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Abstract

The overall purpose with this thesis is to investigate and provide computationally effi-
cient methods for estimation and detection. The focus is on airborne applications, and we
seek estimation and detection methods which are accurate and reliable yet effective with
respect to computational load. In particular, the methods shall be optimized for terrain-
aided navigation and collision avoidance respectively. The estimation part focuses on
particle filtering and the in general much more efficient marginalized particle filter. The
detection part focuses on finding efficient methods for evaluating the probability of ex-
treme values. This is achieved by considering the, in general, much easier task to compute
the probability of level-crossings.

The concept of aircraft navigation using terrain height information is attractive be-
cause of the independence of external information sources. Typically terrain-aided nav-
igation consists of an inertial navigation unit supported by position estimates from a
terrain-aided positioning (TAP) system. TAP integrated with an inertial navigation system
is challenging due to its highly nonlinear nature. Today, the particle filter is an accepted
method for estimation of more or less nonlinear systems. At least when the requirements
on computational load are not rigorous. In many on-line processing applications the re-
quirements are such that they prevent the use of the particle filter. We need more efficient
estimation methods to overcome this issue, and the marginalized particle filter constitutes
a possible solution. The basic principle for the marginalized particle filter is to utilize
linear and discrete substructures within the overall nonlinear system. These substructures
are used for efficient estimation by applying optimal filters such as the Kalman filter. The
computationally demanding particle filter can then be concentrated on a smaller part of
the estimation problem.

The concept of an aircraft collision avoidance system is to assist or ultimately replace
the pilot in order to to minimize the resulting collision risk. Detection is needed in aircraft
collision avoidance because of the stochastic nature of the sensor readings, here we use in-
formation from video cameras. Conflict is declared if the minimum distance between two
aircraft is less than a level. The level is given by the radius of a safety sphere surround-
ing the aircraft. We use the fact that the probability of conflict, for the process studied
here, is identical to the probability for a down-crossing of the surface of the sphere. In
general, it is easier to compute the probability of down-crossings compared to extremes.
The Monte Carlo method provides a way forward to compute the probability of conflict.
However, to provide a computationally tractable solution we approximate the crossing of
the safety sphere with the crossing of a circular disc. The approximate method yields
a result which is as accurate as the Monte Carlo method but the computational load is
decreased significantly.
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Populärvetenskaplig sammanfattning

Det främsta syftet med den här avhandlingen är att undersöka och tillhandahålla beräkn-
ingseffektiva metoder för estimering och detektering. Fokus är på luftburna applikationer,
och vi söker estimerings- och detekteringsmetoder som är noggranna och tillförlitliga
samtidigt som dem är effektiva med avseende på beräkningsbelastningen. Framförallt så
ska metoderna vara optimerade för terrängbaserad navigering och kollisionundvikning.
Estimeringsdelen fokuserar på partikelfiltret och det i allmänhet mycket mer effektiva
marginaliserade partikelfiltret. Detekteringsdelen fokuserar på att hitta effektiva metoder
för att utvärdera sannolikheten för extremvärden. Det uppnår vi genom att betrakta den i
allmänhet mycket lättare uppgiften att beräkna sannolikheten för att passera en viss nivå.

Konceptet för att navigera ett flygplan med hjälp av information från terränghöjden
är attraktiv på så sätt att systemet blir oberoende av yttre informationskällor. Typiskt
består terrängbaserad navigering av ett tröghetsnavigeringssystem stöttat med position-
sskattningar från ett terrängbaserat positioneringssystem. Att integrera ett terrängbaserat
positioneringssystem med ett tröghetsnavigeringssystem är utmanande på grund av dess
kraftigt olinjära karaktär. Idag är partikelfiltret att betrakta som en accepterad estimer-
ingsmetod för mer eller mindre olinjära system. Åtminstone när kraven på beräknings-
belastning inte är alltför stränga. För många realtidstillämpningar är kraven emellertid
sådana att dem förhindrar användandet av partikelfiltret. Vi behöver därför mer beräkn-
ingseffektiva metoder för att överbrygga problemet, och det marginaliserade partikelfil-
tret utgör en möjlig lösning. Principen för det marginaliserade partikelfiltret är att utnyttja
linjär och diskret struktur inom det totalt sett olinjära systemet. Dessa strukturer går att
utnyttja för effektiv estimering genom att skatta dessa delar optimalt med hjälp av tex
kalmanfiltret. Det beräkningskrävande partikelfiltret koncentrerar man sedan till en min-
dre del av skattningsproblemet.

Konceptet för kollisionsundvikning för flygplan är att stötta och i förlängningen er-
sätta piloten för att minimera kollisionsrisken. Detektering är nödvändig inom kollision-
sundvikning på grund av den stokastiska naturen hos sensormätningar. Här använder vi
oss av videokamera. Konflikt uppstår om det minsta avståndet mellan flygplanen passerar
under en viss nivå. Nivån ges av radien till en säkerhetssfär som omger flygplanen. Vi
använder oss av det faktum att sannolikheten för konflikt, för den process vi studerar här,
är identisk med sannolikheten för skärning av sfärens yta. Generellt så är det lättare att
beräkna sannolikheten för skärning jämfört med extremvärden. Monte Carlo metoden till-
handahåller en väg framåt för att beräkna sannolikheten för konflikt. För att tillhandahålla
en beräkningseffektiv lösning approximerar vi emellertid skärningen av säkerhetssfären
med skärningen av en cirkulär skiva. Den approximativa metoden ger ett resultat som
är lika noggrannt som Monte Carlo metodens men beräkningsbelastningen sjunker sig-
nifikant.
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ĝNt Estimated value on ĝt using N i.i.d. samples of xt.
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Background
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1
Introduction

Autonomy is a concept that has received a lot of attention during recent years. To define
autonomy is not easy, since it includes a wide spectrum of concepts which differ from case
to case. Usually an autonomous vehicle means that there is some degree of self-guidance
inherent in the vehicle. This provides the capability to move from one location to another
in a more or less predetermined environment. However, the challenge for autonomous ve-
hicles is how to deal with unknown and dynamic environments. This put requirements on
the system to be capable of creating situational awareness, and that the vehicle is capable
of reacting on unforeseen situations. The main driver for overcoming the technical issues
is that it should be possible to significantly cut costs by using autonomous vehicles for
monotonous, time-consuming and dangerous missions. Two areas are known as enabling
technologies for autonomous vehicles; navigation and collision avoidance. The purpose
of navigation is to estimate the own vehicle’s kinematic state, e.g. position and velocity.
The principle of collision avoidance is to estimate other vehicle’s kinematic states and
then to find a trajectory which constitutes low risk of collision with respect to the tracked
vehicles.

The purpose of this thesis is to introduce the reader to the concepts of estimation
and detection in general, and applied to navigation and collision avoidance for airborne
systems in particular. Both estimation and detection are about obtaining accurate values of
(functions of) quantities based on noisy readings of a surrounding environment. Although
the material in this thesis is focused on airborne navigation and collision avoidance the
theory should be applicable to many other areas.

1.1 Estimation for Aircraft Navigation

Today the Air Navigation Service (ANS) for civil air traffic still relies on ground based
navigation aids, e.g. Non-Directional Beacons (NDB), VHF Omni-directional radio Range
(VOR) and Distance Measuring Equipment (DME). Many of existing ground based navi-
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4 1 Introduction

gation aids are currently being phased out [108, 15] for cost reasons. The ability to replace
them is made possible through the concept of Required Navigation Performance (RNP).
RNP authorizes access through requirements on the navigation system performance re-
gardless of hardware. The requirements are among other that the system shall have a
certain accuracy and integrity. Integrity is a statistical measure of a navigation system’s
capability to stay within a containment region, or actually to provide a warning if the air-
craft position can not be guaranteed to be within the region [87]. Loss of integrity can
either be caused by undetected faults or that the fault-free accuracy is too low [92]. The
systems that are currently acting as the primary source of information, and are expected to
do so in the foreseeable future, are satellite based system often referred to as Global Nav-
igation Satellite Systems (GNSS). The most known is probably the Global Positioning
System (GPS), but there are others e.g. GLONASS and Galileo. A GNSS operates using
satellites with known positions, and the satellites transmit signals making it possible for
receivers to compute their own positions through triangulation [58].

For phases of flight where severe requirements are put on the navigation system ac-
curacy, e.g. during precision approach and landing, dedicated systems are most often
used. The currently most widespread system is the Instrument Landing System (ILS),
which guides the pilot to touchdown in limited visibility conditions [58]. ILS landings
are usually categorized as Cat I, II, IIIa, IIIb and IIIc, corresponding to successively lower
decision heights and shorter runway visual range (RVR) in the order given. Decision
height and RVR represent the point from where the pilot must be able to see the runway.
Efforts are being made to find complements to ILS, and again GNSS are considered as
the primary substitute.

There are however concerns with GNSS related to their reliability or integrity. GNSS
is sensitive to disturbances, e.g. athmospheric phenomena and undetected hardware fail-
ures. To overcome the integrity issue GNSS must be augmented and monitored. This can
be done using different techniques, usually referred to as either ground, aircraft or satel-
lite based augementation systems. Here we will focus on Aircraft Based Augmentation
Systems (ABAS), where the principle is to use other onboard navigation sensors. A typi-
cal sensor for augmentation with GNSS is the Inertial Navigation System (INS). The INS
operates through a set of rather complicated differential equations describing the vehicle’s
motion. Input to the equations are measured angular rate and acceleration, making INS
independent of external sources.

