
No measurement noise is added to the signals, to show the problems that
can arise even in the noise free case.1

The system is given by the following equations:

x(t) =
q−1

(1− αq−1)2
u(t) where α = 0.7 (1.6)

y(t) = ex(t) (1.7)

The input signal is a sum of sinusoids:

u(t) =
20∑
k=1

sin(kπt/10 + φk) (1.8)

1MATLAB code for all examples in the thesis can be downloaded from:
http://www.control.isy.liu.se/publications/doc?id=1063
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where φk is a stochastic variable with uniform distribution on [0, 2π].

First, the mean was removed from the output data set {y(t)}. An output
error model Ĝ was estimated from the set of input-output data, {u(t), y(t)}.
The model Ĝ was used to simulate the linear system. We thus got an esti-
mate of the intermediate signal x(t). To the left in Figure 1.2, the estimated
x(t) is plotted versus the measured y(t). The true nonlinearity is also shown.
The (x(t), y(t)) points are scattered around the true nonlinearity, but even
though there is no noise, there is a significant error.

−4 −2 0 2 4
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20

30

40

The Output Error estimate.

x

y

−6 −4 −2 0 2 4

0

10

20

30

40

The linear regression estimate.

x

y

Figure 1.2: Estimates of the linear model are used to simulate the
intermediate signal x(t) and plot it against the measured output
y(t). To the left an output error model estimate is used; to the
right a linear regression estimate, as described in Chapter 4. (The
x-axis scales are slightly different in the two plots.) The solid line
is the true nonlinearity.

The method discussed in this thesis shows that we can do better than
just using a linear output error model. Let the linear system be param-
eterized by an FIR model, and the inverse of the nonlinearity with linear
B-splines. We can then formulate an error criterion where the parameters
enter linearly, and minimize the criterion with linear regression. The esti-
mate obtained this way was used to simulate x(t) and plot it against y(t)
to the right in Figure 1.2. The method is described in detail in Chapter 4.
The data points are here much closer to the true nonlinearity.
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1.4 Outline and Contributions

The outline of this thesis is as follows: The estimation problem is formulated
as a prediction error minimization in Chapter 2, and the consistency of this
approach is discussed. Some approaches to Wiener model estimation from
the literature are also described. Different parameterizations of the two
subsystems of the Wiener model are treated in Chapter 3. The numerical
search methods are strongly dependent on a good initial estimate. How to
obtain this is discussed in Chapter 4. The initial estimate is expressed as a
certain parameterization, while another parameterization may be wanted in
the final estimate. This change of parameterization could be seen as a model
reduction. How to convert the initial estimate to the desired structure is
treated in Chapter 5. Chapter 6 presents an algorithm to estimate a Wiener
model, and analyzes the consistency of the estimates obtained from the
algorithm. The algorithm is also depicted as a flowchart in Figure 1.3, with
references to the different parts of the thesis. In Chapter 7, the algorithm
is applied to several examples, with both real and simulated data.

Make an initial estimate of the
system (Chapter 4).ww�
Convert the initial estimate to
the desired structure (model
reduction, Chapter 5).ww�
Minimize the prediction error
criterion by iterating from the
initial estimate (Chapter 2).

Figure 1.3: Flowchart for Wiener model estimation as presented
in this thesis.

The main contributions of the thesis can be summarized as follows:

• The Wiener Model Identification Algorithm in Chapter 6, and the
consistency analysis thereof. The initial linear regression estimate
derived in Chapter 4 is similar to the estimate presented in Kalafatis
et al. (1997). The prediction error minimization method is well known
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from various sources, see e.g. Ljung (1999) for linear systems, Sjöberg
et al. (1995) for nonlinear systems.

• The overview of how the nonlinearity affects the predictor, and the
consistency for some simplified predictors, Section 2.2.

• The model reduction needed to go from the initial estimate to the
prediction error criterion, presented in Chapter 5. The linear part is
however well known.

Parts of the results in this thesis have been presented at different con-
ferences:

Hagenblad, A. (1998a). Identifiering av Wienermodeller. In Regler-
möte ’98, Preprints, pages 89–93, Lund, Sweden.

Hagenblad, A. and Ljung, L. (1998). Maximum likelihood identifi-
cation of Wiener models with a linear regression initialization. In
Proceedings of the 37th IEEE Conference on Decision and Control,
pages 712–713, Tampa, Florida, USA.

Hagenblad, A. (1999). Initialization and model reduction for Wiener
model identification. In The 7th Mediterranean Conference on Control
and Automation, pages 716–723, Haifa, Israel.



2
The Estimation Problem

In this chapter, the parameter estimation problem is formulated as a pre-
diction error minimization. General conditions for consistency are applied
to the Wiener model. The true predictor may often be difficult to compute
exactly for Wiener models. However, under additional assumptions on the
noise and the true system, it is shown that an approximative predictor still
gives a consistent estimate.

Numerical methods are used to minimize the prediction error criterion.
These are reviewed in Section 2.4. An alternative approach is the Expecta-
tion Maximization (EM) algorithm, which is outlined in Section 2.5. The
chapter ends with an overview of other methods for Wiener model identifi-
cation described in the literature.

2.1 The Prediction Error Method

A Wiener model with noise is depicted in Figure 2.1. The input u is a
known deterministic signal, while the output y is the system output with
added measurement noise. The intermediate signal x cannot be measured.
v denotes process noise and e measurement noise. We will assume that they
are independent of each other and have zero mean. G is a linear system, so
noise at the input can be transformed to colored process noise.

q denotes the time shift operator, qu(t) = u(t + 1), and θ are the pa-

9



10 Chapter 2. The Estimation Problem

G(q, θ) f(·, η)
u x y

v e

++

Figure 2.1: The Wiener model. The intermediate signal x is not
measurable, while the input u and the output y are measurable, y
with noise.

rameters determining the linear dynamic system G(q, θ). The nonlinear
function f(x, η) is a function of the output of the dynamic subsystem, and
depends also on the parameters η. Different model structures for both G
and f are possible, each with their pros and cons. Some issues on different
parameterizations are discussed in Chapter 3; here we assume an arbitrary
but fixed model structure. The output as described by the Wiener model
can be written as

y(t) = f
(
G(q, θ)u(t) + v(t), η

)
+ e(t) (2.1)

For fixed values of the parameters θ and η, this model can be used to
predict the output for a given input. The best prediction is the one that
gives the conditional expected value of y(t) with respect to the noise v and
e, given the values of the old inputs and outputs. We will denote this with
ŷ(t, θ, η), since it not only depends on time but also on the parameters θ and
η. The set of old data up to time t, {u(1), y(1), u(2), y(2), . . . , u(t), y(t)}, is
denoted by Zt. The formal definition of the predictor ŷ(t, θ, η) is then

ŷ(t, θ, η) = E
(
y(t)|Zt−1, θ, η

)
(2.2)

To evaluate the quality of a model, we compare the predicted output
ŷ(t, θ, η) with the measured output y(t) in the following prediction error
criterion:

VN (θ, η) =
1
N

N∑
t=1

(
y(t)− ŷ(t, θ, η)

)2 =
1
N

N∑
t=1

ε2(t, θ, η) (2.3)

where N is the number of measurements. ε(t, θ, η) is the prediction error.
The “closer” the predicted and the measured outputs are, the smaller the
criterion VN (θ, η). The prediction error estimate is the θ and η minimizing
VN (θ, η), denoted as

(θ̂, η̂) = arg min
(θ,η)

VN (θ, η) (2.4)
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2.2 Consistency

Suppose that the measured data y is actually generated according to the
following equation:

y(t) = f
(
G(q, θ0)u(t) + v(t), η0

)
+ e(t) (2.5)

The corresponding true system is shown in Figure 2.2. A desired property of
the parameter estimation method is that if we apply it to data {u(t), y(t)}
from this system, it should yield the true parameter values θ0 and η0. Since
our estimate from a particular identification experiment will always be af-
fected by the noise realization at that experiment, this can not be expected
in general. Making the thought experiment that we have infinitely many
data, we want the effect of the noise on the estimate to be insignificant, and
the estimated values of θ and η to be equal to the true values θ0 and η0.
Such an estimate is said to be consistent.

Definition 1 (Consistency) Suppose that the true system is described by
the parameters θ0 and η0. Let θN and ηN denote the estimates obtained from
a data set with N data. The estimate is said to be consistent if θN → θ0

and ηN → η0 when N →∞.

The consistency question is studied in detail in Ljung (1978). Here we
will give a brief outline. The development is rather general, and applies in
particular to Wiener models.

Let Θ̂N denote the minimizing argument of the prediction error criterion,
(2.3),

Θ̂N = arg min
Θ

1
N

N∑
t=1

(
y(t)− ŷ(t,Θ)

)2 (2.6)

u

v

y

e

G(q, θ0) f(·, η0) ++

Figure 2.2: The true Wiener system with measurement noise e(t)
and process noise v(t).
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The consistency question is divided into two parts: We first show that Θ̂N

converges to the minimizing argument of a deterministic criterion, then that
the true parameters also minimize that criterion.

We will denote limN→∞
1
N

∑N
t=1 Ef(·) with Ef(·), and assume that all

such sums converge. This is true for a large class of stochastic signals, see
Ljung (1999). We will also use the notation

V (Θ) = E
(
y(t)− ŷ(t,Θ)

)2 (2.7)

Note that V (Θ) is a deterministic function. We also have that whenN →∞,

Θ̂N → arg min
Θ

V (Θ) (2.8)

Write the system as

y(t) = E
(
y(t)|Zt−1

)
+w(t) (2.9)

where

E
(
w(t)|Zt−1

)
= 0 (2.10)

We will denote E
(
y(t)|Zt−1

)
with ŷ0(t).

Inserting (2.9) into the limiting criterion (2.7) we get

V (Θ) = E
(
ŷ0(t) + w(t)− ŷ(t,Θ)

)2
= E

(
ŷ0(t)− ŷ(t,Θ)

)2 + Ew2(t) + 2Ew(t)
(
ŷ0(t)− ŷ(t,Θ)

)
= E

(
ŷ0(t)− ŷ(t,Θ)

)2 + Ew2(t) (2.11)

The term 2Ew(t)
(
ŷ0(t)− ŷ(t,Θ)

)
is zero since ŷ0(t) and ŷ(t,Θ) only de-

pend on old input and output values (cf (2.9) and (2.2)), and w(t) according
to the definition (Equation (2.10)) is uncorrelated with old data. The sec-
ond term is independent of the parameters. Θ̂N will therefore converge to
the minimizing argument of the first term.

Now assume that there exists some Θ0 such that ŷ0(t) = ŷ(t,Θ0). Then
Θ0 will also minimize V (Θ), since the first term will be zero for Θ = Θ0.

This general result can be applied to Wiener models. The output can
then be described as

y(t) = f
(
G(q, θ)u(t) + v(t), η

)
+ e(t) (2.12)
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To use the prediction error method, we must specify the predictor ŷ(t, θ, η) =
E
(
y(t)|Zt−1, θ, η

)
. This is most easily done in the state-space framework.

Suppose the linear model is described by the following equation:

ξ(t + 1) = A(θ)ξ(t) +B(θ)u(t) (2.13)
x(t) = C(θ)ξ(t) + v(t) (2.14)

and that y(t) = f(x(t), η). Introducing the new state variable

X(t) =
(

ξ(t)
v(t− 1)

)
(2.15)

the whole Wiener system can be written in state-space form as

X(t + 1) =
(
A 0
0 0

)
X(t) +

(
B
0

)
u(t) +

(
0
1

)
v(t) (2.16)

y(t) = f
((
C 1

)
X(t)

)
+ e(t) (2.17)

For colored process noise v(t), additional states may be needed to describe
v(t).

It is difficult to exactly formulate the predictor in this general case, since
the process noise v(t) enters nonlinearly in y(t). We may, however, use an
approximative approach such as the extended Kalman filter (Anderson and
Moore, 1979).

Under some assumptions on the noise and on the true system, we can
show consistency for a less complicated, approximative predictor.

1. e(t) is uncorrelated with old data, E
(
e(t)|Zt−1

)
= 0. The predictor

can then be written as

ŷ(t, θ, η) = E
(
f
(
G(q, θ)u(t) + v(t), η

)∣∣Zt−1
)

(2.18)

This assumption is, e.g., fulfilled if the measurement noise is white.

2. f
(
G(q, θ0)u(t) + v(t), η0

)
= f

(
G(q, θ0)u(t), η0

)
+ f̃
(
Zt−1, v(t)

)
, where

E
(
f̃
(
Zt−1, v(t)

)
|Zt−1

)
= 0. In this case the predictor can be simpli-

fied to

ŷs(t, θ, η) = E
(
f
(
G(q, θ)u(t), η

)
|Zt−1

)
= f

(
G(q, θ)u(t), η

)
(2.19)

This is equivalent to saying that the process noise can be transformed
to additive noise on the output, which is uncorrelated with past data.
See Figure 2.3.
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u
G

v

x
f

f̃ e

y
+ +

Figure 2.3: A Wiener model subject to Assumption 2. The pro-
cess noise can be transformed to additive noise on the output,
which is uncorrelated with passed data.

Assumption 2 is a strong assumption on the system. It is fulfilled if f
is linear (and v(t) is uncorrelated with past data), or if there is no process
noise. Other than this, it is in general not fulfilled. In this thesis, we still
use the simplified predictor (2.19), but we cannot guarantee consistency if
Assumption 2 is not fulfilled.

Returning to the characterization (2.11), this is in fact the best we can
hope for in a general setting. If all noise variances are zero, this is the error
between the true system output and the estimated system output. To be
able to conclude that this implies also that the estimated parameters are
equal to the true values, we have to impose further conditions both on the
input signal u(t), and on the nonlinearity f .

Since the intermediate signal x(t) is not measured, a fixed gain can be
arbitrarily distributed between the linear and the nonlinear system. We can
never distinguish a linear system G0(q) and a nonlinearity f0(·) from a linear
system αG0(q) and a nonlinearity α−1f0(·). When we discuss consistency
in the following, this gain factor is disregarded.

We will state four different conditions. Together, they will be sufficient
to ensure that ŷ(t,Θ) = ŷ(t,Θ0) implies Θ = Θ0 (except for a constant gain
as mentioned above).

C1. The linear model structure has to be globally identifiable.

C2. The input data has to be informative enough.

C3. The nonlinearity must be invertible.

C4. {x(t)}Nt=1, the input to the nonlinearity, must be dense in the support
of f , when N tends to infinity.

Note however that due to the complicated nature of the nonlinear Wiener
model, these conditions need not be necessary, and there may be other
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sufficient conditions.
Since a linear dynamic system is a special case of the Wiener model,

conditions for linear systems must be satisfied. The first two conditions
are such conditions. The third condition deals with the coupling between
the linear and the nonlinear system, while the last condition is needed to
guarantee that the nonlinear system can be identified. We will discuss each
condition in turn (see Ljung, 1999, for a more complete treatment in the
case of linear systems).

Identifiability (Condition C1)

A linear model structure is a set of stable predictors, {x̂(t, θ)}, where θ
belongs to some subset of Rn. To be able to get a unique estimate of θ, we
must restrict the set of considered linear models, to make sure that different
predictors produces different outputs. This is captured in the identifiability
concept.