Accurate and reliable navigation systems are becoming even more important due to
the introduction of Unmanned Aerial Vehicles (UAVs). Requirements on navigation ac-
curacy and reliability are amplified since the pilot in manned aircraft also function as a
monitor of system performance. Requirements are also put on sensor cost and weight,
at least for small tactical UAVs. No single, stand-alone sensor is capable of meeting all
requirements. The remedy is to adopt the concept of integrated navigation. Integrated
navigation means that the output from two or more navigation sensors are blended to ob-
tain better accuracy and robustness than what the individual sensors can achieve. In many
cases, the Inertial Navigation System (INS) is typically seen as the primary source of nav-
igation data. One of the reasons is that INS besides position and velocity also provides the
vehicle’s orientation, which is important for autonomous control. However, its navigation
accuracy degrades with time as sensor errors are mathematically integrated through the
navigation equations. The standard system for stabilizing the INS drift is currently the
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Global Positioning System (GPS) [18, 21, 11]. The GPS signal is however weak mak-
ing it sensitive to intentional or unintentional disturbances. A possible and interesting
supplement to GPS is Terrain-Aided Positioning (TAP), since it can serve as a monitor
and back-up system to GPS. The principle of TAP is to use terrain height information to
estimate position, see Figure 1.1.

Figure 1.1: Terrain-aided positioning.

Here we will study INS integrated with TAP. The challenge with TAP is how to deal
with its highly nonlinear, non-analytical nature. The terrain height measurements can
either be processed sequentially one by one, which is the method under consideration
here, or collected into batches and then processed using profile matching [39]. The par-
ticle filter constitutes a generic tool for recursive state estimation of arbitrary systems at
the expense of a high computational load. In Paper A the marginalized particle filter is
described. It is, when applicable, superior to the standard particle filter. It uses linear
or nearly linear substructures which, conditionally upon the nonlinear part, is estimated
using linear filters. The remaining nonlinear part is estimated by the particle filter. It is
shown that the computational load can be reduced significantly.

There are similar results to be found in the literature on the marginalized particle filter
as those presented in this thesis, although obtained independently and of slightly different
forms. The most equivalent result can be found in [24], where the aim is also to partition
the state vector and apply the particle filter on the truly nonlinear part only. They refer to
the resulting filter as the mixture Kalman filter. In [27, 4] similar results are also obtained,
although the formulations are rather different. An application is given in [5], where they
apply the partitioning technique on amplitude and phase modulated signals. Moreover,
similar techniques applied on jump Markov linear systems are given in [28, 32]. For early
versions of the result presented here see [79, 78], which are refined in [97].

For integrated INS/TAP we can extend the idea of marginalization to handle a third
discrete substructure. In Paper B we provide the details of the filter applied to INS/TAP
and show that excellent performance is achieved for a tractable amount of computational
load.
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1.2 Detection for Collision Avoidance

The purpose of collision avoidance systems is to minimize the risk of collision between
vehicles, see Figure 1.2. In an encounter between two manned vehicles, where a collision
is imminent, the pilot of each vehicle will normally initiate actions to avoid the collision.
There are also procedures to follow and in a near-collision scenario the right-of-way rule
applies. In a scenario where one of the vehicles is an UAV the situation is different. If no

Figure 1.2: Collision scenario.

measures are taken there is only one pilot to detect a hazardous situation and react accord-
ingly. To put all responsibility on the pilot in the manned vehicle is deemed unacceptable.

1.2.1 Manned Air Traffic

For manned aircraft today there are different layers of safety, as illustrated by Figure
1.3. The safety measures described below are applicable either partially or as a whole
depending on airspace and aircraft. The outer layer consists of procedures. All flights
have to comply with rules and procedures as decided by authorities. For example in some
cases one needs to file a flight plan, describing among other things your destination, and
receive an Air Traffic Control (ATC) clearance. The next layer is separation, a service
provided by ATC, where an air traffic controller keeps track of aircraft by surveillance
radar and/or transponder. The controller detects aircraft on collision course and informs
the pilots how to maneuver in order to avoid the potential conflict. The third layer con-
sists of a cooperative collision aviodance through the use of Traffic Alert and Collision
Avoidance System (TCAS) [67]. TCAS automatically detects and evaluates cooperative
traffic by interrogating transponders on speed, height and bearing and may advise the pi-
lot to climb or descend to avoid a collision. The inner layer consists of see and avoid,
a function which relies on the pilot to see an incoming aircraft and maneuver if neces-
sary. A close encounter or a Near Mid-Air Collision (NMAC) is declared if the minimum
distance between two aircraft is less than 150 m [35, 10].

The airspace is partitioned into classes depending on, among other things, altitude [33,
35, 104]. The classification is rather complex and can differ from country to country. One
of the most important airspaces for tactical UAVs is class E. Class E includes the major
part of the lower airspace up to roughly 5000 m. Within this airspace for aircraft flying by
Visual Flight Rules (VFR) [35, 104] radio communication with ATC is not required and
separation assistance from ATC is not likely. This implies additional requirements on the
capability of see and avoid.
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Figure 1.3: Layers of safety in controlled airspace.

1.2.2 Unmanned Aerial Vehicles

For the introduction of UAVs into civil airspace the authority requires an Equivalent Level
Of Safety (ELOS). This means that the overall safety accomplished for manned aircraft
as described above is also required for an unmanned aircraft. This implies that it is not
sufficient, for example, to replace the human see and avoid capability with an automatic
sense and avoid system. The whole chain of safety measures, from procedures down to
see and avoid, needs to be considered to be able to claim ELOS. For example, a seemingly
simple task of implementing TCAS on Remotely Piloted Vehicles (RPVs) is in reality not
easy [66, 110]. The concerns of implementing TCAS on RPVs are of such a magnitude
that the recommendation is not to equip with TCAS, at least until the opposite is demon-
strated [66]. The concerns are primarily additional delays due to communication links for
manual response and criticality of TCAS for autonomous response [110].

There are conceptually two different ways to quantify ELOS. Either we study the hu-
man capability and try to mimic it, or we analyze historical statistics on NMACs and
empirically determine what a system must achieve. An example on the first method is
given in [76], where they present established requirements on parameters such as detec-
tion ranges for the US military RPVs Global Hawk and Predator. Examples on the latter
method are given by [96] based on 10-year statistics for mid-air collisions in the United
States airspace, and [61] based on surveillance radar readings over United States airspace
and extracting those encounters which involve VFR aircraft. In [7] a study on TCAS
performance is reported, based on an assumed NMAC rate for European airspace. The
result of the study indicates a TCAS conflict resolution capability of the original NMACs
around 90%, although a great deal new, induced NMACs were also created.

Here we will focus on the inner layer, i.e. to replace the pilot with an automatic sense
and avoid in order to avoid NMACs. Although the equivalent level of safety put require-
ments on a sense and avoid system for unmanned aircraft in any controlled airspace, it is
within class E and against aircraft flying VFR we have the most obvious need for sense
and avoid. There are many proposals for collision avoidance or conflict resolution, see
the survey given by [69]. We are interested in the probability of NMAC for a predicted
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trajectory. The most similar result to the ones presented in this thesis is found in the part
on short range conflict detection in [91]. The main difference is that in [91] the initial
condition is assumed known.

The process for certification of TCAS involved detailed safety studies, numerous en-
counter simulations and exhaustive field tests. The certification of a sense and avoid
system must surely pass a similar process [70]. All actions taken to shorten the process
are of course valuable and means that the cost to develop a system is decreased. The
development and verification would benefit from a system design which minimize the
amount of encounter simulations. For example having a system which per design has
the capability of providing correct collision risk measure for a given encounter would be
highly beneficial. As will be shown this is one of the main motivators why it is of interest
to compute probability of NMAC for a predicted trajectory.

Based on conditions defining a near mid-air collision (NMAC) anytime in the future
we can compute the probability of NMAC using the Monte Carlo method. Monte Carlo
means that we draw samples from a probability density function defining the initial rela-
tive state between the vehicles. The samples are then simulated along the predicted flight
trajectory and for each sample the outcome, NMAC or not NMAC, is recorded. The
mean of the outcome of the samples constitutes an empirical estimate of the probability
of NMAC. The Monte Carlo method is however computer intensive mainly due to the
small probabilities that the application is required to detect. Typically the Monte Carlo
method is not possible to use for real-time processing. Instead, in Paper C we propose
a method for computing collision risk as accurate as the Monte Carlo method but with a
significantly reduced computational load. The result is extended to three dimensions in
Paper D.

1.3 Outline

1.3.1 Outline of Part I

Part I consists of two main subparts; estimation in Section 2 and detection in Section
3. The estimation part starts in Section 2.1 by providing a more detailed description of
terrain-aided navigation. Recursive state estimation is presented in Section 2.2, and for
linear, multiple and nonlinear models in particular. Section 2.3 deals with the particle
filter including asymptotic properties. Section 2.4 is devoted to the marginalized particle
filter. The detection part starts with giving a more detailed description of the sense and
avoid system in Section 3.1. Definition of probability of NMAC is given in Section 3.2
and detection principles using hypotheses is provided in Section 3.3. In Section 3.4 we
introduce the reader to the concept of using level-crossings as the mean to compute prob-
ability of conflict. We start with one dimension, then two dimensions, and finally three
dimensions. Part I is concluded in Section 4, including a discussion on possible future
research.

1.3.2 Outline of Part II

Part II consists of a collection of papers which constitute the main contributions of the
thesis.
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Paper A: Marginalized Particle Filters for Mixed Linear/Nonlinear State-space
Models

T.B. Schön, F. Gustafsson, and P-J. Nordlund. Marginalized particle filters
for mixed linear/nonlinear state-space models. IEEE Transactions on Signal
Processing, 53(7):2279–2289, July 2005.

Summary: The particle filter offers a general numerical tool to approximate the filter-
ing density function for the state in nonlinear and non-Gaussian filtering problems. While
the particle filter is fairly easy to implement and tune, its main drawback is that it is quite
computer intensive, with the computational complexity increasing quickly with the state
dimension. One remedy to this problem is to marginalize out the states appearing linearly
in the dynamics. The result is that one Kalman filter is associated with each particle. The
main contribution in this paper is to derive the details for the marginalized particle filter
for a general nonlinear state-space model. Several important special cases occurring in
typical signal processing applications are also discussed. The marginalized particle filter
is applied to a simplified integrated aircraft navigation system assuming a known altitude.
It is demonstrated that the complete high-dimensional system can be based on a particle
filter using marginalization for all but two states. Excellent performance on real flight
data is reported.

Background and contribution: The article is based on the theory given in [78], which
provides the derivation of the marginalized particle filter. The main parts of the article is
credited to T.B. Schön who has also refined the results.

Paper B: Marginalized Particle Filter for Accurate and Reliable Aircraft
Navigation

P-J. Nordlund and F. Gustafsson. Marginalized particle filter for accurate and
reliable terrain-aided navigation. Accepted for publication in IEEE Transac-
tions on Aerospace and Electronic Systems, 2008.
http://www.control.isy.liu.se/research/reports/2008/2870.pdf.

Summary: This paper details an approach to the integration of INS (Inertial Navigation
System) and TAP (Terrain-Aided Positioning). The solution is characterized by a joint de-
sign of INS and TAP, meaning that the highly nonlinear TAP is not designed separately
but jointly with the INS using one and the same filter. The applied filter extends the theory
of the MPF (Marginalized Particle Filter) given by [98]. The key idea with MPF is to es-
timate the nonlinear part using the particle filter and the part which is linear, conditionally
upon the nonlinear part, is estimated using the Kalman filter. The extension lies in the
possibility to deal with a third multi-modal part, where the discrete mode variable is also
estimated jointly with the linear and nonlinear parts. Conditionally upon the mode and
the nonlinear part, the resulting subsystem is linear and estimated using the Kalman filter.
Given the nonlinear motion equations which the INS uses to compute navigation data, the
INS equations must be linearized for the MPF to work. A set of linearized equations is
derived and the linearization errors are shown to be insignificant with respect to the final
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result. Simulations are performed and the result indicates near-optimal accuracy when
compared to the Cramer-Rao lower bound.

Background and contribution: Here the marginalized particle filter is extended to
cover systems which, besides linear and nonlinear substructures, also contains a discrete
unknown mode. The linearization errors when applying Taylor expansion on the INS
navigation equations are shown to be insignificant. The resulting filter is applied on a
complete integrated INS/TAP system.

Paper C: Probabilistic Conflict Detection for Piecewise Straight Paths

P-J. Nordlund and F. Gustafsson. Probabilistic conflict detection for piece-
wise straight paths. Submitted to Automatica, 2008.
http://www.control.isy.liu.se/research/reports/2008/2871.pdf.

Summary: We consider probabilistic methods for detecting conflicts as a function of
predicted trajectory. A conflict is an event representing collision or imminent collision
between vehicles or objects. The computations use state estimate and covariance from a
target tracking filter based on sensor readings. Existing work is primarily concerned with
risk estimation at a certain time instant, while the focus here is to compute the integrated
risk over the critical time horizon. This novel formulation leads to evaluating the prob-
ability for level-crossing. The analytic expression involves a multi-dimensional integral
which is hardly tractable in practice. Further, a huge number of Monte Carlo simulations
would be needed to get sufficient reliability for the small risks that the applications often
require. Instead, we propose a sound numerical approximation that leads to evaluating a
one-dimensional integral which is suitable for real-time implementations.

Background and contribution: Here we derive an efficient method for computing
probability of conflict in two dimensions using theory for level-crossings. The method is
derived for not only linear motion but also a relative motion which follows a piecewise
straight path.

Paper D: Probabilistic Near Mid-Air Collision Avoidance

P-J. Nordlund and F. Gustafsson. Probabilistic near mid-air collision avoid-
ance. Submitted to IEEE Transactions on Aerospace and Electronic Systems,
2008.
http://www.control.isy.liu.se/research/reports/2008/2872.pdf.

Summary: We propose a probabilistic method to compute the near mid-air collision
risk as a function of predicted flight trajectory. The computations use state estimate and
covariance from a target tracking filter based on angle-only sensors such as digital video
cameras. The majority of existing work is focused on risk estimation at a certain time
instant. Here we derive an expression for the integrated risk over the critical time horizon.
This is possible using probability for level-crossing, and the expression applies to a three-
dimensional piecewise straight flight trajectory. The Monte Carlo technique provides a



1.4 Other Publications 11

method to compute the probability, but a huge number of simulations is needed to get
sufficient reliability for the small risks that the applications require. Instead we propose
a method which through sound geometric and numerical approximations yield a solution
suitable for real-time implementations. The algorithm is applied to realistic angle-only
tracking data, and shows promising results when compared to the Monte Carlo solution.

Background and contribution: Here we derive the conditions for a near mid-air col-
lision to occur. Through a sound geometrical approximation and the extension of Paper
C to piecewise linear motion in three dimensions we derive an efficient method for com-
puting probability of near mid-air collision. The resulting method is applied to realistic
angle-only tracking data.

1.4 Other Publications

Publications not included but of related interest are:

T. Hektor, H. Karlsson, and P-J. Nordlund. A marginalized particle filter
approach to an integrated INS/TAP system. In Proceedings of the IEEE/ION
Position, Location and Navigation Symposium, pages 766–770, May 2008.

P-J. Nordlund and F. Gustafsson. The probability of near midair collisions
using level-crossings. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, 2008.

F. Gustafsson, T.B. Schön, R. Karlsson, and P-J. Nordlund. State-of-the-art
for the marginalized particle filter. In Proceedings of the IEEE Nonlinear
Statistical Signal Processing Workshop, pages 172–174, Sept 2006.

P-J. Nordlund, F. Gunnarsson, and F. Gustafsson. Particle filters for posi-
tioning in wireless networks. In Procedings of EUSIPCO, Toulouse, France,
September 2002.

F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, R. Karlsson, and P-
J. Nordlund. Particle filters for positioning, navigation and tracking. IEEE
Transactions on signal processing, 50(2):425–437, Feb 2002.

P-J. Nordlund and F. Gustafsson. Recursive estimation of three-dimensional
aircraft position using terrain-aided positioning. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Proceesing, vol-
ume 2, pages 1121–1124, 2002.

F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, R. Karlsson, and P-
J. Nordlund. A framework for particle filtering in positioning, navigation
and tracking problems. In Proceedings of the 11th IEEE Signal Processing
Workshop on Statistical Signal Processing, pages 34–37, Aug 2001.

P-J. Nordlund and F. Gustafsson. Sequential Monte Carlo filtering techniques
applied to integrated navigation systems. In Proceedings of the 2001 Ameri-
can Control Conference, volume 6, pages 4375–4380, 2001.





2
Efficient State Estimation

2.1 Terrain-Aided Navigation

The purpose of Terrain-Aided Navigation (TAN), as for any other navigation system, is
to provide an accurate and reliable estimate of the kinematic state of the own platform,
where the state typically consists of position and its derivatives. The navigation solution
from TAN is based on sensors which do not rely on external information sources. This
makes TAN resistant to disturbances and jamming. The principle for TAN is to integrate
information from a Inertial Navigation System (INS) and a Terrain-Aided Positioning
(TAP) system, see Figure 2.1. The TAP system is basically a Radar Altimeter (RA) mea-
suring distance to ground and a database with stored terrain height. The RA measurement
subtracted from INS altitude provides a terrain height measurement. The database gives
terrain height for sampled horizontal positions, ranging from a couple of meters to sev-
eral hundred depending on the database. In the case studied here terrain height is given at
every 50 meter. Terrain height measurements are matched with stored terrain height. The
points where stored height matches measured height yield aircraft position candidates.
Gradually the measurements form a terrain height profile with fewer and fewer matches
in the database. Thereby the position candidates become fewer and fewer until there is
only one left, see Figure 2.2 for an illustration. The idea of using terrain as a navigation
aid is not new, see [19] for a interesting historical survey on terrain navigation systems.

The task of navigating using terrain height can be cast as recursive state estimation
problem. Let the navigation quantities, such as position, velocity and orientation, be
comprised in the state vector xt. The expression for terrain height provided by the terrain
information system is

h(xpos
t ), (2.1)

where h(xpos
t ) is the terrain height given by the database as a function of horizontal po-

sition. Note that no analytical expression exists for h(·). Also, usually several different

13
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Figure 2.1: Concept of integrated INS/TAP.

positions yield the same height making the problem multimodal. This makes the particle
filter ideal for this application. The inertial navigation system computes the state xt from
measured acceleration and angular rate ut. The computations are based on a set of rather
complicated nonlinear differential equations, in discrete time given by f(xt, ut). How-
ever, in paper B we show that the nonlinearities are weak. The expression for time update
of INS data then become

xt+1 = f(xt, ut) ≈ Ftxt +Gtut. (2.2)

By splitting the state vector

xt =
[
xpos
t

xnav
t

]
, (2.3)

the prerequisites for applying the marginalized particle filter are at place.

2.2 Recursive Estimation

We consider discrete-time state space descriptions with additive noise

xt+1 = f(xt) +Gt(xt)ut,
yt = h(xt) + et,

(2.4)

where xt ∈ Rnx represents the unknown state vector and yt ∈ Rny is the observation.
The subscript t denotes a discrete-time index assuming a sampling time T sec. The pro-
cess noise ut and measurement noise et are stochastic processes with known probability
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Figure 2.2: Principle of terrain-aided positioning, with two position candidates at
time t but only one at time t+1.

densities p(ut) and p(et). The noise sequences are both assumed white and independent
of each other, i.e.

p(ut+k, ut) = p(ut+k)p(ut), ∀k 6= 0,
p(et+l, et) = p(et+l)p(et), ∀l 6= 0,
p(ut, et) = p(ut)p(et).