Definition 2 (Identifiability) A model structure {x̂(t, θ)} is globally
identifiable at θ∗ if

x̂(t, θ) = x̂(t, θ∗) ⇒ θ = θ∗ (2.20)

It is globally identifiable if it is globally identifiable at almost all θ∗.

Examples of globally identifiable structures are ARX models, and OE mod-
els where the numerator and denominator polynomials have no common
factors (see Section 3.1.1 for more on ARX and OE models).

Informative Enough Data Sets (Condition C2)

The actual predictor value for a given parameter value θ depends on the
input-output data set Z∞ = {z(t)}∞t=1 = {(u(t), y(t))T }∞t=1. For a linear
time-invariant model this can be written using a filter W (q, θ), where

ŷ(t, θ) = W (q, θ)z(t) =
(
Wu(q, θ) Wy(q, θ)

)(u(t)
y(t)

)
(2.21)

It is clear that if, e.g., u(t) ≡ 0 we cannot tell much about the system. The
information content in the data is addressed in the following definition:
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Definition 3 (Informative enough sets) A data set Z∞ is informative
enough if, for two linear time-invariant models W (q, θ1) and W (q, θ2),

E
((
W (q, θ1)−W (q, θ2)

)
z(t)

)2
= 0 (2.22)

implies that W (eiω, θ1) = W (eiω, θ2) for almost all ω.

An informative enough data set thus allows us to draw the conclusion
that two predictors are the same if the mean square difference between the
predictors is zero. If the model structure is also identifiable, we have that
θ1 = θ2.

The Nonlinearity (Condition C3)

The two conditions discussed above are sufficient in the case of a linear
model. In the Wiener model case, the output also goes through a nonlinear-
ity before being measured. If the nonlinearity f is a constant, it is clear that
the linear system cannot be identified. If f is invertible, x(t) = f−1

(
y(t)

)
can be computed from y(t). y(t) will then contain the same information as
x(t). This is thus a sufficient condition.

It may be possible to identify the linear system also if f is non-invertible.
For example, if f is linear in a small region around the origin, the system
will be linear for sufficiently small input signals, and thus possible to identify
if only the first two conditions are satisfied.

The Input to the Nonlinearity (Condition C4)

To uniquely determine a general nonlinear function f poses several prob-
lems. In this chapter we have assumed that f can be parameterized and
described by a set of parameters η. How to select a general parameteri-
zation is discussed in Section 3.2. Here we assume that we know a priori
that f belongs to the parameterized model class. We also assume that f
is at least piecewise continuous on some interval [a, b]. What we need is
sufficiently many data to determine the parameters. A possible condition
is then that the input data set is dense. Loosely speaking, this means that
we have data all over the interval, there are no “holes”. A realization of a
stochastic variable with a continuous distribution (e.g., a normal or a rect-
angular distribution) on an interval [a, b] will produce a data set which is
dense in that interval. A formal definition is given below.
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Definition 4 (Dense data sets) A data set E ⊂ F is dense in F if for
every point f ∈ F and every given ε > 0 there is a point e ∈ E such that
|e− f | < ε.

If f is continuous on an interval [a, b] and the input data set {x(t)} is
dense in that interval, f will thus be uniquely determined by the input-
output data {x(t), y(t)}. This is a general, sufficient, but rather restrictive
condition.

In practice it might be unfeasible to have dense input data x(t). One
reason is that a dense data set is always infinite, but it is also difficult
since we have no direct control over x(t), only via the input to the linear
subsystem, u(t). However, if {x(t)} is dense in an interval [a, b], we may
determine f uniquely in that interval. It is thus important to choose the
input signal similar to what is expected when the model is used.

Conclusion

The four conditions discussed above are as said sufficient to guarantee that
ŷ(t,Θ) = ŷ(t,Θ0) implies Θ = Θ0, but not necessarily true given this impli-
cation. For a given model structure, it is possible to obtain less restrictive
conditions.

It is important to note that the minimum of V (Θ) is in fact attained
for Θ = Θ0. The following chapters discuss how to obtain a good initial
estimate of the parameters. If this estimate is close enough to the true
parameters, the numerical methods presented in Section 2.4 will converge
to the global minimum of the criterion, and under the assumptions made in
this section this is obtained for the true parameter values.

2.3 Maximum Likelihood

To obtain the well-known maximum likelihood estimate, we consider the
measurements as realizations of stochastic variables. The stochastic vari-
able Y =

(
y(1) y(2) . . . y(N)

)
then has a probability density function

(PDF) fY (θ, η, µ). Here the subscript Y denotes that it is the PDF of the
vector-valued stochastic variable Y , while µ denotes the value taken by Y .
For a given value of µ, the probability that the observation (measurement)
of Y should take that value is proportional to fY (θ, η, µ). The maximum
likelihood estimate is the one that maximizes this probability, or the likeli-
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hood of the measured value:

(θ̂ML, η̂ML) = arg max
θ,η

fY (θ, η, µ) (2.23)

fY is also called the likelihood function when we insert a certain value of µ in
the probability density function. With some abuse of notation we will often
let Y denote both the stochastic variable, and the value of this stochastic
variable.

Suppose that the model structure is such that

ŷ(t, θ, η) = g(t, Zt−1, θ, η)
y(t) = ŷ(t, θ, η) + ε(t, θ, η)

(2.24)

where the prediction errors ε(t, θ, η) are independent and have a probability
density function fε(ε, θ, η). The likelihood function for Y is then

fY (θ, η, Y ) =
N∏
t=1

fε(y(t)− g(t, Zt−1, θ, η), t, θ, η)

=
N∏
t=1

fε(ε(t, θ, η), t, θ, η)

(2.25)

Maximizing a function is the same as maximizing the logarithm, since
the logarithm is a strictly increasing function, so we may instead maximize

log fY (θ, η, Y ) =
N∑
t=1

log fε(ε(t, θ, η), t, θ, η) (2.26)

or minimize

− 1
N

log fY (θ, η, Y ) =
1
N

N∑
t=1

− log fε(ε(t, θ, η), t, θ, η) (2.27)

Note the similarity with Equation (2.3). We now measure the prediction
error with the negative log likelihood function instead of a quadratic crite-
rion.

If the prediction errors are not only independent but also Gaussian, each
with zero mean and covariance λ, we have

− log fε(ε, t, θ, η) = const +
1
2

log λ+
ε2

2λ
(2.28)

For a known λ, the first two terms are independent of the parameters θ
and η. To minimize (2.27) is then equivalent to minimizing the quadratic
criterion (2.3). This means that the maximum likelihood estimate coincides
with the estimate minimizing the prediction error criterion.
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2.4 Optimization Methods

The numerical methods described in this section can be found in several
books on optimization, see, e.g., Dennis and Schnabel (1983), Luenberger
(1984) or Ljung (1999).

For a selected model structure and a set of measurements we can now
state the criterion function we want to minimize. In general, this is too
complex to minimize analytically, so we have to use numerical search meth-
ods.

Suppose we have an initial estimate of θ and η, and we want to calculate
better estimates, which lowers the value of the prediction error criterion
(2.3). The following iterative scheme is often used:(

θ
η

)(i+1)

=
(
θ
η

)(i)

+ αih
(i) (2.29)

h(i) is a search direction and αi a positive constant used to ensure that the
criterion (2.3) is decreased in each iteration step. By selecting the search
direction in a proper way we can then guarantee convergence to a local
minimum of the criterion.

Since the gradient of a function points in the direction of its steepest
ascent, it is natural to base the search direction h(i) on the (negative) gra-
dient of the criterion. For the case of Wiener models, the gradient can be
derived analytically, if the nonlinearity f is at least piecewise smooth. Re-
call that the linear model is parameterized with the parameter vector θ and
the nonlinearity with η. The gradient of the criterion is then

V ′N (θ, η) = − 1
N

N∑
t=1

Ψ(t, θ, η)ε(t, θ, η) (2.30)

where Ψ denotes the gradient of ŷ with respect to θ and η. Using the
expression (2.19) for ŷ and expanding Ψ and ε we get

V ′N (θ, η) = − 1
N

N∑
t=1

(
f ′x
(
x̂(t, θ), η

)
x̂′θ(t, θ)

f ′η
(
x̂(t, θ), η

) ) (
y(t)− ŷ(t, θ, η)

)
(2.31)

We may note here that if f is the identity function the first row is exactly the
same as in the case of estimating a linear system. For given parameters of the
linear and nonlinear system, the derivative can be calculated analytically,
or a numerical approximation can be used.
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If we use the (negative) gradient as search direction, we can guarantee
that the prediction error criterion (2.3) decreases in each iteration by se-
lecting a small enough αi. This is called the gradient or the steepest-descent
method. Note that we do not necessarily need to select the αi that gives the
largest decrease of the criterion, any αi decreasing the criterion will do. A
simple implementation of this might thus start with a large αi, check if this
makes the criterion decrease, otherwise divide αi with 2 and check again.

To increase the convergence rate, Newton type methods can be used close
to the minimum. In the Newton method the gradient is multiplied with the
inverse of the Hessian. If the criterion is quadratic in the parameters this
guarantees convergence in one step. Close to a local minimum the criterion
can be approximated by a quadratic function of the parameters and thus
the Newton method has fast convergence there.

The drawback of the Newton method is that it can be costly and/or
complicated to calculate the Hessian. The Gauss-Newton method uses the
search direction

h(i) =
[
HN

(
θ(i), η(i)

)]−1
V ′N
(
θ(i), η(i)

)
(2.32)

where

HN (θ, η) =
1
N

N∑
t=1

Ψ(t, θ, η)ΨT (t, θ, η) (2.33)

If the prediction errors are independent the Gauss-Newton search direction
is close to the Newton direction.

With the Gauss-Newton method the search direction is thus

h(i) = −
[

1
N

N∑
t=1

Ψ(t, θ, η)ΨT (t, θ, η)
]−1 1

N

N∑
t=1

Ψ(t, θ, η)ε(t, θ, η) (2.34)

This is the least squares solution to the overdetermined system of equations

ΨT (t, θ, η)h(i) = ε(t, θ, η), t = 1, 2, . . . ,N (2.35)

Equation (2.35) can be solved using QR-factorization, which gives us an
efficient way to calculate the Gauss-Newton search direction.

To be able to use these gradient-based methods, the functions involved
must be differentiable. For piecewise smooth functions, the differentiability
is in general not a problem, since the derivative ceases to exist only in a
finite number of points. In the generic case, the probability that we should
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end up in one of these points is zero. In practice, the differentiation can be
implemented with a difference quotient, which will exist also in the critical
points, or calculated analytically. In the latter case, the derivative can be
defined as, e.g., zero in the points it ceases to exist. Those points will then
not affect the minimization.

2.4.1 Local Minima

A more serious problem is that the prediction error criterion may have
several local minima. The numerical search guarantees convergence to one
of them, but we cannot be sure that there are no other local minima that
gives a lower prediction error. Which minimum the Gauss-Newton search
converges to depends on the initial estimate. There are basically two ways
to deal with this: either to try several different initial estimates, or to make
just one, but make it so accurate that it converges to the global minimum.
The former approach can be quite costly, and there are no guarantees that
you have found the global minimum. In Chapter 4 we treat the question of
finding a good initial estimate.

The problem with local minima is not unique for Wiener models, but
well known also for other model structures, like neural networks. Some
suggestions on how to initialize the search algorithm can be found in Sjöberg
(1997), where it is proposed to start with a linear model, which is then
augmented to a nonlinear structure. For Wiener models this would be the
approach described in Section 1.3, where the linear system is estimated from
input-output data under the assumption that the whole system is linear. We
saw in Section 1.3 that there may be problems with this approach.

It should also be noted that the Wiener model is over-parameterized if
the linear and nonlinear subsystem are parameterized separately. A con-
stant gain can be distributed arbitrarily between the subsystems, so to get
a unique solution, the gain of one subsystem must be fixed. This can be
done by expressing the steady-state gain of the linear system as a function
of the parameters, and use this as a constraint in the minimization. A sim-
pler solution is to just fix one of the parameters of the linear system, and
let it be constant during the minimization. Numerical problems will occur
if the over-parameterization is not addressed.

2.4.2 On Linear Regression

If ŷ(t), the prediction of the output, is a linear combination of known en-
tities, like the given data Zt−1, the parameter estimate (2.4) is especially
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easy to calculate. Suppose that

ŷ(t) = a1x1(t) + · · ·+ anxn(t) (2.36)

where xi(t) may be old inputs or outputs, or given transformations of these.
Collecting the data and parameters in vectors, ϕ(t) = (x1(t) . . . xn(t))T and
Θ = (a1 . . . an)T , we may write this as

y(t) = ϕ(t)TΘ (2.37)

The prediction error criterion (2.3) is then

V (Θ) =
1
N

N∑
t=1

(
y(t)− ϕ(t)TΘ

)2 (2.38)

This criterion can be minimized explicitly by setting the gradient of V (Θ)
equal to zero:

−2
1
N

N∑
t=1

ϕ(t)
(
y(t)− ϕ(t)TΘ

)
= 0 (2.39)

which has the solution

Θ =
[

1
N

N∑
t=1

ϕ(t)ϕ(t)T
]−1 1

N

N∑
t=1

ϕ(t)y(t) (2.40)

The inverse does not have to be calculated explicitly in practice, but
QR-factorization can be used. This gives a numerically better and more
stable method (Dennis and Schnabel, 1983).

The minimization of the quadratic criterion (2.38) is known as linear
regression. Three things makes this especially interesting: It is possible to
solve the problem analytically, there are fast numerical methods to compute
the solution, and the solution of the problem is unique. This is all due to the
fact that the parameters enter linearly in the predictor (2.36). In Chapter 4
we will show how the Wiener system can be parameterized with parameters
that enter linearly. This will allow us to use linear regression to obtain an
estimate which is unique and fast to calculate.

2.4.3 The Instrumental Variables Method

Suppose that there exist some true values for ai, such that the data y and
xi satisfy the equation

y(t) = a0
1x1(t) + · · ·+ a0

nxn(t) + e(t) = ϕ(t)TΘ0 + e(t) (2.41)
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where e(t) is noise. Inserting this into Equation (2.40) for the linear regres-
sion estimate, we see that the linear regression estimate will be

Θ = Θ0 +
[

1
N

N∑
t=1

ϕ(t)ϕ(t)T
]−1 1

N

N∑
t=1

ϕ(t)e(t) (2.42)

provided that the inverse exists. When the number of data, N , tends to
infinity, the estimate will equal the true parameter values if the last sum is
zero; that is, if the noise e(t) is uncorrelated with the regressor vector ϕ(t).
The estimate will thus be consistent.

If the noise and the regressor vector are correlated, we may still obtain a
consistent estimate by modifying Equation (2.39). Instead of the regressor
vector, we use the so-called instruments or instrumental variables ζ(t). The
instrumental-variable or IV estimate is the solution to the equation

1
N

N∑
t=1

ζ(t)
(
y(t)− ϕ(t)TΘ

)
= 0 (2.43)

To get consistency we have to choose the instruments ζ(t) such that

1
N

∑
ζ(t)ϕ(t)T (2.44)

is nonsingular, and 1
N

∑
ζ(t)e(t) tends to zero as N tends to infinity. The IV

method is described in detail (including consistency constraints) in Ljung
(1999).