(2.5)

We denote by Xt = {x0, . . . , xt} and Yt = {y0, . . . , yt} the stacked vector of all the
states and measurements up to time t. By the assumptions on the noise according to (2.5)
and the definition of conditional density [44]

p(x|y) =
p(x, y)
p(y)

(2.6)

one can show that xt is a Markov process

p(Xt) =
t∏

k=0

p(xk|xk−1), (2.7)

where p(x0|x−1) = p(x0), and that the conditional density of the measurements given
the states are independent

p(Yt|Xt) =
t∏

k=0

p(yk|xk) =
t∏

k=0

pet(yk − xk). (2.8)

The goal is to compute or estimate the posterior probability density function p(xt|Yt).
When a new measurement is available we want our estimate to be updated using the new
information. To avoid having to re-calculate everything we need recursive expressions for
how the new information should be incorporated. Using Bayes’ formula [52] and the as-
sumptions (2.7)–(2.8) we can derive the following recursions for the posterior probability
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p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2.9a)

p(yt|Yt−1) =
∫

Rnx

p(yt|xt)p(xt|Yt−1)dxt, (2.9b)

referred to as the measurement update. The time update is provided by the law of total
probability

p(xt+1|Yt) =
∫

Rnx

p(xt+1|xt)p(xt|Yt)dxt. (2.10)

Based on the posterior probability we can compute the point estimate x̂t|t which min-
imizes the expectation of the estimation error squared, i.e.

x̂t|t = arg min
x̂t

Ep(xt|Yt)
[
(xt − x̂t)(xt − x̂t)T

]
= arg min

x̂t

∫
Rnx

(xt − x̂t)(xt − x̂t)T p(xt|Yt)dxt.
(2.11)

The estimate x̂t|t is given by Theorem 2.1.

Theorem 2.1 (Least-mean-square estimation)
Given two random variables (scalar- or vector-valued) xt and Yt, the optimal least-mean-
square estimate of xt given Yt is

x̂t|t = Ep(xt|Yt)[xt]. (2.12)

Proof: See [55].

2.2.1 Linear Models

For linear estimation we have the Kalman filter, thoroughly described in e.g. [55]. Con-
sider the linear state-space model

xt+1 = Ftxt +Gtut,

yt = Htxt + et,
(2.13)

where

E

utet
x0

 [uTt+k eTt+k xT0 1
]

=

Qtδk 0 0 0
0 Rtδk 0 0
0 0 P0 x̂0

 ,
δk =

{
1 if k = 0
0 otherwise.

(2.14)

With Gaussian distributed ut, et and x0, i.e.

ut ∼ N (0, Qt), et ∼ N (0, Rt), x0 ∼ N (x̂0, P0), (2.15)

the optimal filter is the Kalman filter, see Theorem 2.2.
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Theorem 2.2 (The Kalman filter)
Consider the linear state-space model according to (2.13). Moreover, assume that the
noise processes have the properties according to (2.14)–(2.15) Then xt and xt+1, condi-
tionally upon Yt, are Gaussian distributed for any time t ≥ 0, i.e.

p(xt|Yt) = N (x̂t|t, Pt|t),
p(xt+1|Yt) = N (x̂t+1|t, Pt+1|t),

(2.16)

where the mean and covariance propagate through the measurement update

x̂t|t = x̂t|t−1 + Pt|t−1H
T
t S
−1
t (yt −Htx̂t|t−1),

Pt|t = Pt|t−1 − Pt|t−1H
T
t S
−1
t HtPt|t−1,

St = Rt +HtPt|t−1H
T
t ,

(2.17)

and the time update

x̂t+1|t = Ftx̂t|t,

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t ,

(2.18)

with initial values x̂0|−1 = x̂0 and P0|−1 = P0.

Proof: See [40, 3, 55].

Note that for non-Gaussian distributed ut, et and x0 the best linear least-mean-square
solution is still provided by the Kalman filter [55].

2.2.2 Multiple Models

In the multiple model approach we extend the linear model to cover the case with multiple
linear models. The multitude is handled by a random variable λt which can take a finite
number of discrete values {1, 2, . . . ,M}. The model under consideration is

xt+1 = Ft(λt+1)xt +Gt(λt+1)ut(λt+1),
yt = Ht(λt)xt + et(λt),

(2.19)

and we assume λt follows a discrete Markov process

Pr(Λt) =
t∏

k=0

Pr(λk|λk−1), (2.20)

where Pr(λ0|λ−1) = Pr(λ0). The mode transition probabilities Pr(λt|λt−1) are given
by the matrix  Pr(1|1) . . . Pr(1|M)

...
...

Pr(M |1) . . . Pr(M |M)

 . (2.21)
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From (2.19) we see that if we know the mode sequence, Λt = {λ0, . . . , λt}, we are back
to the original linear model according to (2.13), with the solution given by the Kalman
filter. In practice, we usually do not have access to the mode sequence and we are con-
fined to use the probability of each possible sequence Pr(Λt|Yt). Using the law of total
probability we can write the filtering posterior probability density as

p(xt|Yt) =
∑
Λt

p(xt|Yt,Λt)Pr(Λt|Yt). (2.22)

The number of possible mode sequences grows exponentially with time, there are M t+1

different possibilities to account for at time t, starting from time t = 0.
One way to limit the number of mode sequences is to only account for the most re-

cent time instances, say the last L. This means that we only need to account for ML

different hypotheses, and it enables us to keep the computational load constant over time.
At each update of the filters we first split each mode sequence into M new ones. Each
mode sequence is now L + 1 time instances long. We then apply a Kalman filter on
each extended mode sequence. Next we merge M sequences which are now equal when
considering only the L most recent time instances. This is the principle behind the Gen-
eralized Pseudo-Bayesian (GPB) filter, see Algorithm 2.1 for L = 1. The measurement
update of the weight α(λt)

t|t = Pr(λt|Yt) is given by

Pr(λt|Yt) ∝ Pr(λt|Yt−1)
∫
p(yt|λt, xt)p(xt|λt,Yt−1)dxt

= e
− 1

2 (yt−Ht(λt)x̂(λt)
t|t−1)TS−1

t (λt)(yt−Ht(λt)x̂(λt)
t|t−1)Pr(λt|Yt−1).

(2.23)

Algorithm 2.1 (The GPB1 filter).

1. For j = 1, . . . ,M , initialize the weights ᾱ(λ0)
0 = Pr(λ0) and the estimates x̂(λ0)

0 ,
P

(λ0)
0 .

2. Estimate measurement update: Compute x̂(λt)
t|t , P (λt)

t|t using (2.17) conditionally
upon λt.

3. Weight measurement update: Compute new weights using

α
(λt)
t|t = e

− 1
2 (yt−Ht(λt)x̂(λt)

t|t−1)TS−1
t (λt)(yt−Ht(λt)x̂(λt)

t|t−1)
ᾱ

(λt)
t|t−1,

ᾱ
(λt)
t|t =

α
(λt)
t|t∑M

λt=1 α
(λt)
t|t

4. Merge:

x̂t|t =
M∑
λt=1

ᾱ
(λt)
t|t x̂

(λt)
t|t ,

Pt|t =
M∑
λt=1

ᾱ
(λt)
t|t (P (λt)

t|t + (x̂(λt)
t|t − x̂t|t)(x̂

(λt)
t|t − x̂t|t)

T ).
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5. Estimate time update: Compute x̂(λt+1)
t+1|t , P (λt+1)

t+1|t using (2.18) conditionally upon
λt+1.

6. Weight time update: Compute new weights using

ᾱ
(λt+1)
t+1|t =

M∑
λt=1

Pr(λt+1|λt)ᾱ(λt)
t|t

7. Iterate from step 2.

The conceptually similar Interacting Multiple Model (IMM) filter uses a slighly more
sophisticated way of computing the weights [16, 12, 56]. See [106] for a nice survey and
comparison of different multiple model approaches.

2.2.3 Nonlinear Models

When we are facing a nonlinear estimation problem given by (2.4) we can still use the
Kalman filter recursions given by (2.17)–(2.17). The difference is that we use a set of
linearized equations given by the first order terms in the Taylor expansion around the
current estimate

Ht =
∂h(xt)
∂xt

∣∣∣∣
xt=x̂t|t−1

, Ft =
∂f(xt)
∂xt

∣∣∣∣
xt=x̂t|t

. (2.24)

The result is referred to as the extended Kalman filter (EKF) [55, 3, 93]. More sophisti-
cated versions of the EKF exist which account for the second order terms in the Taylor
expansion [49].

The Gaussian sum filter [102, 2, 3] can be seen as an extension to the EKF. The
idea is to split the estimation using several EKFs working in parallel, where each EKF
is concentrated on a subspace of the overall posterior probability density. The overall
posterior probability is approximately given by a mixture of Gaussians

p(xt|Yt) ≈
N∑
i=1

w̄
(i)
t N (x̂(i)

t|t , P
(i)
t|t ),

N∑
i=1

w̄
(i)
t = 1, (2.25)

where the mean and covariance of each Gaussian is provided by a dedicated EKF. Typi-
cally the splitting is based on the initial values x̂0 and P0 such that the covariance for each
EKF P (i)

0 is small enough. Small enough here means that the linearized equations should
provide an accurate description around x̂(i)

t|t as long as we do not deviate more than given

by P (i)
0 . For an example on a Gaussian sum filter application see Example 2.1.

Example 2.1
The Range Parameterized EKF (RP-EKF) is a method for tracking other vehicles based
on angle-only measurements. Tracking with angle-only measurements normally results
in highly uncertain range estimates. The principle for RP-EKF is to split the applicable
range into subintervals, each having the same so-called coefficient of variation, Cr. The
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Cr is defined as the ratio between standard deviation and mean of each range segment.
The performance of angle-only tracking is highly dependent on Cr, the lower the better
[88]. A large uncertainty in range compared to the mean yields a high Cr. Suppose the
range is uniformly distributed over the interval (rmin, rmax), which yields

Cr =
σr
r̂

=
rmax−rmin√

12
rmax+rmin

2

(2.26)

We can achieve a smaller Cr by splitting the range interval into a number Nf of subin-

tervals, where subinterval i is defined by (rminρ
i−1, rminρ

i) and ρ =
(
rmax/rmin

)1/Nf .
Now it is straightforward to show that C(i)

r is the same for each segment and is given by
[9]

C(i)
r =

σ
(i)
r

r̂(i)
=

2(ρ− 1)√
12(ρ+ 1)

. (2.27)

The principle of the point-mass filter [64, 65, 13] is to discretize the support of the
posterior density into a finite set of points. The expression for the posterior probability
becomes

p(xt|Yt) ≈
N∑
i=1

w̄
(i)
t δ

x
(i)
t

(xt), (2.28)

where δ(·) is the Dirac delta function.

2.3 Particle Filter

Particle filters, or sequential Monte Carlo methods [31, 38], can be seen as simulation-
based methods, i.e. we simulate a large number of possible state trajectories using e.g. the
time propagation equations from (2.4). Based on the measurements we associate a weight
to each trajectory, using the measurement equation from (2.4). The realizations together
with the associated weigths provide an empirical approximation of the joint posterior
distribution. Probably two of the first references on particle filtering are [45] and [46]. In
these papers importance sampling, described in Section 2.3.1 and 2.3.2, was introduced
on sequential estimation problems. The crucial step of resampling, described in Section
2.3.3, was however first introduced in [38]. The two ingredients, importance sampling
and resampling, form the basis for the particle filter algorithm given in Section 2.3.4.

2.3.1 Importance Sampling

Suppose that we have drawn N independent identically distributed (i.i.d.) samples of xt
from the probability density q(xt|yt). In the literature, the function q(xt|yt) is usually
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referred to as the importance function, see e.g. [30]. The first requirement on this dis-
tribution is that it should be possible to draw samples from it. See e.g. [53] for details
on how to create samples from a distribution. We can use the set of samples to form an
empirical approximation of q(xt|yt), i.e.

q(xt|yt) ≈
1
N

N∑
i=1

δ
x
(i)
t

(xt), (2.29)

where δ(·) is the Dirac delta function. What (2.29) really means is that the probability
mass for a small volume is approximated by the relative frequency of samples that are
located within the volume. A more correct notation would therefore be

q(dxt|yt) ≈
1
N

N∑
i=1

δ
x
(i)
t

(dxt), (2.30)

but this is not pursued further. What we really would like is to be able to draw realizations
from p(xt|yt), referred to as perfect sampling, but unfortunately this is not possible in
general. The best we can hope for is that q(xt|yt) is as close to p(xt|yt) as possible. Let
us introduce the importance weight defined as

w(xt) =
p(xt|yt)
q(xt|yt)

, (2.31)

or in the Bayesian framework, where the normalization constant p(yt) in general is ana-
lytically intractable,

w(xt) =
p(yt|xt)p(xt)
q(xt|yt)

. (2.32)

See Example 2.2 for the most basic choice of importance function.

Example 2.2

A natural choice of importance function is to use the prior probability density for the state
vector

q(xt|yt) = p(xt). (2.33)

The weights are then computed according to

w(xt) =
p(yt|xt)p(xt)

p(xt)
= p(yt|xt). (2.34)

The importance weight, w(xt), can be looked upon as a measure of the skewness of
q(xt|yt) relative to p(xt|xt). From (2.31) or (2.32) we see that for the importance weight
to be defined the support of p(xt|yt) must be included in the support of q(xt|yt). Based
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on the realizations from (2.29) and the importance weights computed using (2.32) we can
express an empirical approximation of the posterior density p(xt|yt) according to1

p(xt|yt) =
w(xt)q(xt|yt)∫
w(xt)q(xt|yt)dxt

≈

∑N
i=1 w

(i)
t δ

x
(i)
t

(xt)∑N
i=1 w

(i)
t

=
N∑
i=1

w̄
(i)
t δ

x
(i)
t

(xt),

(2.35)

where we have defined

w
(i)
t =

p(yt|x(i)
t )p(x(i)

t )

q(x(i)
t |yt)

, w̄
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

. (2.36)

Using (2.35) we can now perform any kind of operation that previously was in-
tractable, e.g. computing any kind of estimate. For any integrable function g(xt) we
can estimate its expected value according to

ĝt = Ep(xt|yt)[g(xt)] =
∫
g(xt)p(xt|yt)dxt

≈
∫
g(xt)

N∑
i=1

w̄
(i)
t δ

x
(i)
t

(xt)dxt =
N∑
i=1

w̄
(i)
t g(x(i)

t ) = ĝNt .

(2.37)

Using (2.37) we see that the least-mean-square estimate x̂t|t and its covariance are esti-
mated using g(xt) = xt and g(xt) = (xt − x̂t|t)(xt − x̂t|t)T respectively, i.e.

x̂t|t ≈
N∑
i=1

w̄
(i)
t x

(i)
t , (2.38a)

Pt|t ≈
N∑
i=1

w̄
(i)
t (x(i)

t − x̂t|t)(x
(i)
t − x̂t|t)T . (2.38b)

2.3.2 Recursive Importance Sampling

The question now is how to recursively obtain a set of realizations

{X(i)
t }Ni=1 = {x(i)

0 , . . . , x
(i)
t }Ni=1 (2.39)

which together with the weights {w̄(i)
t }Ni=1 are distributed approximately according to

p(Xt|Yt). The new set of realizations and weights should be based upon the realizations
{X(i)

t−1}Ni=1 and importance weights {w̄(i)
t−1}Ni=1.

Suppose the realizations {X(i)
t−1}Ni=1 have been drawn from some arbitrary but known

density q(Xt−1|Yt−1), i.e.

q(Xt−1|Yt−1) ≈ 1
N

N∑
i=1

δX(i)
t−1

(Xt−1) =
1
N

N∑
i=1

δ
x
(i)
0

(x0) · · · δ
x
(i)
t−1

(xt−1), (2.40)

1Note that we will in the sequel not explicitly state the space on which the integration is taken place, here
(Rnx )(t+1), assuming it is clear from the context.
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which together with the importance weights are such that

p(Xt−1|Yt−1) ≈
N∑
i=1

w̄
(i)
t−1δX(i)

t−1
(Xt−1). (2.41)

We now wish to extend the existing realizations and modify the existing weights, such that
we obtain a set of realizations which, together with the modified weights, is approximately
distributed according to p(Xt|Yt). The importance function can be rewritten recursively,
using Bayes’ rule, according to

q(Xt|Yt) = q(xt|Xt−1,Yt)q(Xt−1|Yt). (2.42)

In order to be a practical method the new measurement yt should not affect the existing
realizations {X(i)

t−1}Ni=1. Otherwise, we would be forced to create new realizations for
the state history at each time t, which would imply a computational load which grows as
O(t). Therefore, we require that

q(Xt−1|Yt) = q(Xt−1|Yt−1). (2.43)

Inserting (2.40) into (2.42) we obtain an expression for how to produce new samples
for xt

q(xt|Yt) =
∫
q(Xt|Yt)dXt−1 ≈

N∑
i=1

q(xt|X(i)
t−1,Yt). (2.44)

To create a new set of samples {x(i)
t }Ni=1 based on (2.44) we draw N times from the

importance function according to

x
(i)
t ∼ q(xt|X

(i)
t−1,Yt), i = 1, . . . , N. (2.45)

The last step is to obtain a properly weighted set of realizations with respect to
p(Xt|Yt). What we need is an expression for how the new weight w(Xt) is computed
recursively in terms of w(Xt−1). We have

w(Xt) =
p(Yt|Xt)p(Xt)
q(Xt|Yt)

=
p(yt|xt)p(xt|xt−1)
q(xt|Xt−1,Yt)

w(Xt−1). (2.46)

2.3.3 Resampling

If the weights {w(i)
t }Ni=1 are very skewed, i.e. most of the weights are close to zero

and only a few of them are significant, most of the samples do not contribute to the
approximation. To create a set of samples with equal weights we can perform a so-called
resampling [101]. This means that we multiply those samples with a large importance
weight, and samples with small weights are discarded. Call the number of offsprings
from each sample N (i)

t . To meet the requirement that the unweighted set of samples is
still approximately distributed according to p(Xt|Yt) we need

E[N (i)
t ] = Nw̄

(i)
t . (2.47)
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Note however that one could be deceived to think that resampling achieves the goal of
having a set of samples perfectly matched to p(Xt|Yt). But the resampling introduces
another problem, we obtain a set of dependent samples. However, to make the sequential
importance sampling technique operational the resampling procedure is necessary.

The standard resampling method is the multinomial resampling, originally introduced
in [38]. The principle is to pick a realization from {X(i)

t }Ni=1, with replacement, where
the probability to pick X(i)

t is equal to w̄(i)
t . This procedure can be achieved in O(N)

operations, see e.g. [20] for the details.
A second method known to introduce less additional variance than multinomial re-

sampling, is residual resampling [74]. The principle behind residual resampling is to first
multiply/discard particles deterministically according to bNw̄(i)

t c, where the notation bxc
corresponds to the integer part of x. The second step is to perform multinomial resampling
on the rest, i.e. on

N rest
t = N −

N∑
i=1

bNw̄(i)
t c. (2.48)

A third strategy is to multiply and discard samples entirely deterministically, a deter-
ministic resampling [60]. This can be achieved by, for each i = 1, . . . , N , finding the
largest integer N (i)

t such that

N
(i)
t −∆
N

< w̄
(i)
t , 0 ≤ ∆ < 1. (2.49)

2.3.4 The Algorithm

For a summary of the particle filter see Algorithm 2.2.

Algorithm 2.2 (The particle filter).

1. For i = 1, . . . , N , sample x(i)
0 ∼ p(x0) and set w(i)

−1 = 1
N

2. For each i = 1, . . . , N , update w(i)
t =

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |X

(i)
t−1,Yt)

w̄
(i)
t−1

and normalize w̄(i)
t = w

(i)
t∑
j w

(j)
t

.

3. If resampling (e.g. if N̂eff < Nth), apply one of the resampling procedures de-
scribed in Section 2.3.3 on {w̄(i)

t }Ni=1.