2.5 The Expectation Maximization Algorithm

An alternative approach to the parameter estimation problem in Wiener
model identification is the Expectation Maximization (EM) algorithm. An
early paper on the EM algorithm is Baum et al. (1970). The algorithm is
also described in the survey paper Dempster et al. (1977). Bergman (1998)
presents an application to segmentation. We will here describe how it can
be applied to Wiener model identification.

Consider again the Wiener model with both process noise and mea-
surement noise depicted in Figure 2.4. We will adopt a stochastic frame-
work, and introduce the following notations: X =

(
x(1) . . . x(N)

)T and

Y =
(
y(1) . . . y(N)

)T are stochastic, vector valued variables. u(t) is a
deterministic (known) input signal. v(t) and e(t) are both stochastic pro-
cesses. Θ = (θ, η) are the parameters we want to estimate. The maximum
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Figure 2.4: The Wiener model with process and measurement
noise.

likelihood estimate maximizes the log likelihood of Y given Θ. We will
denote this likelihood with p(Y |Θ).

The idea behind the EM algorithm is that the likelihood p(Y |Θ) may be
hard to derive, but it would be easier if we also had measurements of some
other variable, X. We have that

p(X,Y |Θ) = p(X|Y,Θ)p(Y |Θ) (2.45)

or equivalently

log p(Y |Θ) = log p(X,Y |Θ)− log p(X|Y,Θ) (2.46)

Since the left hand side is independent of X, we may multiply both sides
with a function f(X) and integrate, if we choose f such that

∫
f(X) dX = 1.

In particular, we may choose f(X) = p(X|Y,Θ′), the conditional PDF for
X given Y and Θ = Θ′:

log p(Y |Θ) =
∫

log p(X,Y |Θ)p(X|Y,Θ′) dx−
∫

log p(X|Y,Θ)p(X|Y,Θ′) dx

= E
(

log p(X,Y |Θ)|Y,Θ′
)
− E

(
log p(X|Y,Θ)|Y,Θ′

)
= Q(Θ,Θ′)−H(Θ,Θ′) (2.47)

The EM algorithm is defined as follows:

The EM algorithm

Alternate the following two steps:

1. Compute the conditional mean of log p(X,Y |Θ) given Y and Θ = Θp

for a fix Θp.

Q(Θ,Θp) = E
(
log p(X,Y |Θ)|Y,Θp

)
(2.48)
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2. Determine Θp+1 as

Θp+1 = arg max
Θ

Q(Θ,Θp) (2.49)

It can be shown that for each pass of the EM algorithm, the log likelihood
log p(Y |Θ) increases. This relies on the fact that H(Θ,Θ′) ≤ H(Θ′,Θ′).
This is easy to show using Jensen’s inequality. See, e.g., Dempster et al.
(1977).

The EM algorithm is potentially interesting when identifying Wiener
models, since it can be described as using averaging over data that is not
readily available. In the Wiener model case, this is the intermediate signal
x(t). We will now apply the EM algorithm to our Wiener model identifica-
tion problem. Y is the output, X is the unmeasurable intermediate signal.
Θ is the parameters, θ of the linear system and η of the nonlinear.

First we need an expression for log p(X,Y |Θ). Using Baye’s rule, we
have

p(X,Y |Θ) = p(Y |X,Θ)p(X|Θ) = p(Y |X, η)p(X|θ) (2.50)

so since X does not depend on η

log p(X,Y |Θ) = log p(Y |X, η) + log p(X|θ) (2.51)

For the first term on the right hand side, log p(Y |X, η), we have that
y(t) = f

(
x(t), η

)
+ e(t). If X and η are known, the only stochastic part is

e(t). We assume that the measurement noise e(t) is white and Gaussian,
with zero mean and variance σ2. Since f(x) is a static nonlinearity, the
output y(t) will also be an independent sequence, and

p(Y |X, η) =
N∏
t=1

p
(
y(t)|x(t), η

)
=

N∏
t=1

1√
2πσ2

exp

{
−
(
y(t)− f(x(t), η)

)2

2σ2

}

which gives

log p(Y |X, η) = −1
2

N∑
t=1

log 2πσ2 − 1
2σ2

N∑
t=1

(
y(t)− f(x(t), η)

)2 (2.52)

The first term can be disregarded with respect to the EM algorithm, since
it is independent of the parameters Θ.
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Now we turn to the second factor of Equation (2.50), p(X|θ). We have
that

x(t) = G(q, θ)u(t) + v(t) (2.53)

u(t) is a deterministic signal and θ is assumed known. If v(t) is Gaussian,
X given θ will also be Gaussian, with a mean mθ and a covariance matrix
Pθ. We then have

p(X|θ) =
1√

(2π)N detPθ
exp
{
−1

2
(X −mθ)TP−1

θ (X −mθ)
}

so

log p(X|θ) = −N
2

log 2π − 1
2

log detPθ −
1
2

(X −mθ)TP−1
θ (X −mθ)

(2.54)

Also here the first term is independent of Θ and can be disregarded.
We can now formQ(Θ,Θp) by taking the expectation of Equations (2.52)

and (2.54) with respect to X, for given Θ = Θp and Y . Note that in doing
this, the parameters θ and η in (2.52) and (2.54) are free. Since (2.52)
depends only on η and (2.54) only on θ, we will split Q(Θ,Θp) in two parts,

Q(Θ,Θp) = Q1(η,Θp) +Q2(θ,Θp) (2.55)

where Q1(η,Θp) is the part coming from (2.52) and Q2(θ,Θp) the part from
(2.54). Disregarding the terms that are independent of Θ and X, and the
factor 1/2 which is common to all terms, we then obtain

Q1(η,Θp) = − 1
σ2

N∑
t=1

E
(
y(t)− f(x(t), η)

)2 (2.56)

Q2(θ,Θp) = − log detPθ − E
(
(X −mθ)TP−1

θ (X −mθ)
)

(2.57)

or equivalently, after applying the expectation to each term and then com-
pleting the squares,

Q1(η,Θp) = − 1
σ2

N∑
t=1

{(
y(t)− Ef(x(t), η)

)2

+ Ef2(x(t), η) −E2f(x(t), η)
}

(2.58)

Q2(θ,Θp) = − log detPθ − (EX −mθ)TP−1
θ (EX −mθ)

− tr
(
P−1
θ (EXXT − EXEXT )

)
(2.59)
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We have used that XTAX = tr(AXXT ), and that we may exchange the
order of the expectation and the trace operators. All expectations are with
respect to X, given Θ = Θp and Y .

Equation (2.59), Q2(θ,Θp), can be interpreted in a smoothing frame-
work: E(X|Y,Θp) is the best estimate of X given our data Y and the
model parameters Θp. EXXT − EXEXT is the corresponding variance.
These quantities can be found by using the fixed-interval smoothing variant
of the Kalman filter. Since the output y(t) is a nonlinear function of x(t)
we will need the extended Kalman filter, EKF. A standard reference on
Kalman filtering is Anderson and Moore (1979). With both process noise
v(t) and measurement noise e(t), this problem is comparable to the problem
of formulating the predictor (2.2), discussed on page 13.

The first line in Equation (2.58) is even harder to calculate. For a
given structure of the nonlinear system, we may expand the expressions for
Ef(x(t), η) and Ef2(x(t), η), but the calculations will be tedious and the
expressions complicated. Note however that if the nonlinearity is known,
this step can be excluded.

The conclusion of the EM algorithm applied to Wiener models is thus
that no obvious advantages are visible, when compared to the prediction
error method. When using the prediction error method, it is hard to express
the true predictor for the output y(t), and we have to approximate it with
an extended Kalman filter. Using the EM algorithm, we instead have to
find the predictor for x(t) given y, which also has to be approximated with
an extended Kalman Filter. The two methods share the problem with local
minima, and the need for a good initial estimate.

2.6 Other Approaches

Several approaches to the identification of Wiener models have been pro-
posed. Many of them can be included in the general prediction error frame-
work we have presented. The authors have chosen different parameteriza-
tions that each have their advantages and disadvantages. Some have re-
stricted the input to have special properties. We will give short summaries
of some approaches here.

Wigren (1993) derives a recursive prediction error algorithm. He de-
scribes the linear block with a transfer function operator, and the nonlinear
block as piecewise linear. The x-space is partitioned into segments, where
the slope and bias of the function are the parameters. The partition points
are however supposed to be fixed. Conditions for local convergence to the
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true parameter vectors are stated, and the method is applied to simulated
data from a control valve. In Wigren (1994), the nonlinearity is assumed
known, and conditions both for local and global convergence are shown.

Pajunen (1992) treats the problem of model-reference adaptive control
of a Wiener system. The linear system is represented as a transfer function,
and the inverse of the nonlinearity is represented with linear B-splines. The
method is applied to a pH control process.

Several papers treat the case where the input is (white) Gaussian noise.
Bussgang’s theorem (Bussgang, 1952) states that the cross-correlation of
two Gaussian signals, where one of them has undergone a nonlinear trans-
formation, is proportional to the cross-correlation before the transformation.
This can be applied to Wiener systems where the input is Gaussian.

Hunter and Korenberg (1986) use Gaussian input and estimates the
linear and nonlinear subsystems iteratively. Several examples of biological
systems that can be described as Wiener models are cited. The linear system
is estimated from the cross-correlation function, and the nonlinear system
is described with a polynomial.

Billings and Fakhouri (1977, 1982) uses the notion of separable processes,
which is related to Bussgang’s theorem. This is possible to apply to white
Gaussian input signals. The impulse response of the linear system can then
be estimated from the cross-correlation function between the input and the
output. The nonlinearity is described with a power series. Also other block
oriented structures than Wiener models are considered.

Greblicki (1994) also assumes white Gaussian input and disturbances,
and observes that the inverse of the nonlinearity is then proportional to the
expected value of the input in the previous time step, given the output at
a certain time. This is used to estimate the nonlinearity as an orthogonal
series. Convergence under some assumptions is proved, and an algorithm
to identify also the linear system is proposed.

Subspace methods are used to identify the linear subsystem in West-
wick and Verhaegen (1996), and it is shown that if the input is (colored)
Gaussian, this estimate is consistent. The basic algorithm is developed for
odd nonlinearities, i.e., f(−x) = −f(x), but it is also extended to general
nonlinearities. The nonlinearity is expressed as a power series.

In Bruls et al. (1997), a state space model is used for the linear system
and Chebyshev polynomials for the nonlinearity. This makes it possible
to phrase the prediction error minimization as a separable least squares
problem, which has better numerical properties than the original problem.
The numerical search is initialized with a subspace estimate of the linear
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system as in Westwick and Verhaegen (1996).
Related to the separable least squares method is the method proposed

in Zhu (1998). The Hammerstein model, where the static nonlinear block
comes before the linear block, is discussed. The nonlinearity is param-
eterized with polynomials and the linear block with a high order ARX
model. The prediction error criterion is then bilinear in the parameters,
which means that it can be solved as iterated least-squares problems. The
high order ARX model is reduced using a frequency-domain criterion. In
Zhu (1999b) the method is extended to Wiener models.

Kalafatis et al. (1997) select a parameterization where all parameters
enter linearly, and can thus minimize a quadratic error criterion explicitly.
FIR or FSF (frequency sampling filters) are suggested for the linear subsys-
tem, and a power series or B-splines for the nonlinearity. The same method
is treated in Kalafatis et al. (1995), where it is applied to a pH process.

There are two different fundamental difficulties in these approaches.
With a flexible model structure we risk getting stuck in a local minimum.
A less flexible structure may reduce or eliminate the local minima, but need
a larger number of parameters to produce an accurate estimate. More pa-
rameters to estimate might also demand more data. A good initial estimate
will reduce the risk of ending up in a local minimum.

Our approach is to combine the good parts in both these approaches.
First use a model structure with many parameters that enter linearly in the
problem and make an estimate. Then use this estimate as an initial estimate
in the iterative numerical search to minimize the prediction error criterion
for a more flexible structure. In Chapter 3 different possible parameteriza-
tions are discussed, and in Chapter 4 a particular parameterization is chosen
that enables a linear regression estimate of the parameters. Chapter 5 de-
scribes the model reduction necessary to proceed with the prediction error
minimization. The complete algorithm, and an analysis of it, is presented
in Chapter 6.
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3
Parameterizations

In this chapter we discuss different ways of parameterizing the Wiener
model. To stress the block structure of the model we will parameterize the
two subsystems independently. We will treat the linear block in Section 3.1
and the nonlinear block in Section 3.2.

3.1 The Linear Block

The linear block is a system which is linear, dynamic, time invariant, causal,
and stable. We will assume it is represented in discrete time (continuous
time systems are not treated in this thesis). Such a system G is completely
described by its impulse response {g(t)}∞t=1. For a given input u(t) we have
the output x(t) as follows:

x(t) =
∞∑
k=1

g(k)u(t − k) t = 0, 1, 2, ... (3.1)

The transfer function G(q) of the system is

G(q) =
∞∑
k=1

g(k)q−k (3.2)

31
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and the system output can then be written as x(t) = G(q)u(t). If G(q) is
stable, we have that

∞∑
k=1

|g(k)| <∞ (3.3)

Although a system is uniquely determined by its impulse response, it is
impractical to work with this in general infinite sequence. Instead we want
an expression where the system G is characterized by a finite number of
parameters. We will collect the parameters into a parameter vector θ, and
write G = G(q, θ). Rational transfer functions, state space models and FIR
models are some possible parameterizations that we will discuss. In (3.1)
we have assumed that there is a time delay of one time unit, and no direct
term from u(t) to x(t) in the linear system. This is a natural assumption,
and implies no loss of generality since the input can always be time shifted
to make sure we have a unit delay. It is also possible to explicitely express
a time delay of nk samples.

3.1.1 Rational Transfer Functions

A common choice is to select the transfer function as a rational function
where the numerator and denominator coefficients are the parameters.

G(q, θ) =
b1q
−1 + · · ·+ bnbq

−nb

1 + a1q−1 + · · ·+ anaq
−na =

B(q)
A(q)

(3.4)

or equivalently

x(t) + a1x(t− 1) + · · ·+ anax(t− na) = b1u(t− 1) + · · ·+ bnbu(t− nb)
(3.5)

The parameter vector is

θ =
(
a1 . . . ana b1 . . . bnb

)T (3.6)

In a real life situation, we always have noise, and we may wish to model
the color of this noise. Depending on how we model the noise, the rational
transfer function presented here can be described as an ARX model, an out-
put error (OE) model or a Box-Jenkins model. In the ARX (Auto-Regressive
with eXogeneous input) model, the white noise e(t) enters directly into the
difference equation:

x(t) + a1x(t− 1) + · · ·+ anax(t− na) =
= b1u(t− 1) + · · ·+ bnbu(t− nb) + e(t) (3.7)
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In the OE model we instead assume that the noise is added to the output
of the transfer function:

x(t) =
B(q)
A(q)

u(t) + e(t) (3.8)

This is a natural description if the disturbance is white measurement noise.
We may also separately model the color of the noise added to the output,
and will then get a Box-Jenkins (BJ) model:

x(t) =
B(q)
A(q)

u(t) +
C(q)
D(q)

e(t) (3.9)

Like A(q) and B(q), C(q) and D(q) are polynomials in q−1.