4. For i = 1, . . . , N , sample x(i)
t+1 ∼ q(xt+1|X(i)

t ,Yt+1).

5. Iterate from step 2.

A simple and intuitive choice for importance function, which is also the choice made
in [38], is to use

q(xt|Xt−1,Yt) = p(xt|xt−1). (2.50)
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The importance weights are then updated with

w(Xt) = p(yt|xt)w(Xt−1). (2.51)

The problem with choosing the weights according to (2.51) is that we could end up with
very skewed weights, particularly if the measurement yt is very informative (informative
in the sense that the support of p(yt|xt) is concentrated compared to p(xt|Yt−1)).

From (2.46) we see that if we choose

q(xt|Xt−1,Yt) = p(xt|xt−1, yt) =
p(yt|xt)p(xt|xt−1)

p(yt|xt−1)
, (2.52)

the weights according to (2.46) are updated with

w(Xt) = p(yt|xt−1)w(Xt−1), (2.53)

which is independent of xt. This means that the optimal choice of q(xt|Xt−1,Yt) with
respect to making the weights as uniform as possible with respect to xt, is given by (2.52)
[30]. The problem with the choice in (2.53) is that it only works for certain systems. More
specifically we must be able to compute

p(yt|xt−1) =
∫
p(yt|xt)p(xt|xt−1)dxt, (2.54)

which is not possible in the general case. Examples on when it is analytically tractable
are when the function h(·) in (2.4) is linear with respect to xt and the process and mea-
surement noises are Gaussian distributed (or distributed as Gaussian mixtures). Another
special case where (2.54) is analytically tractable is when xt only takes on a finite number
of different values, changing the integral to a summation.

A third alternative is to use only those realizations X(i)
t−1 which provide a high like-

lihood for yt. This is possible, before we draw new samples for xt, by evaluating e.g.
p(yt|f(x(i)

t−1)), where f(x(i)
t−1) is the prediction of x(i)

t−1 given by the state-space model
(2.4). A resampling at this stage, where the probability to pick X(i)

t−1 is p(yt|f(x(i)
t−1)),

would yield the desired result. This is the principle behind the auxiliary particle filter, see
[89], and we have

w(Xt) =
p(yt|xt)

p(yt|f(xt−1))
w(Xt−1). (2.55)

2.3.5 Asymptotic Properties

One can show that, under mild assumptions, a central limit theorem holds for the impor-
tance sampling method, see Theorem 2.3.

Theorem 2.3 (Central limit theorem for importance sampling)
Assume i.i.d. samples {X(i)

t }Ni=1, the support of q(Xt|Yt) includes that of p(Xt|Yt), and
the expectations

Ep(Xt|Yt)[g(xt)], Ep(Xt|Yt)[w(Xt)], Ep(Xt|Yt)[g(xt)g(xt)Tw(Xt)],
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exists and are finite. Then we have convergence in distribution for ĝNt according to

√
N(ĝNt − ĝt)

d−→ N (0,Σt),

Σt =
Eq(Xt|Yt)

[
w(Xt)2(g(xt)− ĝt)(g(xt)− ĝt)T

](
Eq(Xt|Yt)

[
w(Xt)

])2 ,
(2.56)

as N →∞. Moreover, a consistent estimate of the covariance Σt is given by

ĉov(ĝNt ) =
N∑
i=1

(
w̄

(i)
t

)2(g(x(i)
t )− ĝNt )(g(x(i)

t )− ĝNt )T , (2.57a)

N ĉov(ĝNt ) a.s.−→ Σt. (2.57b)

Proof: See [36].

We see from (2.57b) that the sample covariance of ĝNt tends to zero as O(N−1).

Remark 2.1. Note that in the perfect sampling case, i.e. q(Xt|Yt) = p(Xt|Yt), and with
g(xt) = xt we have

Σt = Pt|t, (2.58)

where Pt|t is the covariance of the estimate x̂t|t.

As a measure of sampling efficiency we can use the ratio between the sample variance
when using a set of samples drawn from the posterior directly (perfect sampling) and
the sample variance obtained through the use of importance sampling. The sampling
efficiency in its turn gives an expression for the effective sample size, Neff ≤ N . In
[63] it is shown that the sampling efficiency, assuming a scalar-valued function g(xt), is
approximately given by

N̂eff =
∑
i(g(x(i)

t )− ĝNt )2w̄
(i)
t∑

i(g(x(i)
t )− ĝNt )2(w̄(i)

t )2
. (2.59)

When we apply resampling we will lose the independence among the samples, and
thereby destroying the basic property for the convergence results to hold. A reasonable
question is whether it is necessary to perform any kind of resampling at all. The problem
here is that the variance of the importance weights can only increase with time. This
property is shown in [63] and it implies that as time progresses the weights will become
more and more nonuniform. A standard method for deciding when to resample is to
use the expression for approximate sampling efficiency according to (2.59). As soon as
N̂eff < Nth, where Nth is some predefined threshold, a resampling is carried out. Note
however that after the first resampling this expression must be used with care since it
assumes independent samples.

For the resampling to have its intended effect, i.e. to increase the effective sample size,
the sampling step must be such that it scatters the samples. Otherwise we will experience
what is referred to as the depeletion problem. To overcome the depletion problem we can
add artificial noise to the system, uadd

t . The idea here is to use more process noise in our
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model than what the true system really exhibits. Note that the additional noise should
only be added after a resampling. A standard choice for the distribution for uadd

t is

uadd
t ∼ N (0, κPt|t), (2.60)

where Pt|t is estimated covariance of x̂t|t computed for example according to (2.38b) and
the discount factor κ is a small number typically in the order of 0.01− 0.001. The idea of
introducing additional noise is not such a bad idea, considering the fact that we discretize
the state vector and in turn the densities involved. A way of dealing with discretization
errors is to add uncertainty in form of additional noise. The κ should therefore be such that
it accounts for the discretization error, i.e. κ should be a function of N . The drawback
with introducing additional noise is that we will inevitably lose information, meaning
that the estimated covariance of x̂t+1|t is larger than the actual covariance. One way of
dealing with this is to introduce correlation between xt and uadd

t such that the covariances
for x̂t+1|t and x̂t|t are the same, see [73] for more information on this subject. More
sophisticated methods for handling the depletion problem is to use kernel theory on the
samples [77], or to apply Markov Chain Monte Carlo (MCMC) methods [37].

Some convergence results for the particle filter exist. In [37] a central limit theorem
is presented for the case of sequential importance sampling with resampling and MCMC
moves. A more interesting result is given in [25] on mean-square convergence, see Theo-
rem 2.4.

Theorem 2.4 (Convergence for bounded functions)
Assume supxt∈Rnx |pet(yt − h(xt))| < ∞. Then there exists ct independent of N such
that for any bounded function g(xt)

E
[
(ĝNt − ĝt)2

]
≤ ct

supxt∈Rnx |g(xt)|
N

, (2.61)

where ĝNt and ĝt are given by (2.37).

Proof: See [25].

There are two problems with Theorem 2.4. First of all, it only includes bounded func-
tions g(xt), i.e. the standard least-mean-square estimate using g(xt) = xt is not covered.
Secondly, ct can very well grow with time, implying that an ever increasing number of
particles has to be used. To ensure a uniform convergence (ct = c), requirements must
be put on the dynamic model to exponentially forget any error. In practice this means
that for example the more noise the system exhibits, the better the particle filter should be
working. A very interesting result on convergence for the particle filter is given by [50].
This result includes unbounded functions g(xt), e.g. the least-mean-square estimate x̂t|t,
and is given by Theorem 2.5.

Theorem 2.5 (Convergence for unbounded functions)
For mild assumptions on the unbounded function g(xt) and involved densities, see [50]
for details, there exists ct independent of N such that

E
[
(ĝNt − ĝt)4

]
≤ ct(Yt)

maxs=0,...,t{1,Ep(xs|Ys)[g4(xs)]}
N2

, (2.62)

where ĝNt and ĝt are given by (2.37).
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Proof: See [50].

A problem with Theorem 2.5 is that it is not uniform with respect to the measurements
Ys. Moreover, the applicability of ct is not obvious as it typically grows rather quickly
with time t.

2.4 Marginalized Particle Filter

Theorems 2.4 and 2.5 show that asymptotically the rate of convergence as a function
of N is O(N−1/2). Note that this does not mean that the particle filter is independent
of the state dimension. On the contrary, in [26] they demonstrate that computational
complexity with respect to dimension is between polynomial and exponential, depending
on the problem and chosen particle filter algorithm. This is also confirmed in practice,
where it is easily shown by comparing problems of different dimensions that there is
a dependence. One possibility that can achieve a significant reduction of the sampling
variance is to take advantage of potential structure within the state-space model. If there
is any structure that can be solved using analytical, closed-form estimation techniques
then we should of course do so. For the remaining parts to be estimated we can resort to
sampling techniques. The remaining parts are however of lower dimension, meaning that
we should not have to use as many samples as before for the same accuracy.