3.1.2 Finite Impulse Response Models

A special case of the rational transfer function model is the finite impulse
response, FIR, model. We here assume A(q) = 1, which gives the following
difference equation:

x(t) = b1u(t− 1) + b2u(t− 2) + · · ·+ bnbu(t− nb) (3.10)

An FIR model of order nb can only describe systems whose impulse response
has maximum length of nb time steps, but if we let nb tend to infinity, any
given (stable) system will be possible to describe accurately. The expression
power of the FIR model thus only depends on how many parameters we are
willing to use to describe it.

Another important feature of the FIR model is that the output is a
linear function of the parameters. If we want to find the parameters that
minimize a quadratic error criterion as in Chapter 2, we can then use linear
regression to calculate the minimum explicitely.

3.1.3 Laguerre and Kautz Models

A drawback when using FIR models is that we need a large number of
parameters to describe a system with a slow impulse response, or a poorly
damped system. Alternative representations, where prior knowledge about
the dominant poles can be utilized, are the Laguerre and Kautz models
(Wahlberg, 1991, 1994; Lindskog, 1996).
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The Laguerre model describes the transfer function G(q, θ) with the
following basis function expansion:

G(q, θ) =
NL∑
k=1

ḡkLk(q, a) (3.11)

where Lk(q, a) =
√

1− a2

q − a

(
1− aq
q − a

)k−1

(3.12)

θ denotes the parameters ḡk while a ∈ R is a filter coefficient chosen a priori.
It can be shown (Wahlberg, 1991) that if a is close to the true pole of the
system, the number of parameters NL needed to describe the system with
a given accuracy is in general much smaller than nb, the number of FIR
parameters needed.

If the system has resonant (complex) poles, the Laguerre model may
still need many parameters. A more general structure is then the Kautz
model, which corresponds to the Laguerre filter when a is allowed to be
complex. The Laguerre basis functions Lk(q, a) are then replaced with the
Kautz functions Ψk(q, b, c) where

Ψ2l−1(q, b, c) =
√

1− c2 (q − b)
q2 + b(c− 1)q − c

(
−cq2 + b(c− 1)q + 1
q2 + b(c− 1)q − c

)l−1

(3.13)

Ψ2l(q, b, c) =

√
(1− c2)(1− b2)

q2 + b(c− 1)q − c

(
−cq2 + b(c− 1)q + 1
q2 + b(c− 1)q − c

)l−1

(3.14)

b and c should be chosen so that the roots of q2 + b(c − 1)q − c = 0 are
close to the true poles of the system. In that case only a small number of
parameters will be needed to describe the system.

It is also possible to extend the Laguerre/Kautz filters to include several
a priori known poles. See Wahlberg (1994); Lindskog (1996).

3.1.4 Linear State Space Models

Using a state space model, the relation between the input and the output
is the following:

ξ(t+ 1) = Aξ(t) +Bu(t)
x(t) = Cξ(t)

(3.15)
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ξ is the state vector, consisting of n state variables. A, B and C are matrices,
of dimension n × n, n × 1 and 1 × n, respectively. This representation is
equivalent to a transfer function representation with na = n and nb =
n−1. Bruls et al. (1997); Westwick and Verhaegen (1996) use a state space
representation of the linear block in their treatment of Wiener models.

3.1.5 The Frequency Sampling Filter

The frequency sampling filter can be seen as a linear transformation of the
FIR model. The following equations define the frequency sampling filter
(FSF):

x(t) =
(n−1)/2∑

k=−(n−1)/2

G(eiωk)fk(t)

fk(t) = Hk(q)u(t) =
1
n

1− q−n
1− eiωkq−1

u(t)

ωk = 2πk/n

(3.16)

G(eiωk) are the parameters and also the discrete frequency response of the
system at ωk.

Since the FSF model is a linear transformation of the FIR model, it has
the same expression power. It also has the characteristic that the output is
a linear function of the parameters. It has been argued (see Kalafatis et al.,
1997) that the FSF allows fewer parameters than the FIR model in certain
cases.

3.2 The Nonlinear Block

Next, we consider the static nonlinear block. We will denote it by f , which
we will also use for the function realized in the block. f is thus a real-valued
function of one variable, with input x and output y (since the block is static
we omit the time index), y = f(x).

To express the nonlinear function, we will use a function expansion with
basis functions and parameters. This is not a new idea, so many different
possibilities have been suggested. The main structure is the following:

y =
nb∑
i=1

fiBi(x) (3.17)
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For our purpose, we will distinguish two different types: those with fixed or
somehow predetermined basis functions Bi, where fi are the only parame-
ters, and those where Bi(x) = Bi(x, η) also contain parameters η which can
affect for example the shape and position of the basis function. The first
case may be considered a special case of the second, where the parameters
contained in Bi are fixed beforehand.

If the internal parameters of the basis functions Bi are fixed, the output
is a linear function of the parameters. This allows us to use linear regres-
sion, as described in Section 2.4.2, to estimate the parameters. The two
basic advantages with linear regression is that it is fast and gives a unique
estimate. In the general case, a prediction error criterion may have several
local minima, and we need time-consuming numerical methods to minimize
the criterion. Internal parameters in Bi will in general give more flexibility,
but the parameter estimation problem will be harder.

In the following presentation of some possible choices of basis functions,
x is assumed to be scalar. It is however often possible to generalize the ideas
to the vector-valued case.

3.2.1 Power Series

In a power series, the basis functions are simply powers of x.

Bi(x) = xi i = 0, 1, 2, . . . nb (3.18)

It is well known (see Dahlquist and Björk, 1974) that a power series have
good approximation abilities close to a fix (selected) point. The drawback
of using them is that the approximation far from the selected point may be
poor. The approximating function will also often show oscillatory behavior.

The power series basis functions are independent of the parameters, so
linear regression can be used to estimate the parameters from data.

3.2.2 Chebyshev Polynomials

If polynomial approximation of the nonlinearity is desirable, Chebyshev
polynomials might be a better choice than a power series. The Chebyshev
polynomial basis functions are defined as follows

Bk(x) = cos(k arccos x) (3.19)

No parameters are contained in the basis function. Chebyshev polynomials
are interesting because they have the so-called minimax property: Among
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all polynomial of degree n, where the coefficient for xn is equal to one,
the Chebyshev polynomials have the smallest maximum norm on [−1, 1].
This will in general make an approximation by Chebyshev polynomials less
oscillative than a power series. More properties of Chebyshev polynomials
can be found in Dahlquist and Björk (1974). Chebyshev polynomials are
used to describe the nonlinearity in Bruls et al. (1997).

3.2.3 B-splines

Splines are also known as piecewise polynomials: A number of polynomials,
joined together at so-called breakpoints, or knots. A first order spline is
just a piecewise constant function. A second order spline is a continuous,
piecewise linear function. If the polynomial pieces are of order n (and
the spline of order n + 1) they can be connected to form a function with
a continuous n − 1 order derivative. For example, a third order spline
consists of quadratic pieces, which are joined together at the breakpoints to
make the first derivative of the function continuous. We will concentrate on
(piecewise) linear splines.

Splines can be expressed in different ways. One convenient way of ex-
pressing the spline as a basis function expansion, fitting in our framework, is
the B-form. For n given breakpoints {xi}ni=1, Bi(x) is the unique piecewise
linear function satisfying:

Bi(xj) =

{
0 if i 6= j

1 if i = j
(3.20)

Some basis functions are depicted in Figure 3.1.

1

x1 x2 xi−1 xi xi+1 xn−1 xn

B1 Bi Bn

Figure 3.1: B-spline basis functions of order 1 (piecewise linear).
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We can also explicitely state the equation of a B-spline basis function:

Bi(x) =


0 if x < xi−1
x−xi−1

xi−xi−1
if xi−1 ≤ x < xi

xi+1−x
xi+1−xi if xi ≤ x < xi+1

0 if xi+1 ≤ x

(3.21)

If the breakpoints are selected/determined in advance, all the param-
eters enter linearly in the B-splines representation. The selection of the
breakpoints is of course a delicate matter. They do not need to be evenly
spaced. Normally it is desirable to have many breakpoints where the func-
tion is changing rapidly, but if the function is unknown this is not easy
to specify. One way is to let the breakpoints be parameters to estimate
too. This will make the structure more flexible, but make the parameter
estimation harder.

We might note that for a continuously differentiable function on a closed
bounded interval, we can obtain a B-spline approximation of arbitrary ac-
curacy by using sufficiently many breakpoints. The proof is related to the
proof that every continuous function can be arbitrarily well approximated
by piecewise constants, used in basic textbooks in calculus, see e.g. Rudin
(1976).

Proposition 3.1 Suppose f is a continuously differentiable function on the
closed bounded interval [a, b]. Then for every ε > 0 there exists a piecewise
linear continuous function g such that

|f(x)− g(x)| < ε for all x ∈ [a, b] (3.22)

The proposition holds also on non-bounded intervals, if the derivative of f
is uniformly continuous on that interval.

A good reference treating splines is de Boor (1978). de Boor has also
written a spline toolbox for MATLAB, (de Boor, 1992).

3.2.4 Neural Networks

The concept of neural networks is based on the use of basis functions, the
most common one being the sigmoid. The sigmoid basis function has the
following equation:

Bk(x) =
1

1 + e−(η0k+xη1k)
(3.23)



3.2 The Nonlinear Block 39

The basis function has two internal parameters. η1i determines how fast
the transition from 0 to 1 is, and η0i the position of the transition. We may
note that for η1i > 0, the sigmoid tends to zero as x tends to minus infinity,
and to one as x goes to plus infinity; for η0i + xη1i = 0 its value is 0.5.

As with splines, it is possible to show that “nice” functions can be ap-
proximated arbitrarily well with sigmoids (Cybenko, 1989). The sigmoid
can be considered as a smooth version of a piecewise constant basis func-
tion which can take only one of two values: 1 or 0, on or off.

Contrary to splines, there are no breakpoints we need to select a pri-
ori, this is handled by the internal parameters η0i and η1i. On the other
hand, this makes the parameter estimation harder; it is well known that a
quadratic error criterion as in Chapter 2 has several local minima for neural
networks, which is a problem. We can only guarantee convergence to some
local minimum. See Haykin (1994) for more on neural networks.

3.2.5 Hinging Hyperplanes

Hinging hyperplanes were introduced in Breiman (1993). We will use the
parameterization proposed in Pucar and Sjöberg (1996).

Hinging hyperplanes use basis functions called hinge functions. A hinge
function in one dimension has the following equation:

B0(x) = η00 + η10x (3.24)

Bi(x) =

{
η0i + η1ix if x > −η0i

η1i

0 otherwise
(3.25)

i = 1, 2, . . . ,M

Figure 3.2 shows an example of a hinge function. Since the hinge func-
tion is piecewise linear, a sum of hinge functions will be a piecewise linear
function. The parameters η0i and η1i determines the slope of the linear
pieces and the breakpoints.

Any piecewise linear function can be expressed as a sum of hinge func-
tions. Since linear B-splines according to Proposition 3.1 are able to ap-
proximate any continuously differentiable function arbitrarily well, this is
also true for hinging hyperplanes. The difference between hinging hyper-
planes and B-splines is that we consider the breakpoints fixed a priori for
B-splines. Apart from that, B-splines and hinging hyperplanes are just two
different ways of expressing piecewise linear functions. Switching between
the two representations is thus possible.
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−η0i
η1i

η0i + η1ix

x

Figure 3.2: A hinge function

Since there are parameters inside Bi, we will have the same problems
with numerical minimization of the quadratic prediction error criterion, and
local minima as for neural networks.

3.2.6 Wavelets

The wavelet basis functions consists of scaled and dilated versions of a
“mother wavelet” ψ. Often two indices i and j are used to parameterize the
basis functions, so a basis function can be written

Bi,j(x) =
1√
2i
ψ
(x− 2ij

2i
)

(3.26)

The i, or rather 2i, is a scale parameter and the j a dilatation. It can
be shown (see Mallat, 1998) that {Bi,j}(i,j)∈Z2 is an orthonormal basis of
L2(R), if the wavelet function ψ satisfies certain conditions. Two examples
of mother wavelets ψ are given here. For more on wavelets see Mallat (1998).

Haar Wavelets

The Haar wavelets are piecewise constant functions, described by the fol-
lowing equation

ψ(t) =


−1 if 0 ≤ t < 1

2

1 if 1
2 ≤ t < 1

0 otherwise

(3.27)

Since the wavelet is piecewise constant, the approximating function will also
be piecewise constant.
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Shannon Wavelets

The Shannon wavelet is described by the equation

ψ(t) =
sin 2π(t− 1/2)

2π(t− 1/2)
− sinπ(t− 1/2)

π(t− 1/2)
(3.28)

The Shannon and the Haar wavelets are shown in Figure 3.3.
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Haar wavelet

Figure 3.3: Examples of wavelet basis functions. Shannon
wavelet to the left, Haar wavelet to the right
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4
The Initial Estimate

The estimation problem formulated in Chapter 2 can be solved using a
numerical search method if we have a good initial estimate. This chapter
shows how a unique initial estimate can be obtained in a fast and numerically
reliable way. The initial estimate relies on a particular parameterization of
the Wiener model, where the parameters enter linearly. We can then use
linear regression to estimate the parameters.

4.1 An Initial Estimate via Linear Regression

Recall the Wiener model depicted in Figure 4.1.

G(q) f(·)
u x y

Figure 4.1: The Wiener model

We will derive the initial estimate using the following assumptions:

1. The linear subsystem G(q) is stable.

2. The nonlinear function f is invertible.

43
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3. There is no noise in the system.

This will make it easier to develop the estimate, and relaxations of the
second and third assumptions are discussed further on. Unstable linear
systems are not treated in this thesis.

Common nonlinearities which are not invertible are for example a dead-
zone and a saturation. It is then not possible to show convergence theoreti-
cally, but the initial estimate can still be used, even if no guarantees can be
given for its usefulness. Convergence properties of the estimate when noise
is present are discussed in Chapter 6. It is of course the normal situation
that we have noise, but to simplify the discussion in this chapter we exclude
it.

We can write the intermediate signal x(t) as a linear function of the
parameters if we use an FIR model for G.

x(t) = b1u(t− 1) + b2u(t− 2) + · · ·+ bnbu(t− nb) (4.1)

It was noted in Section 3.1.2 that by selecting nb large enough, an FIR model
can always describe a stable G accurately enough. We then parameterize
the inverse of the nonlinear system, f−1, with linear B-splines, and use that
x(t) = f−1

(
y(t)

)
:

x(t) =
nf∑
i=1

fiBi
(
y(t)

)
(4.2)

Linear B-splines were described in Section 3.2.3, where it was also noted
that the selection of the breakpoints can be a delicate matter. However, we
also know according to Proposition 3.1 that with a large number of tightly
enough spaced breakpoints we can approximate f−1 arbitrarily well.

Putting together Equations (4.1) and (4.2) we get:

nb∑
i=1

biu(t− i)−
nf∑
i=1

fiBi(y(t)) = 0 (4.3)

This is an equation where the parameters enter linearly and we can thus
estimate the parameters with linear regression. We have the parameter
vector (

θT ηT
)

=
(
b1 . . . bnb f1 . . . fnf

)
(4.4)

and the regression vector

ϕ(t)T =
(
u(t− 1) . . . u(t− nb) −B1

(
y(t)

)
. . . −Bnf

(
y(t)

))
(4.5)
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We can write the criterion as

min
N∑
t=1

(
ϕ(t)T

(
θ
η

))2

(4.6)

Equation (4.6) can not be attacked directly in the linear regression
framework since we want to avoid the trivial solution θ = η = 0. The
criterion measures the error between the output of the linear subsystem,
and the output of the inverse of the nonlinearity. If both these are identi-
cally zero, the error will be zero and the criterion minimized.

There are several ways to ensure that the trivial solution is banned. Due
to the over-parameterization (see Section 2.4), no generality is lost if we fix
one parameter, say b1 ≡ 1. We can then write

−u(t− 1) = ϕ̃(t)T
(
θ̃
η

)
(4.7)

where ϕ̃ and θ̃ are ϕ and θ without the first element, respectively. This is
the standard linear regression situation.

Another possible constraint to use is the following norm constraint:

θT θ + ηT η = 1 (4.8)

This approach is called total least squares, TLS. The TLS problem is treated
in Van Huffel and Vanderwalle (1991) and can be solved with singular value
decomposition.

A constraint with a natural physical interpretation is

nb∑
i=1

bi = 1 (4.9)

This can be interpreted as requiring the static gain of the linear model
to be 1. The problem is no longer a linear regression problem, but since
the criterion is quadratic and the constraint convex, we still have a unique
minimum, and the problem can be solved using quadratic programming.
See Luenberger (1984).

To conclude: By parameterizing the linear system with an FIR model,
and the inverse of the nonlinear system with linear splines, we get an equa-
tion where the parameters enter linearly. By fixing one of the parameters to
a constant value, we can use linear regression to estimate the other parame-
ters. We lose no generality in doing this. Another possibility is to calculate
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the TLS solution which yields a solution where the norm of the parameter
vector is one. We can also fix the static gain of the linear system, and use
quadratic programming to get the solution. Either way, we can in a rela-
tively short time get a unique estimate of the system which is the minimum
of a quadratic error criterion.

4.2 The Initial Estimate in Practice

When using the initial estimate in practice, additional questions arise. The
theorems guaranteeing that our system can be accurately described by the
model are valid asymptotically when nb and nf tends to infinity. This means
we might need many parameters to describe our system, and we do not be-
forehand know how many. Luckily, the cost for using more parameters is
not too large in terms of time when we use the linear regression estimate.
The limited number of data available in practice does, however, put a limit
of the number of parameters we can estimate. Trying to estimate too many
parameters may cause numerical problems, and the estimates are more in-
fluenced by noise if we have few data.

Another limitation is that we have assumed f to be invertible. This is
essential since we explicitely parameterize the inverse f−1. But even if this
condition is violated and the estimate of the nonlinear system is not well
defined, the estimate of the linear system may still be interesting. This is
illustrated in the example in Section 4.2.2.

We have used that all parameters enter linearly in linear B-splines if
the breakpoints are fixed. But how should the breakpoints be fixed in a
practical example? Generally speaking, we want more breakpoints where
the function is changing rapidly, but before we have estimated the function
we do not know where that is. A reasonable approach is to use evenly spread
breakpoints in terms of the data point support, that is, in regions where we
have many measured output values, we put more breakpoints. Another
approach is to space the breakpoints evenly on the interval of the output.
A drawback with this method is that we might end up with breakpoints in
regions where we have no or few data points, making it harder to obtain
an accurate estimate of the corresponding B-spline coefficients. Too few
data points in the support of a basis function may give numerical problems.
In Chapter 5 on model reduction we discuss possible ways to reduce the
number of breakpoints for a given estimate of the nonlinearity.

We will now show some examples of initial estimates from data. All these
examples models the linear system with an FIR model, and the inverse of
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the nonlinearity with linear B-splines. We try to exploit some of the user’s
choices, such as the number of parameters, what parameter to fix, and how
to select the breakpoints.

4.2.1 A First Example

We start by repeating the motivating example from Section 1.3, and dis-
cussing the user’s choices made there. Recall that the system was

x(t) =
q−1

(1− αq−1)2
u(t) (4.10)

y(t) = ex(t) (4.11)

with α = 0.7. The input signal is a sum of sinusoids:

u(t) =
20∑
k=1

sin(kπt/10 + φk) (4.12)

where φk is a stochastic variable with uniform distribution on [0, 2π]. 300
data points were generated, with no added noise.

To visualize the estimates we will use the estimate of the linear system to
simulate x(t), and then plot x(t) versus y(t). If the linear system estimate is
accurate this will produce a clear picture of the nonlinearity. If the estimate
is less accurate, the points will be more scattered around the nonlinearity.

First, we need to select nb, the number of FIR parameters, and nf ,
the number of B-splines. There are no easy ways to do this, but prior
knowledge about the system can be of help. More parameters allows us to
capture more of the system’s behavior, but also require that more data is
available to make a reasonable estimate.

If data comes from a sampled system, the sampling interval T should be
chosen to reflect the time constant of the physical system. A rule-of-thumb
(Ljung, 1999) is to chose the sampling frequency ten times the bandwidth
of the system. For systems that are not too oscillative, nb = 20 may then
be a good starting point. This holds however only for the dominant pole of
the system. If the system has several poles with different time constants, a
much larger number of FIR parameters may be needed. If prior knowledge
about the positions of the poles is available, Laguerre/Kautz filters may be
an interesting alternative.

The number of B-splines, nf , can be selected relative to nb. Roughly
speaking, selecting nf = nb means that we use an equal number of parame-
ters to describe the linear and the nonlinear system. If we want to put more
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emphasis on the linear system we should use more parameters for that, and
thus select nb larger than nf .

If the estimate of the linear system is accurate, the nonlinearity is easy
to find by plotting simulated x(t) versus measured y(t). This means we may
want to use more parameters for the linear system than for the nonlinearity.
We have found that nb = 2nf is a good starting point.

In Figure 4.2 the initial estimates are plotted as described above for
different choices of nb, with nf = nb/2. The breakpoints are marked with
stars. It is clear that 10 FIR parameters and 5 breakpoints are too few, the
data points are much closer to the curve with 20 FIR parameters and 10
breakpoints.
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Simulated x versus measured y. nb=10, nf=5
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Simulated x versus measured y. nb=20, nf=10
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Figure 4.2: Effect of the number of parameters on the initial
estimate. Simulated x are plotted against measured y. The solid
line shows the estimate of the nonlinearity. Left: nb = 10, nf = 5.
Right: nb = 20, nf = 10.

The positions of the breakpoints also have to be fixed. Since we have
no prior information about where the nonlinearity is changing rapidly (i.e.,
where we want many breakpoints), a reasonable heuristic is to have many
breakpoints where the output data is clustered (this method was used in
Figure 4.2). An automatic breakpoint selection procedure may translate
this into selecting the breakpoints such that all have equal support from the
data. The minimum and maximum output value should also be included in
the set of breakpoints. This approach is illustrated to the left in Figure 4.3.

An alternative approach is to just spread the breakpoints evenly be-
tween the minimum and maximum output value. Care must then be taken
to ensure that the breakpoints have sufficient support. To the right in Fig-
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Figure 4.3: Initial estimates with different choices of breakpoints.
Simulated x are plotted against measured y. The solid line shows
the estimate of the nonlinearity. Left: Breakpoints with equal sup-
port from data. Right: Breakpoints with equal distance between
the minimum and maximum output value. nb = 20, nf = 8.

ure 4.3, most of the data only affect the first three breakpoints. The other
breakpoints have support only from one or two data points. This gives us
a very bad estimate of the nonlinearity, we have even lost the invertibility
property.

A third user parameter is how to avoid the trivial solution that all pa-
rameters equal zero. Several possibilities were suggested in the last section:
To fix a parameter to a constant, to fix the static gain, or to use TLS.
For small noise levels, the methods will often give similar results1, except
for a constant gain that may be moved from the linear to the nonlinear
subsystem. Higher noise levels may however affect the estimate, since the
methods have different numerical properties. A discussion on the accuracy
of the different possibilities can be found in Section 6.3. The estimates ob-
tained when fixing the static gain to one and using TLS, respectively, are
shown in Figure 4.4. The general shape of the nonlinearity is the same in
both plots, but the scale on the x-axis is different.

The computation time will depend on which method chosen. The TLS
method requires a singular value decomposition and will typically take
longer time than the other two methods. A comparison of typical computa-
tion times for this example is listed below. The computation was performed

1If the system can be exactly described by the initial model, the results are the same
for noise free data.
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Figure 4.4: Initial estimate using quadratic programming and
total least squares, respectively. The breakpoints have equal sup-
port from data. nb = 20, nf = 10. As before, simulated x are
plotted against measured y. The solid line shows the estimate of
the nonlinearity.

in MATLAB using a Sun Ultra 1/170E.
LR (fixing one parameter to 1): 0.0586 s
QP (fixing the steady-state gain of the linear system to 1): 0.0599 s
TLS (fixing the norm of the parameter vector to 1): 0.3799 s

4.2.2 An Example of a Non-Invertible Nonlinearity

The estimation method we have presented assumes that the nonlinearity is
invertible. Here we also show an example of a non-invertible nonlinearity.
The system we consider is the following:

x(t) =
q−1

1− 0.7q−1
u(t) (4.13)

y(t) =


−0.1x(t) − 1.1 for x(t) < −1
x(t) for − 1 ≤ x(t) < 1
−0.1x(t) + 1.1 for 1 ≤ x(t)

(4.14)

The nonlinearity is shown to the left in Figure 4.5. The input signal was
white Gaussian noise with variance 1.

30 FIR parameters and 20 B-splines were used when calculating the
initial estimate. A plot of the simulated x versus the measured y is shown
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Figure 4.5: Initial estimate of a Wiener model where the non-
linearity is not invertible. Simulated x is plotted versus measured
y. Note that even though the estimated nonlinearity (solid line)
is not very accurate, the data points are centered around the true
nonlinearity.

in Figure 4.5. The estimate of the nonlinearity is not very good, in fact it
is not even invertible. A better estimate can however be obtained directly
from the plot. In this case, the estimate of the linear system is useful, even
if the estimate of the nonlinearity is disregarded. We will return to this
example in Section 7.2.

4.2.3 An Example of a System with Noise

We again consider the first example,

x(t) =
q−1

(1− αq−1)2
u(t) (4.15)

y(t) = ex(t) (4.16)

with α = 0.7. The input signal is a sum of sinusoids:

u(t) =
20∑
k=1

sin(kπt/10 + φk) (4.17)

where φk is a stochastic variable with rectangular distribution.
Again we generate 300 data points, but this time with added noise. We

assume that we can only measure y(t) with noise,

ym(t) = y(t) + e(t) (4.18)
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where e(t) is independent identically distributed Gaussian noise with vari-
ance σ2. Two different estimates are illustrated in Figure 4.6: One with
σ2 = 0.1, one with σ2 = 1.
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Figure 4.6: Initial estimates from data with measurement noise.
Simulated x are plotted against measured y. The solid line shows
the estimate of the nonlinearity. The left figure has measurement
noise with σ2 = 0.1, in the right figure the measurement noise has
variance σ2 = 1

The first example shows that the method may work well also when we
have a small measurement noise. The data points are somewhat scattered
around the estimated nonlinearity, but the estimate seems reasonable. In
the second example the data points are even more scattered, and the re-
sulting estimate is not invertible any more. We may choose to still use this
estimate, or we may use the plot as a guideline to choose other breakpoints.
We can see that there are more breakpoints than seem to be needed from
−10 < y < 10. Selecting the breakpoints to 5, 10, 20, 50 and the minimum
and maximum value of y gives us the estimate depicted in Figure 4.7. The
data points are still very scattered, but the estimate is invertible, and the
shape is close to an exponential.
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Figure 4.7: Initial estimates with measurement noise (σ2 = 1).
Simulated x are plotted against measured y. The solid line shows
the estimate of the nonlinearity. The breakpoints are here selected
to 5, 10, 20, 50 and the minimum and maximum value of y.
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5
Model Reduction

We have now shown how to calculate the parameter estimates that minimize
the prediction error criterion from an initial estimate (Chapter 2) and how
to use a particular parameterization to calculate the initial estimate in a
simple and fast, yet efficient way (Chapter 4). To get an accurate estimate,
a large number of parameters had to be used. A final estimate with fewer
parameters may be preferred, and also a particular model structure of those
presented in Chapter 3. Using a large number of parameters is also costly
in the Gauss-Newton search.

This chapter presents some possibilities for converting the FIR and spline
models to other representations. The overview is not complete, but some
attributes and aspects of different methods are discussed. References for the
model reduction of the linear subsystem are Zhou et al. (1995), Wahlberg
(1989) and Al-Saggaf and Franklin (1988). For the spline breakpoint reduc-
tion see de Boor (1978).

5.1 Model Reduction of the Linear System

Starting with an n-th order model G, the model reduction problem consists
of finding an r-th order model Gr, which minimizes the error between G and
Gr. Different methods for model reduction measure the error in different
norms. We may use a prediction error criterion in the time domain, as

55
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described in Chapter 2, or a frequency domain norm, e.g., the 1-norm or
the H∞-norm (see Zhou et al., 1995).

Using the H∞ norm, balanced truncation aims at minimizing the fol-
lowing error:

||G−Gr||∞ where ||G||∞ = sup
ω
σ̄(G(iω)) (5.1)

σ̄(G(iω)) denotes the largest singular value of the transfer matrix G(iω). In
the scalar case (single input, single output), this is just the absolute value
of the transfer function, |G(iω)|.

To minimize (5.1), assume that the n-th order model G is a continuous-
time state space model.

ξ̇(t) = Aξ(t) +Bu(t)
x(t) = Cξ(t)

(5.2)

The influence of the different states on the input-output behavior can be
expressed with the controllability and observability Gramians R and S,
defined by the equations

ARAT +BBT −R = 0 (5.3)

ATSA+ CTC − S = 0 (5.4)

A state space transformation will change the Gramians, but not the input-
output behavior. The balanced realization of the system has R = S = Σ,
where Σ will be a diagonal matrix, with the hankel singular values σi > 0
on the diagonal. It can be shown that a system can always be transformed
into a balanced realization (see Zhou et al., 1995). Supposing that the
singular values are ordered, σ1 > σ2 > · · · > σn, we may eliminate the states
corresponding to the smallest singular values to approximate the system
with a system of lower degree. This is known as balanced truncation.

If G is the original model and Gr the reduced model of order r obtained
by the balanced truncation, it can be shown that the following infinity norm
bound on the error holds:

||G−Gr||∞ ≤ 2(σr+1 + · · ·+ σn) (5.5)

A lower bound can be obtained by using the more complicated Hankel norm
approximation. See Zhou et al. (1995); Al-Saggaf and Franklin (1988) for
more on model reduction via balanced truncation.
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A discrete-time FIR model can always be described by a state-space
representation, e.g., using observable or controllable canonical form. The
discrete time state-space model can be converted to continuous time, or
methods similar to balanced truncation can be applied directly to the dis-
crete time model. Al-Saggaf and Franklin (1988) also discuss the discrete
case.