2.4.1 General Description

Consider a state-space model which can be written on the form

xn
t+1 = fn

t (xn
t )+F n

t x
l
t+G

n
t u

n
t , (2.63a)

xl
t+1 = f l

t(x
n
t ) +F l

tx
l
t +Gl

tu
l
t, (2.63b)

yt = ht(xn
t ) +Htx

l
t+et, (2.63c)

where xt =
[
(xn
t )T (xl

t)
T
]T

. The superscripts n and l denote what part of the state
vector is nonlinear and linear respectively. We assume the noises and initial distribution
for xl

t have the properties given by (2.14)– (2.15). The essence of the marginalized particle
filter is the factorization of the pdf

p(xl
t,Xn

t |Yt) = p(xl
t|Xn

t ,Yt)p(Xn
t |Yt). (2.64)

By using the Rao-Blackwellization technique we use the fact that p(xl
t|Xn

t ,Yt) exists as
a closed-form expression, and that Ep(xl

t|Xn
t ,Yt)[g(xl

t)] exists and is possible to evaluate.
Recall the expression for the expected value of an integrable function g(xt) from (2.37)
repeated here for convenience

ĝt = Ep(xt|Yt)[g(xt)] ≈
N∑
i=1

w
(i)
t g(x(i)

t ) = ĝNt . (2.65)
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The expected value of g(xt) = g(xl
t, x

n
t ) can be written according to

ĝt = Ep(xt|Yt)[g(xt)] = Ep(Xn
t ,x

l
t|Yt)[g(xn

t , x
l
t)]

=
∫

Ep(xl
t|Xn

t ,Yt)[g(xn
t , x

l
t)]p(Xn

t |Yt)dXn
t

=
Eq(Xn

t |Yt)
[
Ep(xl

t|Xn
t ,Yt)[g(xn

t , x
l
t)]w(Xn

t )
]

Eq(Xn
t |Yt)[w(Xn

t )]

≈
N∑
i=1

w̄
(i)
t E

p(xl
t|X

n,(i)
t ,Yt)

[g(xn,(i)
t , xl

t)] = ĝNR,t.

(2.66)

From (2.66) we see that the mean and covariance of g(xt) = xn
t are the same as before,

i.e. computed according to (2.38a) and (2.38b). However, the mean and covariance of xl
t

are from (2.66) given by

x̂l
t|t ≈

N∑
i=1

w̄
(i)
t E

p(xl
t|X

n,(i)
t ,Yt)

[xl
t]

=
N∑
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w̄
(i)
t x̂

l,(i)
t|t ,

P l
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N∑
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w̄
(i)
t E

p(xl
t|X

n,(i)
t ,Yt)

[(xl
t − x̂l

t|t)(x
l
t − x̂l

t|t)
T ]

=
N∑
i=1

w̄
(i)
t

(
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l,(i)
t|t + (x̂l,(i)

t|t − x̂
l
t|t)(x̂

l,(i)
t|t − x̂

l
t|t)

T
)
.

(2.67)

In the expressions (2.67) we have used that the estimate and covariance of xl
t, condition-

ally upon a given realization Xn,(i)
t , denoted by x̂l,(i)

t|t and P l,(i)
t|t respectively, where

P
l,(i)
t|t = E

p(xl
t|X

n,(i)
t ,Yt)

[(xl
t − x̂

l,(i)
t|t )(xl

t − x̂
l,(i)
t|t )T ], (2.68)

are analytically tractable. Algorithm 2.3 provides the conceptual steps in the marginalized
particle filter. For details the reader is referred to Paper A.

Algorithm 2.3 (Marginalized particle filter).

1. Initialization: Initialize the particles and set initial values for the linear state vari-
ables, to be used in the Kalman filter.

2. Particle filter measurement update: evaluate the importance weights and normalize.

3. Resample with replacement (if necessary).

4. Kalman filter measurement update

5. Particle filter time update: Predict new particles.

6. Kalman filter time update.

7. Iterate from step 2.
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2.4.2 Filter for Terrain-Aided Navigation

The terrain-navigation application can be posed as a recursive state estimation problem
according to

xn
t+1 = fn

t (xn
t ) +F n

t x
l
t +Gn

t u
n
t , (2.69a)

xd
t+1 = fd

t (xn
t )+F d

t x
d
t +Gd

t u
d
t , (2.69b)

xl
t+1 = f l

t(x
n
t ) +F l

tx
l
t +Gl

tu
l
t, (2.69c)

yt = ht(xn
t ) +Htx

d
t + et(λt). (2.69d)

Here xn
t , xd

t and xl
t correspond to horizontal position, altitude and remaining navigation

quantities respectively. Note the mode dependent measure noise et(λt). The purpose of
the mode variable λt is to model the bimodal character of the radar measurements. For
example, flying over dense forrest yields radar measurements which can either correspond
to distance to ground or the tree tops. We could apply Algorithm 2.3 to estimate [xl

t x
d
t ]T

and xn
t respectively. However, using the GPB1 filter according to Algorithm 2.1, we

would need two multi-dimensional Kalman filters running in parallel. The remedy is to
use the structural independence in (2.69) between xd

t and xl
t, which makes it possible to

further split the estimation. The posterior probability density can be factorized according
to

p(xl
t, x

d
t ,Xn

t |Yt) = p(xl
t|Xn

t ,Yt)p(xd
t |Xn

t ,Yt)p(Xn
t |Yt). (2.70)

This means that, conditionally upon Xn
t , we can estimate xl

t and xd
t independently of

each other. We can estimate the mode dependent xd
t with two one-dimensional Kalman

filters and apply a single Kalman filter for estimation of xl
t. Algorithm 2.4 provides the

conceptual steps in the Terrain-Aided Navigation Filter. For details the reader is referred
to Paper B.

Algorithm 2.4 (Terrain-Aided Navigation Filter).

1. Initialization: Initialize the particles and set initial values for the linear state vari-
ables, to be used in the Kalman filter.

2. Particle filter measurement update: evaluate the importance weights and normalize.

3. Resample with replacement (if necessary).

4. GPB filter measurement update and merge

5. Kalman filter measurement update

6. Particle filter time update: Predict new particles.

7. Kalman filter time update.

8. GPB filter time update.

9. Iterate from step 2.

The filter from paper B has been tested on authentic flight data as described in [47, 48].



2.4 Marginalized Particle Filter 31

2.4.3 Asymptotic Properties

Similar to Theorem 2.3 one can derive a central limit theorem for the case with the Rao-
Blackwellization technique applied. The result is given by Theorem 2.6

Theorem 2.6 (CLT for Rao-Blackwellization)
Assume i.i.d. samples {X(i)

t }Ni=1, the support of q(Xt|Yt) includes that of p(Xt|Yt) and
that the involved expectations exist and are finite. Then we have convergence in distribu-
tion for ĝNt according to

√
N(ĝNR,t − ĝt)

d−→ N (0,ΣR,t),

ΣR,t =
Eq(Xn

t |Yt)

[
Ep(xl

t|Xn
t ,Yt)[(g(xt)− ĝt)(g(xt)− ĝt)T ]w(Xn

t )2
]

(
Eq(Xn

t |Yt)
[
w(Xn

t )
])2 ,

(2.71)

as N →∞. A consistent estimate of ΣR,t and the sample covariance cov(ĝNR,t) are given
by

ĉov(ĝNR,t)

=
N∑
i=1

(
E
p(xl

t|X
n,(i)
t ,Yt)

[g(i)(xt)− ĝt]
)(

E
p(xl

t|X
n,(i)
t ,Yt)

[g(i)(xt)− ĝt]
)T (w̄(i)

t )2,

N ĉov(ĝNR,t)
a.s.−→ ΣR,t

(2.72)

where g(i)(xt) = g(xn,(i)
t , xl

t).

Proof: See [29].

One can also show that, in accordance with our intuition, the variance obtained when
applying Rao-Blackwellization is always less than or equal to the variance when not ap-
plying it, see Corollary 2.1.

Corollary 2.1 (Rao-Blackwellization variance reduction)
Assume that the assumptions given in Theorem 2.3 are valid and that the expectations
involved exist and are finite. Then

Σt − ΣR,t =
Eq(Xn

t |Yt)

[
covq(Xl

t|Xn
t ,Yt)

(
(g(xt)− ĝt)w(Xt)

)]
(
Eq(Xt|Yt)

[
w(Xt)

])2 ≥ 0, (2.73)

where Σt and ΣR,t are given by (2.56) and (2.71) respectively.

Proof: See [28].

From Lemma 2.1 we conclude that, when the average conditional variance of g(xt) is
high we can gain a lot using Rao-Blackwellization.

To be more specific about what we can gain using Rao-Blackwellization, consider a
system according to (2.63) where Ht ≡ 0. Compare with terrain-aided navigation (2.69)
where Ht = 0 with respect to xl

t. In this case we have

p(Xt|Yt) = p(Xl
t|Xn

t ,Yt)p(Xn
t |Yt) = p(Xl

t|Xn
t )p(Xn

t |Yt), (2.74)
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where the second equality stems from the fact that if Xn
t is given then Yt provides no

further information. Based on (2.74) and the assumption that we use q(Xt|Yt) = p(Xt) as
importance function we can simplify the expression for the importance weight according
to

w(Xt) = p(Yt)
p(Xt|Yt)
p(Xt)

= p(Yt)
p(Xl

t|Xn
t )p(Xn

t |Yt)
p(Xl

t|Xn
t )p(Xn

t )

= p(Yt)
p(Xn

t |Yt)
p(Xn

t )
= w(Xn

t ).
(2.75)

This means that the importance weight only depends on Xn
t whether we apply Rao-

Blackwellization or not. We can now rewrite (2.73) according to

Σt − ΣR,t =
Ep(Xn

t )

[
w(Xn

t )2covp(xl
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t )

(
g(xt)− ĝt

)](
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n,(i)
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t , xl
t)− ĝt

)
.

(2.76)

From (2.76) we see that for g(xt) = xn
t we gain nothing using Rao-Blackwellization in

this case, because covp(xl
t|Xn

t )(xn
t − x̂nt|t) = 0. On the other hand, for g(xt) = xl

t we have
that

cov
p(xl

t|X
n,(i)
t )

(xl
t − x̂l

t|t) = P
l,(i)
t , (2.77)

which inserted into (2.76) yields

Σt − ΣR,t ≈ N
N∑
i=1

(w̄(i)
t )2P

l,(i)
t . (2.78)

Before we can draw any conclusions we have to consider the resulting variance from
(2.72) for g(xt) = xl

t, which is

ΣR,t ≈ N
N∑
i=1

(w̄(i)
t )2(x̂l,(i)

t|t − x̂
l
t|t)(x̂

l,(i)
t|t − x̂

l
t|t)

T . (2.79)

By comparing (2.78) with (2.79) we see that if the covariances P l,(i)
t provided by the

Kalman filters are large compared to the corresponding spread of the mean terms (x̂l,(i)
t|t −

x̂l
t|t)(x̂

l,(i)
t|t − x̂

l
t|t)

T we should be able to gain a lot by applying Rao-Blackwellization.
In practice we are confined to use a finite number of samples in combination with

resampling. In this case, including when the Kalman filter covariances P l,(i)
t are small or

even zero, there is a potentially even higher gain in using Rao-Blackwellization. For an
illustration see Example 2.3.