The original linear model G can also be used to simulate noise free
output x(t) from the input u(t). The input-output data set {u(t), x(t)}Nt=1

can then be used to identify the lower order model. If x̂r(t) is the output
from the reduced order model, this corresponds to minimizing a quadratic
error criterion like

1
N

N∑
t=1

(x(t)− x̂r(t))2 (5.6)

With Gr a parametric model, this is the linear identification problem, where
the part of the dynamics which cannot be modeled by the reduced order
model, is considered as noise. In the examples in this thesis, an ARX model
is used, but other model structures are also possible.

A variant of this is to consider system identification with a frequency
domain error criterion (see, e.g., Wahlberg, 1989). Frequency weighting can
be used both in the frequency domain criterion, and in the time domain as
a prefilter which is applied to the data.

5.2 Model Reduction of the Nonlinear System

The initialization method presented in Chapter 4 gives us a linear spline
approximation of the inverse of the nonlinear system. Provided the esti-
mate of the inverse is invertible, a piecewise linear approximation of the
nonlinearity is easily obtained. We have shown that in the noise free case
(the case with noise is treated in Chapter 6), we get arbitrarily accurate
approximation if using sufficiently many basis functions and enough data,
but there is no guarantee that the estimated model based on a particular
realization of the data will be invertible.

Can we make the estimated function invertible? One possibility is to use
this as a constraint in the calculation of the initial estimate. Using quadratic
programming, constraints of the form fi ≥ fi+1 + ε are easily incorporated
for a given ε. With fi the spline parameters used in Chapter 4, this will
enforce invertibility of the estimated nonlinearity. Another possibility is
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to use some kind of smoothing. Noise in the measurements will typically
produce estimates that are not very smooth.

We will now concentrate on how to reduce the number of breakpoints
of the piecewise linear estimate. This is a problem investigated by the
spline community, and we have used the newnot algorithm suggested by
de Boor (1978, 1992). We will present it for the case of linear splines, the
generalization to higher order splines can be found in the book de Boor
(1978).

Suppose we want to approximate a given function f with a linear func-
tion g on the interval [a, b]. The following interpolation theorem (de Boor,
1978) is then useful.

Theorem 1 Let f be two times continuously differentiable on [a, b], and let
g be the linear function with g(a) = f(a) and g(b) = f(b). Then

|f(x)− g(x)| ≤ max |f ′′|
2

|b− a|2 (5.7)

For a proof of the theorem see de Boor (1978).
de Boor also gives the following bounds relating the error between an

interpolating function g and the function f , with the error between the best
(in the maximum-norm sense) approximation h and f :

‖f − h‖[a,b] ≤ ‖f − g‖[a,b] ≤ 2‖f − h‖[a,b] (5.8)

Using this inequality we have that

‖f − h‖[a,b] ≤
1
2
‖f ′′‖[a,b]|b− a|2 (5.9)

(We use the notation ‖f‖I to denote the maximum of the function f on the
interval I). For a piecewise linear function h, which is linear on the intervals
[xi, xi+1], this means that

‖f − h‖[a,b] ≤ max
i

1
2
‖f ′′‖[xi,xi+1]|xi+1 − xi|2 (5.10)

To get the best approximation, we thus want to minimize the right hand
side. The minimum is obtained if

‖f ′′‖[xi,xi+1]|xi+1 − xi|2 = constant for i = 1, 2, . . . , n (5.11)
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This is equivalent to determining xi such that
√
‖f ′′‖[xi,xi+1]|xi+1 − xi| is

constant, or asymptotically∫ xi+1

xi

√
|f ′′(x)| dx = constant (5.12)

de Boor then uses the variation of f ′ to construct f ′′. The command newknt
in the Spline Toolbox of MATLAB (1996) calculates these new breakpoints.

The use of the second derivative to determine the best breakpoints is also
justified by the following heuristic argument: Suppose the true nonlinearity
is indeed piecewise linear. The derivative of a piecewise linear function
is piecewise constant, so we need few breakpoints in regions where f ′ is
constant or almost constant, and more breakpoints where f ′ is varying. We
therefore consider f ′′ to find the variation of f ′. The newnot algorithm
assigns an equal amount of variation to each interval.

Other approaches to reduce the number of breakpoints are also possi-
ble. Hamann and Chen (1994) makes local approximations of the curve to
select the most significant points. Since only a few points is used in each
approximation, the method as stated is sensitive to noise. In Schumaker
and Stanley (1996) a method preserving properties like monotonicity and
convexity is proposed. Numerical examples indicate that the method works
also on noisy data. The method reduces breakpoints from quadratic splines,
and it is not clear if it is applicable to linear splines.

Given a spline estimate of the inverse nonlinearity with a large number
of breakpoints we can thus compute the “best” distribution of a smaller
number of breakpoints, and as stated in Section 3.2.5, we can always con-
vert a spline function to hinging hyperplanes. Since also the breakpoints
are parameterized in a hinging hyperplane model, we have a good chance
of obtaining the optimal breakpoints after minimizing the prediction error
criterion (2.3) even if they are slightly wrong after the reduction.

What we do not know is the optimal number of breakpoints. For a
given data set, more breakpoints will give a model with smaller error, but
the estimate of each parameter will depend on fewer data points, and thus
be more dependent on the noise. Fewer breakpoints will reduce the influence
of the noise since more data points are used to estimate each parameter.
We have a trade off between bias and variance. A classical way to solve this
is to use a criterion which takes this into account. Two well-known criteria
were formulated by Akaike; they both weight the prediction error criterion
VN (θ, η) with a term that depends on the dimension of the parameter vector.



60 Chapter 5. Model Reduction

With dM = dim θ + dim η, Akaike’s information criterion (AIC) is

AIC = VN (θ, η) +
dM
N

(5.13)

and Akaike’s final prediction error (FPE) criterion is

1 + dM/N

1− dM/N
VN (θ, η) (5.14)

We refer to Ljung (1999) for more on these criteria.
To convert the initial nonlinearity estimate to another model structure

than a piecewise linear one as hinging hyperplanes is not as straightfor-
ward. This is equivalent to approximating a given function in a certain
model structure, and is a subject of research in approximation theory. A
straightforward approach is to use the initial estimate to simulate inputs
and outputs of the nonlinearity and estimate the desired model from these.
See Braess (1986) for details on approximation theory.

5.2.1 Application of newnot

To illustrate how newnot selects points, here is a small example. The fol-
lowing nonlinearity was used:

y =


0.1x − 0.9 for x < −1
x for − 1 ≤ x < 1
0.1x + 0.9 for 1 ≤ x

(5.15)

A piecewise linear spline with 20 breakpoints was estimated from (x, y) data.
The result is shown to the left in Figure 5.1. When eliminating breakpoints,
we want to keep the breakpoints that are close to the “corners” of the
nonlinearity. The plot to the right in Figure 5.1 shows that this is the case.
We have kept six breakpoints.

In a noise free case like this, it is easy to reduce the breakpoints. Instead
of using newnot we may also use visual inspection to select the relevant
breakpoints. In Figure 5.2, the splines are estimated from noisy data. It
is then not as clear which breakpoints to choose. We see however that the
newnot algorithm gives reasonable estimates.
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Figure 5.1: Breakpoint reduction example. Original spline to the
left, reduced spline to the right. The stars denote breakpoints, the
solid line shows the true nonlinearity.
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Figure 5.2: Breakpoint reduction with noise. The stars denote
breakpoints, the dashed line the approximation of the nonlinearity.
The solid line shows the true nonlinearity.
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6
An Identification Algorithm for

Wiener Models

6.1 The Algorithm

We are now ready to state the Wiener model estimation algorithm.

Input: The data set {u(t), y(t)}Nt=1, where u(t) is the input of the system
and y(t) is the output.

Output: The parameter estimates θ̂ and η̂, where G(q, θ̂) is the linear
dynamic system and f(., η̂) is the static nonlinearity.

Step 1: (Initial estimate, Section 4.1.) Parameterize the linear system with
an FIR model,

x(t) = b1u(t− 1) + · · ·+ bnbu(t− nb) (6.1)

and the inverse of the nonlinear system as linear B-splines:

x(t) = f1B1

(
y(t)

)
+ · · · + fnfBnf

(
y(t)

)
(6.2)

Equating Equations (6.1) and (6.2), and setting b1 = 1, this system
of equations can be solved with linear regression to give estimates of
bi and fi, as described in Section 4.1. Alternatively, the Instrumen-
tal Variable or Total Least squares method (Sections 6.3.2 and 6.3.3
respectively) may be used.
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Step 2: (Model reduction, Chapter 5.) Use the FIR estimate to obtain an
initial estimate of your desired model structure (e.g., output error),
either

a) by using the FIR model to simulate x(t), and estimating a linear
model from the {u(t), x(t)} data set, or

b) by using balanced truncation.

This gives an initial estimate of the parameters θ of the linear system.

Transform the splines representation of the inverse of the nonlinearity
into a hinging hyperplanes representation of the nonlinearity (see Sec-
tion 3.2.5). The number of breakpoints may be reduced either using
the newnot algorithm (Section 5.2), or by visual inspection. We thus
obtain an initial estimate of η, the parameters of the nonlinear system.

Step 3: Formulate the prediction error criterion described in Section 2.1:

VN (θ, η) =
1
N

N∑
t=1

(y(t)− ŷ(t, θ, η))2 (6.3)

Start with the estimate obtained in Step 2, and use Gauss-Newton
minimization (see Section 2.4) to numerically find the values of θ and
η that minimizes (6.3).

6.2 Consistency: Noise Free Case

Until now, we have mostly discussed the estimated Wiener model, and said
very little about the underlying system. In a practical situation, we may not
know much about the physical system; we try to describe it with a Wiener
model, but we cannot expect the description to be exact. All we can do is
to calculate the mean square prediction error or other error measures, and,
depending on the application, decide if our model is good enough.

Now suppose that the physical system can be described exactly by a
Wiener model, i.e., there exist “true” parameter values θ0 and η0, such that
x(t) = G(q, θ0)u(t) and y(t) = f

(
x(t), η0

)
. Will the Wiener model estima-

tion algorithm then give us the correct parameters? Another way to phrase
this question: are the parameter estimates consistent? Even in the noise
free case, this is not a trivial question. As remarked, the prediction error
criterion may have, and will often have several local minima. The estimates
obtained from one of these minima will in general not be consistent.

We will answer the consistency question in the form of a theorem.
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Theorem 2 Suppose that the true system is described by the following equa-
tion:

y(t) = f
(
G(q, θ0)u(t), η0

)
(6.4)

Suppose also that the linear system G is stable, and that the nonlinear func-
tion f(·, η) is differentiable with a uniformly continuous first order derivative
on R (the set of real numbers).

Further assume that

1. The linear model structure is globally identifiable

2. The input data set is informative enough

3. The input to the nonlinearity, {x(t)}Nt=1, is dense on R when N tends
to infinity.

4. The number of parameters in the initial estimate, nb and nf , as well
as the number of data, N , tends to infinity in such a way that

nb
N
→ 0 and

nf
N
→ 0 (6.5)

The parameter estimates θ̂ and η̂ obtained from the algorithm stated in
Section 6.1 are then consistent. The consistency here excludes a constant
gain that can be arbitrarily distributed between the linear and nonlinear sub-
system.

If the derivative of f is uniformly continuous only on a subset of R, the
estimate of the nonlinearity will be consistent on that subset.

Proof

We will go through the algorithm step by step, and show that what is
obtained in each step describes the system arbitrarily well.

Step 1: The first step consists of the initial estimate. A stable linear sys-
tem can always be described arbitrarily well by an FIR model if the
number of parameters is large enough, as mentioned in Section 3.1.2.
(Note that this holds also for Laguerre and Kautz models.) Simi-
larly, a differentiable function, with uniformly continuous first order
derivative on a set, can be approximated arbitrarily well by a piece-
wise linear function with enough breakpoints (Proposition 3.1). Since
the inverse of a continuously differentiable function (if it exists) is also
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continuously differentiable, this will hold also for f−1. Note that if f
is piecewise continuously differentiable, the reasoning can be applied
to each piece.

We thus know that there exist parameter values b0i and f0
i that de-

scribe the linear system and the inverse nonlinearity arbitrarily well,
and hence the error between x(t) = G(q, θ)u(t) =

∑
b0i u(t − i) and

x(t) = f−1
(
y(t))

)
=
∑
f0
i Bi

(
y(t)

)
will tend to zero for these values.

Since the linear regression estimate is the one that minimizes this
error, the estimates obtained in the first step will be exactly these
values.

Step 2: If the FIR model of the linear system obtained in the first step
arbitrarily well describes the linear system, a simulated output x̂ will
be arbitrarily close to the true intermediate signal x(t) (apart from a
constant gain). An output error model estimated from u(t) and x̂(t)
will then be consistent, as follows from consistency results for linear
systems (Ljung, 1999).

Similar results hold for the balanced truncation (see Zhou et al., 1995).
If the true system can be described by a state-space model with a
smaller number of states, the redundant states will correspond to the
smallest singular values, and can be removed without affecting the
model.

The inverse of a piecewise linear function is also piecewise linear, so
the inversion of the nonlinearity will not pose any problems. (Since
the nonlinearity was assumed invertible, an accurate enough estimate
will also be invertible).

If the true nonlinearity is piecewise linear with fewer breakpoints than
used in the (consistent) estimate, some breakpoints will be redundant.
These breakpoints may be removed without affecting the accuracy of
the approximation.

Step 3: The noise free case is a special case of the general prediction error
method consistency described in Section 2.2. The predictor is here
exactly ŷ(t, θ, η) = f

(
G(q, θ)u(t), η

)
. The conditions stated in the

theorem will assure that θ = θ0 and η = η0 in the minimum of VN (θ, η).
Since the previous two steps leads to consistent estimates, the Gauss-
Newton minimization will lead to the global minimum.

�
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6.3 Consistency with Noise: Initial Estimate

6.3.1 Linear Regression

The consistency question is more difficult when we have noise in the system.
Recall from Section 2.4.2 that if

y(t) = ϕ(t)TΘ (6.6)

the linear regression estimate is

Θ̂ =

[
1
N

N∑
t=1

ϕ(t)ϕ(t)T
]−1

1
N

N∑
t=1

ϕ(t)y(t) (6.7)

If we assume that the true system is described by

y(t) = ϕ(t)TΘ0 + w(t) (6.8)

where w(t) is noise, the linear regression estimate will be

Θ̂ = Θ0 +

[
1
N

N∑
t=1

ϕ(t)ϕ(t)T
]−1

1
N

N∑
t=1

ϕ(t)w(t) (6.9)

Consistency results for linear regression estimates can be found in Ljung
(1999). Under general conditions, we have that

Eϕ(t)w(t) = lim
N→∞

1
N

N∑
t=1

ϕ(t)w(t) = h (6.10)

The estimate will be consistent, i.e., Θ̂ = Θ0, if h = 0. This means that the
noise, w(t), has to be uncorrelated with the regressors, ϕ(t).

u x
G(q) ++ f(·)

v

y0

e

y

Figure 6.1: A Wiener system with noise. v denotes process noise
and e measurement noise.
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In Figure 6.1, a Wiener system with noise is depicted. As before, we
assume that the system can be exactly described by an FIR model. We
want to write this on the form (6.8). Fixing b1 to 1, we get

−u(t− 1) = ϕ(t)ΘT
0 + w(t) (6.11)

First assume that the measurement noise is zero. We then have

ϕ(t)T =
(
u(t− 2) . . . u(t− nb) −B1

(
y(t)

)
. . . −Bnf

(
y(t)

))
(6.12)

ΘT
0 =

(
b02 . . . b0nb f0

1 . . . f0
nf

)
(6.13)

w(t) = v(t) (6.14)

Since y(t), and thus Bi
(
y(t)

)
, depends on the process noise v(t), w(t) will

not be uncorrelated with the regressors. Hence, we cannot expect the initial
estimate to be consistent if we have process noise.

Now instead assume that the process noise is zero, but that we have
measurement noise. With the same regressor and parameter vector as above,
w(t) is then

w(t) = f−1
(
y0(t)

)
− f−1

(
y(t)

)
(6.15)

where y(t) = y0(t) + e(t) is the measured output. This is true since

f0
1B1

(
y(t)

)
+ · · ·+ f0

nf
Bnf

(
y(t)

)
= f−1

(
y(t)

)
(6.16)

We will not have consistency in this case either, since this w(t) (except in
very special cases, like if f is linear) will be correlated with the regressors
ϕ(t).

6.3.2 Instrumental Variables

As described in Section 2.4.3 (again, see also Ljung, 1999), the IV method
may yield a consistent estimate in cases where linear regression fail to do so.
Recall that the IV estimate is (in the case of a Wiener model) the solution
of

1
N

N∑
t=1

ζ(t)
(
−u(t− 1)− ϕ(t)TΘ

)
(6.17)

where ϕ(t) is the regressor from Equation (6.12). The solution exists unique-
ly if the matrix 1

N

∑
ζ(t)ϕ(t)T has full rank (nb + nf − 1). When N tends
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to infinity, this means that the instruments should be correlated with the
regressor.

Let, as before, the true system be described by Equation (6.11). The IV
estimate will be consistent, when the number of data tends to infinity, if

lim
N→∞

1
N

N∑
t=1

ζ(t)w(t) = 0 (6.18)

Now, how do we select instruments that are correlated with the regressor
but not with the noise w(t)? Looking first at the case with only process
noise, we have

w(t) = v(t) (6.19)

The input u(t) is a deterministic signal and thus uncorrelated with the pro-
cess noise, but the output y(t) will depend on the noise. To get around this,
we first make a linear regression estimate of the system. This estimate can
then be used to simulate noise free output, ŷ(t). We select the instruments
as

ζ(t)T =
(
u(t− 2) . . . u(t− nb) −B1

(
ŷ(t)

)
. . . −Bnf

(
ŷ(t)

))
(6.20)

These instruments will be correlated with the regressor since the data comes
from the same input u(t), but it will be uncorrelated with the noise since
ŷ(t) comes from a noise free simulation.

In the case when we instead have only measurement noise, we have

w(t) = f−1
(
y0(t)

)
− f−1

(
y(t)

)
(6.21)

Except for very special cases (like f being linear), it is hard to generate
instruments that are correlated with the regressors (which depend on y(t)),
but that are uncorrelated with w(t). A few sufficient, but very restrictive
conditions when this holds are detailed in Appendix A.

6.3.3 Total Least Squares

The Total Least Squares, TLS, method is described in Van Huffel and Van-
derwalle (1991), and was mentioned in Chapter 4. The TLS method finds
the solution to the problem

min
Θ∈Rn

‖ΦΘ‖ subject to ΘTΘ = 1 (6.22)
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where Φ is the data matrix,

Φ =

 ϕ(1)T

. . .
ϕ(N)T

 (6.23)

The TLS solution is unique if σn−1 > σn, where σi are the singular values of
the data matrix, with σ1 the largest and σn the smallest such value. When
we have no noise, this only differs with a scaling factor from the linear
regression estimate.

The TLS estimate is consistent in the case of “errors-in-variables”. As-
sume that the data is related as

Φ0Θ0 = 0 (6.24)

but what we observe is Φ = Φ0 + ∆Φ. ∆Φ are the measurement errors.
Further assume that each row of ∆Φ is independent and identically dis-
tributed with zero mean and covariance σvI. This means that the errors
are uncorrelated, and have the same variance. The TLS in this case, unlike
the regular linear regression estimate, gives a consistent estimate of Θ0.

The Wiener model, unfortunately, does not fit into the errors-in-variables
model. We have

ϕ(t)T =
(
u(t− 1) . . . u(t− nb) −B1

(
y(t)

)
. . . −Bnf

(
y(t)

))
(6.25)

where the input u(t) is known exactly, while the output y(t) is measured
with noise. Since the basis functions Bi all depend on y(t), the errors will
be correlated. Furthermore, the Equation (6.24) will not hold if we have
process noise. The TLS estimate will thus not be consistent.

The special structure of the Wiener model may cause additional prob-
lems when using the TLS method. Since the support for the B-splines
basis functions is small, the data matrix Φ will be sparse when using many
basis functions. The solution of the TLS problem (see Van Huffel and Van-
derwalle, 1991) is the right singular vector corresponding to the smallest
singular value of Φ. If one basis function lacks support from data, the
corresponding singular value may be unreasonably small. Van Huffel and
Vanderwalle (1991) also claims that TLS is less robust than linear regres-
sion.

6.3.4 Conclusions

In this section we have studied the initial estimate of the Wiener model,
when the true system contains noise. We summarize the general results –
there are exceptions for very special nonlinearities, like f being linear.
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• The linear regression estimate is not consistent, neither with measure-
ment noise nor process noise.

• If we have only process noise, the linear regression estimate can be used
to simulate noise free output data. Instruments constructed from these
noise free data will then give a consistent IV estimate of the Wiener
system.

• If there is measurement noise, the IV estimate will not be consistent.

• The TLS estimate is in general not consistent for the Wiener model.
The method is also less robust than the linear regression method.

6.4 Consistency with Noise: Prediction Error Es-
timate

The consistency of the prediction error estimate was discussed in Section 2.2.
Under conditions on identifiability of the linear model, information content
in the input data, and that the nonlinearity was invertible, it was shown that
the prediction error estimate is consistent. The predictor could sometimes
be hard to formulate, but under additional noise assumptions, a simplified
predictor could be used.

The prediction error criterion cannot be minimized analytically, but nu-
merical search methods has to be used. Furthermore, the criterion may have
several local minima, so a good initial estimate is needed for the numerical
search. To find the prediction error estimate is hard also in the
noise free case.

If the initial estimate is consistent, and we use the true predictor, the
Gauss-Newton minimization will lead to the global minimum of the pre-
diction error criterion, and consistency will be assured. But this is not a
necessary condition; it suffices that the initial estimate is in the attraction
region of the global minimum.

In the noise free case, the initial estimate via linear regression, presented
in Chapter 4, will describe the true system arbitrarily well. The true pre-
dictor is simple to formulate, so the numerical minimization will lead to the
global minimum, and the prediction error estimate will be consistent under
the conditions mentioned above.

With only measurement noise and no process noise in the system, the
initial estimate is not consistent. However, the prediction error estimate, as
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shown in Section 2.2, will be consistent. For small noise levels (large signal-
to-noise ratios), the initial estimate will be close to the true system, and
the numerical minimization will lead to the global minimum, thus giving a
consistent estimate.

If the system contains process noise but no measurement noise, it was
shown in the previous section that an IV estimate will give a consistent ini-
tial estimate. The true predictor may be hard to express. In Section 2.2 it
was shown that under additional conditions on the noise and the nonlinear-
ity, a simplified predictor may be used and will yield a consistent estimate.
The true predictor can also be approximated with an extended Kalman fil-
ter. With the consistent initial estimate, the minimum obtained for the
approximative predictor will be close to the true (consistent) minimum.

To quantify the noise levels that will give a consistent estimate even if the
initial estimate is not consistent is hard, since the attraction region of the
global minimum is unknown. It is also very hard to analyze the properties
of the model reduction and the prediction error criterion minimization in
detail, and to quantify the errors they introduce if the initial estimate is
erroneous.

On the other hand, even if the initial estimate cannot be proved to be
consistent, it may still be good enough. Since the noise free estimate is
consistent, a small noise perturbation will (from continuity reasons) only
move the estimate a small distance from the noise free optimum. This
means that the numeric search algorithm may still lead us to the global
minimum of the prediction error criterion.

Using wavelets or radial basis neural networks, we may obtain a con-
sistent estimate of any nonlinear system if we use enough basis functions
(Delyon et al., 1995). If we then want to convert it to the Wiener structure,
the algorithm presented in this chapter may be useful. The black-box model
may be used to simulate data. These data will be noise free and hence allow
for a consistent estimate.

This is in theory a very attractive method, since it gives a consistent
estimate. In practice, the number of basis functions needed is often unrea-
sonably large (Sjöberg et al., 1995). This will put high demands both on
the number of data and on the computational power.



7
Examples

In this chapter we look at some examples using the Wiener model structure.
We show how models within this class can be identified using the methods
proposed in this thesis. Using Monte Carlo simulations, we show that al-
though questions still remain about the consistency of the estimates (see
Chapter 6), the initial estimate may lead to a good final estimate. Most
of the examples are from simulated data, which has the advantage that we
can compare the estimate with the true system, and also that we can easily
increase the number of data. We also have one example with real data from
a distillation column.

We have tried to compare our method with other methods used. This is
not always easy to do in a “fair” way. For example, if we use a saturation
function that is piecewise linear, and can be described exactly using hinging
hyperplanes, is it then fair to compare it with a method that uses Chebyshev
polynomials? We have evaluated our estimates using the prediction error
criterion. For a method described in an article using another measure, where
the code is not available, this is hard to compute. Even when we have
the code, the comparison is not straight-forward. There are always design
parameters to choose, as the order of the linear system, and the number of
parameters of the nonlinearity. Using the same number of parameters need
not be equivalent between two different model structures.

The algorithm is also compared with the alternative initialization men-
tioned in the motivating example in Section 1.3. We assume that the data
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comes from a linear system and we start with estimating an output error
model from input-output data. We use the output error model to simulate
the intermediate signal x(t), and plot it against the measured output y(t).
Thereafter we estimate the nonlinearity from the simulated x(t) and the
measured y(t) with linear B-splines. This estimate is converted to hinging
hyperplanes, and the prediction error criterion is minimized with a Gauss-
Newton search.

When estimating models from noisy data, the particular noise realization
will affect the estimate. The parameters may adapt not only to reflect the
system properties, but also to the noise. This is an undesired effect, since
the next time we collect data from the system the noise realization will be
different, but we still want our model to represent the same system. To
avoid that this over-adaptation is reflected in the performance measure we
use, the prediction error criterion VN (θ, η), the criterion may be evaluated
on a “fresh” data set. This is a data set that is not used for estimation. It
is denoted validation data.

Some of the following examples are “standard” examples from articles
in this field (Wigren, 1993; Kalafatis et al., 1997; Bruls et al., 1997)). We
have then tried to use the same input to be able to compare with the results
obtained in those articles.

7.1 Motivating Example

We first return once again to the example from the introduction. Recall
that the system was described by

x(t) =
q−1

1− 1.40q−1 + 0.49q−2
u(t) (7.1)

y(t) = ex(t) (7.2)

and the input signal was a sum of sinusoids:

u(t) =
20∑
k=1

sin(kπt/10 + φk) (7.3)

where φk is a stochastic variable with uniform distribution on [0, 2π].
Starting with 20 FIR parameters and 10 linear B-splines, fixing b1 to

1 and spreading the breakpoints with even support from data (all as de-
scribed in Section 4.2.1), we obtained an initial estimate of the linear and
the nonlinear system.
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The estimate of the linear system was used to simulate the intermediate
signal x(t). The original input u(t) was used for this. An output error
model of the same order as the true system was then estimated from the
(u(t), x(t)) data. The following estimate was obtained:

G(q, θ(1)) =
0.97q−1

1− 1.42q−1 + 0.51q−2
(7.4)

The estimate of the nonlinearity is visualized by plotting the simulated
x(t) versus the measured y(t) in Figure 7.1. The number of breakpoints was
then reduced to 5 using the newnot algorithm. This was then converted to
hinging hyperplanes parameters.
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Figure 7.1: The initial estimate of the nonlinearity. The break-
points are marked with stars, the ones kept after the reduction
with circles.

After the numerical minimization the following estimate was obtained:

G(q, θ̂) =
0.97q−1

1− 1.41q−1 + 0.50q−2
(7.5)

The estimate of the nonlinearity is plotted, together with the simulated
x(t) and measured y(t), to the left in Figure 7.2. The Gauss-Newton search
needed 9 iterations. The minimal value of the prediction error criterion was

VN (θ̂, η̂) = 0.2321 (7.6)

An alternative way of initializing the parameters is to estimate a linear
output error model directly from input-output data. The nonlinearity may
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then be estimated from simulated x(t) and measured y(t). This initial
estimate led to a minimum of the prediction error criterion at

G(q, θ̂) =
3.23q−1

1− 1.41q−1 + 0.50q−2
(7.7)

The minimum value of the criterion was 0.2321, and 10 Gauss-Newton iter-
ations were needed. The nonlinearity is plotted to the right in Figure 7.2.
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Figure 7.2: Final estimate of the nonlinearity. Simulated x is
plotted against measured y. The solid line shows the estimated
nonlinearity. Left: Using linear regression initialization. Right:
Using output error initialization.

We find that both estimates are very close to the true system. To further
improve the accuracy, more breakpoints are needed for the nonlinear system.

In this case, there is thus no difference between initializing the numerical
search with the linear regression method, or estimating a linear model from
input-output data. The linear regression estimate started slightly closer to
the minimum, and needed one Gauss-Newton step less than the linear model
initialization.

7.1.1 Using Noisy Data

Real life data are always measured with some noise. In this section the same
system is used, but we add artificial measurement noise.

y(t) = ex(t) + e(t) (7.8)

where e(t) is white Gaussian noise, with variance σ2 = 1.
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Since different noise realizations may affect the estimation, we have used
a Monte Carlo simulation, with 500 independent data sets. The prediction
error criterion was minimized using a Gauss-Newton numerical search. The
model obtained when the numerical search was initialized with the linear
regression was compared with the model obtained when an output error
model estimated from input-output data of the system was used for ini-
tialization. Validation data was generated the same way as the estimation
data, and the prediction error criterion was calculated for this validation
data set.

In Figure 7.3, the criterion values obtained for the linear regression ini-
tialization are plotted against the criterion values obtained from the output
error initialization. A large number of points are close to the (1, 1) corner.
This is the optimal value, since the measurement noise has variance 1. One
may note that in most cases the two initialization methods lead to different
minima. In roughly half these cases, the linear regression leads to a smaller
value, in the other cases to a larger. We may thus not conclude that one
method is preferable in general; both has their advantages. This will depend
on the particular noise realization, so we cannot say in advance which one
is better for a given data set.

7.2 A Non-Invertible Nonlinearity

The motivation and proofs for the suggested algorithm rely heavily on the
assumption that the nonlinearity is invertible. Here we try the algorithm on
a system where the nonlinearity is not invertible. Even though the initial
estimate will not be consistent, it can still be useful and may lead to a good
final estimate.

The example is the same as in Section 4.2.2.

x(t) =
q−1

1− 0.7q−1
u(t) (7.9)

f(x) =


−0.1x− 1.1 if x < −1
x if − 1 ≤ x < 1
−0.1x+ 1.1 if 1 ≤ x

(7.10)

The input u(t) was white Gaussian noise with variance 1. No measurement
noise was added.

The true nonlinearity is depicted to the left in Figure 7.4. The initial
estimate shown to the right in the figure was calculated using 20 FIR and
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Figure 7.3: Value of the prediction error criterion VN (θ, η) for
validation data after minimization using different initialization al-
gorithms. The value obtained using linear regression initialization
is plotted on the x-axis, against the value obtained using an output
error estimate. If the search algorithm did not reach a minimum
after 50 iterations, the value is marked by a star (if it was for the
linear regression initialization) and/or a circle (if it was for the
output error initialization).

10 B-splines parameters. The simulated x(t) versus the measured y(t) is
plotted to the right in Figure 7.4. The data points are somewhat scattered,
but the shape of the true nonlinearity can clearly be seen (though the scale
on the x-axis is slightly different). We may thus keep the initial estimate of
the linear subsystem, and use the simulated data to make a better estimate
of the nonlinearity.

We decide to use four breakpoints, since the plot suggests that the non-
linearity is piecewise linear and consists of three pieces. We select the break-
points to the minimal and maximal value of the simulated x, and to -1 and
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Figure 7.4: Left: The non-invertible saturation-like nonlinearity.
Right: The linear regression estimate of the nonlinearity. Simu-
lated x is plotted against measured y. The solid line shows the
estimated nonlinearity.

1. We then estimate the corresponding B-spline parameters. The estimate
is converted to hinging hyperplanes, and a Gauss-Newton search is initial-
ized with these values. The linear part is initialized with an output error
model estimated from u and the simulated x(t).

The final estimate is shown in Figure 7.5. The estimate of the linear
subsystem was

G(q) =
0.96q−1

1− 0.70q−1
(7.11)

Apart from a scaling factor, it is very close to the true system. The value
of the prediction error criterion was VN (θ, η) = 2.1 · 10−32. This example
shows that the linear regression initial estimate may be useful also in cases
when it is not consistent. With small adjustments, it led in this case to the
global minimum.

7.3 A Control Valve Model

This example is taken from Wigren (1993) and describes a valve for control
of fluid flow. The example is also used in Kalafatis et al. (1997). u(t) is
here the pneumatic control signal and x(t) is the position of the valve plug.
y(t) is the resulting flow. The relations between u, x and y are described by
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Figure 7.5: The final estimate of the non-invertible nonlinearity.
Simulated x is plotted against measured y. The solid line shows
the estimated nonlinearity.

the following equations:

x(t) = G(q)u(t) =
0.1044q−1 + 0.0883q−2

1− 1.4138q−1 + 0.6065q−2
u(t)

y(t) = f(x(t)) =
x(t)√

0.10 + 0.90(x(t))2

(7.12)

The input signal was generated using a PRBS with a basic clock period of
seven sampling intervals, switching between -1 and 1. In each time interval
of constant signal level, the signal was multiplied with a random factor
uniformly distributed between 0 and 0.4, and a bias of 0.5 was added. This
is the same procedure as the one used in Wigren (1993), and gives a signal
with amplitude between 0.1 and 0.9. White Gaussian measurement noise
with standard deviation 0.05 was added to the output. The data is shown
in Figure 7.6.

We applied our estimation algorithm to these data. The number of FIR
parameters was chosen to 30, the initial number of linear B-splines was
10. The intermediate signal x(t) was then simulated using the FIR model,
and a second order output error model was estimated from the simulated
data. (This is the same model order as the true system). The number of
breakpoints was reduced to 5 using the newnot algorithm.
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Figure 7.6: Input and output signal for the valve example.

After the numerical minimization, the following linear model was ob-
tained:

G(q) =
0.1057q−1 + 0.1014q−2

1− 1.4204q−1 + 0.6134q−2
(7.13)

The estimated nonlinearity is shown in Figure 7.7. The value of the predic-
tion error criterion was 0.0024.

According to the plots in Wigren (1993) and Kalafatis et al. (1997), they
have obtained similar results. They both used prior knowledge to position
the breakpoints. An exact comparison is hard to make, but we may note
some details from our estimation procedure.

• The initial estimate will strongly depend on how the gain is fixed. In
this case, both fixing one of the FIR parameters to one, and fixing one
of the B-splines parameters gave very bad initial estimates. Fixing the
steady-state gain of the linear system, i.e., fixing the sum of the FIR
parameters to one, gave a much better estimate of both the linear and
the nonlinear subsystem.

• Even if the linear system is accurately described by the initial FIR es-
timate, the estimate of the nonlinearity may be affected by the noise,
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Figure 7.7: The estimate of the nonlinearity in the valve model.
The solid line shows the true nonlinearity, the dashed line the
estimated one.

and sometimes not even invertible. This is easily discovered on a plot
of simulated x versus measured y, and the estimated nonlinearity. If
the estimate does not seem reasonable, a better one may be obtained
by estimating B-splines directly from the simulated x and the mea-
sured y, as we did in the example in Section 7.2. (This was however
not the case for the data set shown in Figure 7.6.)

7.4 A Distillation Column

As a real-life example, we have used data from a distillation column. These
are the same data as in Bruls et al. (1997). A plot of the data is shown in
Figure 7.8. The input is sampled every 2 minutes. The output is sampled
every 18 or 20 minutes, and is assumed to be constant between the sampling
times.

The authors of Bruls et al. (1997) argue that the data contains a time
shift of 28 minutes or 14 samples. The data was thus shifted to account for
this. Since there were relatively few data, all data were used for estimation.
The estimated model was then validated on the same data. To select the
number of FIR and spline parameters was not a trivial task, but after some
trials, we settled for 400 FIR parameters and 10 spline parameters. The
number of FIR parameters may seem very large, but it turns out that the
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Figure 7.8: Data from the distillation column. Top: input, bot-
tom: output.

linear subsystem has a very slowly decaying impulse response. The first
nonlinear parameter was fixed to -1. The model obtained in Bruls et al.
(1997) was of order 2, so the initial estimate was reduced to a second order
OE model. The number of breakpoints were reduced to 5, to yield a reason-
able comparison with Bruls et al. (1997), who uses fifth order Chebyshev
polynomials.

The value of the prediction error criterion for the final estimate was
44.5. The estimated and measured outputs are shown in Figure 7.9. In
Figure 7.10 the estimated x is plotted versus the measured y. The estimated
nonlinearity is also plotted.

We may compare these results with those obtained with the separa-
ble least squares method proposed in Bruls et al. (1997). Using the same
data and estimating a second order state space model for the linear sub-
system and fifth order Chebyshev polynomials, a mean square fit of 52.2
was obtained. The state space model was estimated using the SMI tool-
box (Haverkamp and Verhaegen, 1997). Figures 7.11 and 7.12 show the
estimates.

To draw any conclusions about which method is preferable from this
small data sample is of course hazardous. It is still reasonable to say that
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Figure 7.9: Simulated and measured output of the distillation
column, using the linear regression initialization. The solid line is
the measured output, the dots show the simulated output. The
nonlinearity is modeled as a piecewise linear function.
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Figure 7.10: The estimated nonlinearity of the distillation col-
umn. Simulated x is plotted against measured y. The solid line
shows the estimated nonlinearity.
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Figure 7.11: Simulated and measured output of the distillation
column, using the separable least squares method. The solid line
is the measured output, the dots show the simulated output. The
nonlinearity is modeled with Chebyshev polynomials.
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Figure 7.12: The estimated nonlinearity, using the separable
least squares method. Simulated x is plotted against measured
y. The solid line shows the estimated nonlinearity.
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both methods are useful. It is also interesting to look at combinations of
them. The linear regression estimate could very well be converted to a state
space model, and the minimization continued with separable least squares.
This is a subject for further research.

With the slowly decaying impulse response, it would also be interesting
to try Laguerre models instead of FIR models for the initial estimate.



A
Appendix

A.1 IV with Measurement Noise

As seen in Section 6.3.2, the IV method may give a consistent initial estimate
of the system if there is only process noise. This appendix details some
conditions which will give consistent estimates also with measurement noise.

We suppose the true system is described by the following equation:

y0(t) = f(G(q, θ0)u(t), η0) (A.1)

We assume that u can be measured without noise, but we cannot measure
y, only

y(t) = y0(t) + e(t) (A.2)

The following relation describe the true system:

nb∑
i=1

b0i u(t− i) =
Mb∑
i=1

f0
i Bi(y0(t)) (A.3)

We may multiply both sides with an instrument vector ζ(t) and sum over
the time index t. N is the number of data.

nb∑
i=1

b0i
1
N

N∑
t=1

ζ(t)u(t− i) =
Mb∑
i=1

f0
i

1
N

N∑
t=1

ζ(t)Bi(y0(t)) (A.4)

87
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The IV estimate satisfies

1
N

N∑
t=1

ζ(t)

(
nb∑
i=1

b̂iu(t− i)−
Mb∑
i=1

f̂iBi(y(t))

)
= 0 (A.5)

or

nb∑
i=1

b̂i
1
N

N∑
t=1

ζ(t)u(t− i) =
Mb∑
i=1

f̂i
1
N

N∑
t=1

ζ(t)Bi(y(t)) (A.6)

Note that we use the measured value y(t) instead of the true y0(t) in the
IV estimate. A unique solution can be obtained, e.g., by fixing one of the
parameters. We assume in the following that we have a unique solution.

Comparing Equations (A.4) and (A.6) we see that the estimate will be
consistent if

1
N

N∑
t=1

ζ(t)u(t− i) =
1
N

N∑
t=1

ζ(t)u(t− i) i = 1, . . . , nb (A.7)

1
N

N∑
t=1

ζ(t)Bi
(
y0(t)

)
=

1
N

N∑
t=1

ζ(t)Bi
(
y(t)

)
i = 1, . . . ,Mb (A.8)

The first one is trivially true, but the second one poses more problems. It is
clear that the consistency depend highly on the choice of basis functions. As
said in Section 6.2 it is hard to say something about general consistency, but
we will examine Equation (A.8) for a particular choice of basis functions:
The linear B-splines described in Section 3.2.3.

The elements of Equation (A.8) have two different typical forms:

1
N

N∑
t=1

u(t− j)Bi
(
y0(t)

)
=

1
N

N∑
t=1

u(t− j)Bi
(
y(t)

)
(A.9)

1
N

N∑
t=1

Bj
(
ŷ(t)

)
Bi
(
y0(t)

)
=

1
N

N∑
t=1

Bj
(
ŷ(t)

)
Bi
(
y(t)

)
(A.10)

where ŷ(t) is the noise free estimate of y from the initial linear regression
model. j goes from 1 to nb in the upper equation and from 1 to Mb in the
lower one, i goes from 1 to Mb in both equations. Note that everything
except y0(t) is known, so it can be computed numerically from data and
estimates.
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Recall the equations for the linear B-splines, where yi are the fixed break-
points.

Bi(y) =


0 if y < yi−1 or yi+1 ≤ y
y−yi−1

yi−yi−1
if yi−1 ≤ y < yi

yi+1−y
yi+1−yi if yi ≤ y < yi+1

(A.11)

Using Equation (A.11) we can expand the left side of Equation (A.9)

1
N

N∑
t=1

u(t− j)Bi(y0(t)) =

1
N

∑
t

yi−1≤y0(t)<yi

u(t− j)y0(t)− yi−1

yi − yi−1
+

1
N

∑
t

yi≤y0(t)<yi+1

u(t− j)yi+1 − y0(t)
yi+1 − yi

(A.12)

We do not know y0(t), since we can only measure y(t), but we will now use
that y0(t) = y(t)− e(t). Assume that e(t) is white Gaussian noise with zero
mean and a known variance σ2. Then for a given y(t), y0(t) will be Gaussian
with variance σ2 and mean y(t), and the probability that yi−1 ≤ y0(t) < yi
can be computed as

P
(
yi−1 ≤ y0(t) < yi|y(t)

)
=
∫ yi

yi−1

1
σ
√

2π
exp

{
−(ξ − y(t))2

2σ2

}
dξ (A.13)

Instead of summing over the t:s where the unknown y0(t) lies in a certain
interval, we can, as N tends to infinity, sum over all t, weighing the terms
with the probability that y0(t), given y(t), which is known, lies in that
interval.

This does not quite solve the problem of computing (A.12) since the
expression contains y0(t), but inserting that y0(t) = y(t)− e(t) allows us to
split the first sum in two parts:

1
N

∑
t

yi−1≤y0(t)<yi

u(t− j)y0(t)− yi−1

yi − yi−1
=

1
N

∑
t

yi−1≤y0(t)<yi

{
u(t− j)y(t)− yi−1

yi − yi−1
− u(t− j) e(t)

yi − yi−1

}
(A.14)

The first term can now be computed as described above as a weighted sum
over all t. The second term contains the unknown measurement noise e(t).
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To proceed we make the following rather strong assumption:

1
N

∑
t

yi−1≤y0(t)<yi

u(t− j)e(t)→ 0 when N →∞ (A.15)

Using this assumption, and the weighted summation described above we now
have that the left hand side of Equation (A.9) can be computed numerically
as

1
N

N∑
t=1

u(t− j)Bi(y0(t)) =

1
N

N∑
t=1

{
u(t− j)y(t)− yi−1

yi − yi−1
P
(
yi−1 ≤ y0(t) < yi|y(t)

)
+ u(t− j)yi+1 − y(t)

yi+1 − yi
P
(
yi ≤ y0(t) < yi+1|y(t)

)}
(A.16)

Although rather complicated and difficult to analyze, this expression is com-
putable for given input-output data u and y, fixed breakpoints yi of the
linear splines, and known noise variance σ2. Also the right hand side of
the consistency constraint (A.9) is computable, and similar expressions can
be derived for (A.10). It is thus possible to check during the identification
if the estimates will be consistent. Note however that the assumption in
Equation (A.15) is very strong, and it is not clear how to interprete it.
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Linköping University.

Billings, S. A. and Fakhouri, S. Y. (1977). Identification of nonlinear systems
using the Wiener model. Electronics Letters, 13(17):502–504.

Billings, S. A. and Fakhouri, S. Y. (1982). Identification of systems contain-
ing linear dynamics and static nonlinear elements. Automatica, 18(1):15–
26.

Boyd, S. and Chua, L. O. (1985). Fading memory and the problem of ap-

91



92 Bibliography

proximating nonlinear operators with Volterra series. IEEE Transactions
on Circuits and Systems, CAS-32(11):1150–1161.

Braess, D. (1986). Nonlinear Approximation Theory. Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, Germany.

Breiman, L. (1993). Hinging hyperplanes for regression, classification and
function approximation. IEEE Transactions on Information Theory,
39(3):999–1012.

Bruls, J., Chou, C. T., Haverkamp, B. R. J., and Verhaegen, M. (1997).
Linear and non-linear system identification using separable least-squares.
Submitted to European Journal of Control.

Bussgang, J. J. (1952). Crosscorrelation functions of amplitude-distorted
Gaussian signals. Technical Report 216, MIT Research Laboratory of
Electronics.

Cybenko, G. (1989). Approximation by superposition of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2:303–314.
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