Example 2.3: Rao-Blackwellization
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Consider the system

xt+1 =
[
xn
t

xl
t

]
=
[
1 1
0 1

]
xt +

[
1
1

]
ut.

yt = h(xn
t ) + et,

(2.80)

In this case

xl
t+1 = xl

t + ut = xl
t + xn

t+1 − xn
t − xl

t = xn
t+1 − xn

t , (2.81)

where we have used ut = xn
t+1 − xn

t − xl
t. In words, xl

t+1 is known given xn
t+1 and xn

t

meaning that P l,(i)
t+1|t = 0. From (2.78) and (2.79), we can conclude that here we gain

nothing from Rao-Blackwellization. However, this is not necessarily true for a finite N
in combination with resampling. A study with 10000 simulations and

h(xn
t ) = xn

t , Q = 22, R = 52, P0 =
[
502 0
0 102

]
, (2.82)

yields the result as shown in Figure 2.3. Here we use a linear measurement equation to
be able compute and compare with the optimal estimate given by the Kalman filter. The
Root Mean Square Error (RMSE) is computed according to

RMSE =
(

1
10000

10000∑
m=1

(x̂(m)
3|2 − x

true,(m)
3|2 )(x̂(m)

3|2 − x
true,(m)
3|2 )T

)1/2

. (2.83)

We see that here it is most effective to use both resampling and Rao-Blackwellization.
The reason is that resampling by itself, despite introducing dependence, improves estima-
tion performance. Moreover, a resampling in combination with Rao-Blackwellization in-
creases the performance even more. The reason is that if we do not use Rao-Blackwellization
we initialize by sampling both xn

0 and xl
0. A resampling will result in many samples where

x
n,(i)
0 are the same but also many xl,(i)

0 . The time update of xn,(i)
0 is given by

x
n,(i)
1|0 ∼ N

(
x

n,(i)
0 + x

l,(i)
0 , Q

)
. (2.84)

Here many of the samples will still be approximately the same, particularly if Q is small.
For the case with Rao-Blackwellization we time update the samples according to

x
n,(i)
1|0 ∼ N

(
x

n,(i)
0 , Q+ P l

0

)
. (2.85)

We see that the diversity among the samples increases because of the additional covari-
ance term P l

0 in (2.85).
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Figure 2.3: A comparison between x̂n
3|2 and x̂l

3|2 for the system (2.80) with param-
eters given by (2.82) computed by using no resampling, resampling, resampling and
Rao-Blackwellization (R-B), and the Kalman filter. The RMSE is based on 10000
simulations. Resampling is applied after the first measurement.



3
Efficient Detection

3.1 Sense and Avoid

The principle for the sense and avoid system under consideration is depicted in Figure
3.1. The intruder must first be detected by a sensor, in this case a video camera. After
detection the sensor feeds a tracking filter with readings of azimuth and elevation angles
relative to the intruder. Based on the angle measurements the tracking filter estimates
target position and velocity. Finally we compute the probability of near mid-air collision
using estimated relative position and velocity. If the probability is large an avoidance
maneuver is initiated.

3.1.1 Sensor

There are many sensors applicable for collision avoidance. We will focus on electro-
optical sensors, and more specifically video cameras. The advantage with video cameras
is that they are much less expensive and readily available as Commercial Off-The-Shelf
(COTS) compared to for example radars. Moreover, the bearing accuracy is very high
(similar to or better than the human eye). The resolution of a video camera is today
typically 0.1 − 1 mrad. As an example the human eye normally has a spatial resolution
of about 0.3 mrad. Video cameras with silicon Charged Coupled Devices (CCDs) have
sensitivities well into the near infrared area (≈ 1 · 10−6 m), which exceeds the capability
of the human eye. The most prominent problems with cameras are that range is not
measured and that they are limited to high visibility atmospheric conditions and daytime
light conditions. Note however that the visibility conditions apply to the human see and
avoid capability as well. Several sensors can be mounted on a rack to cover required field
of regard or view, ±110 deg horisontally and ±15 deg vertically, see Figure 3.2.

Background movement is measured by analyzing the optical flow between successive
frames. An object can then be detected which moves in a manner that deviates from the
background [75]. For example, a vehicle on collision course is approximately still in

35
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Figure 3.1: Concept for sense and avoid.

successive frames and thereby provides the means to distinguish it from the background.
Typical detection distance for a video camera with a resolution of 0.3 mrad, assuming
good visibility conditions and a target cross-section of 3 m2, is around 4000 m with 90%
probability of detection. This is confirmed by the demonstration described in [75]. The
demonstration showed a probability of detection, here defined as the number of correct de-
tections divided by number of frames processed, using off-line processing close to 100%
at a distance of 4000 m. At the same time probability of false alarm, here defined as
number of false detections divided by number of frames and pixels per frames, was ap-
proximately 0.01%. For a comparison the human eye is capable of detecting an intruder at
a distance of approximately 3000 m (F-16 with probability 90%) [75]. Intutively, on-line
processing with platform vibrations will worsen the result [107].

3.1.2 Tracking

The purpose of target tracking is to estimate the kinematic state of a target or intruder
based on noisy measurements. This is a recursive state estimation problem, and the theory
in Section 2 is applicable. The state is usually confined to relative position s and velocity
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Figure 3.2: Example on camera mounting.

v, in Cartesian coordinates given by

xcar =
[
sX sY sZ vX vY vZ

]T
. (3.1)

Relative position is obtained by subtracting intruder position and own position, i.e.

s = sint − sown, (3.2)

and equivalently for relative velocity. In angle-only tracking the measurements are az-
imuth and elevation, denoted by η and ε respectively. These angles are defined by

η = arctan
(
sY
sX

)
, (3.3)

ε = arctan
(

sZ√
s2
X + s2

Y

)
. (3.4)

For good tracking performance it is important to model the motion of the intruder as
accurately as possible. The simplest model is based on the assumption that the target has
approximately constant velocity, i.e.[

v̇int
X v̇int

Y v̇int
Z

]T ≈ [0 0 0
]T
. (3.5)

If it is inappropriate to assume constant velocity there are other possible models which
deal with motion in one way or another [94]. The own vehicle is subject to acceleration
particularly during an avoidance maneuver[

v̇own
X v̇own

Y v̇own
Z

]T =
[
aX aY aZ

]T
, (3.6)

where the acceleration is measured accurately typically by an Inertial Navigation System
(INS).
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It is a well known fact that distance or range is unobservable for angle-only measure-
ments and a constant relative velocity. To gain full observability the observer platform
must out-maneuver the target, i.e. there must be higher non-zero derivative of the ob-
server motion compared to the target [14, 99]. Very inaccurate range estimates can yield
large linearization errors. This can affect the other, observable states such that they di-
verge. In other words, the unobservable range can affect tracking filter stability.

There are two widely used methods for angle-only tracking, Range Parameterized
EKF (RP-EKF) and Modified Spherical EKF (MS-EKF). Both are known to provide sta-
ble estimates of the target state vector. The principle behind MS-EKF is to decouple the
observable states from the non-observable range. This is accomplished by representing
the state vector in modified spherical coordinates according to [34]

xmsc =
[

1
r η ε ṙ

r η̇ cos ε ε̇
]T
,

r =
√
s2
X + s2

Y + s2
Z .

(3.7)

From the motion equations for xmsc it is clear that the first state representing the inverse of
range is decoupled from the other states during periods with constant velocity [34]. The
principle of RP-EKF is to apply a Gaussian sum filter as demonstrated by Example 2.1.
For examples on typical tracking filter performance when using an angle-only sensor see
e.g. [56, 34, 72]. Note that it is highly important to accurately estimate not only the mean
but the covariance matrix, denoted by P , as well. This is due to the fact that when we
compute probability of Near Mid-Air Collision (NMAC) based on tracking data we need
the probability density function (pdf) for the state vector. In case of a Gaussian distributed
state vector the mean and covariance give a complete description of the pdf. A justified
question is whether the output from the tracking filter is normally distributed or not. The
results using MS-EKF given by [72] indicate that the output from the tracking filter is
indeed normally distributed. Due to the low observability along line-of-sight, angle-only
tracking typically results in large covariances for the variables along line-of-sight (range
and closing speed).

The natural extension of the standard EKF to deal with a maneuvering target, where
the maneuvering is well modeled by a discrete parameter, is to apply the IMM filter [16].
Note however it is not clear that the IMM outperforms EKF merely based on whether the
target maneuvers or not [59]. Another important issue to deal with is data or measurement
association in case of multiple-target tracking [14].

3.1.3 Near Mid-Air Collision Avoidance

There are numerous methods which provide collision avoidance, see for example [69]
for a survey of different methods for conflict detection and resolution. Note that many
of the methods investigated in [69] are primarily for separation assurance and not NMAC
avoidance, although the basic principle is the same. The main difference is with respect to
time, separation conflict is usually detected and resolved at a much earlier stage compared
to a last resort collision avoidance maneuver.

We adopt a probabilistic framework, since the uncertainties are of the same magni-
tude or larger compared to the safety zone. The uncertainties come from the tracking
filter estimating the intruder’s position and velocity. Given an estimated state vector and
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covariance from the tracking filter we must avoid NMACs with a predefined probabil-
ity. At the same time we must not initiate an avoidance maneuver if not really necessary,
i.e. the probability for nuisance maneuvers shall not exceed a predefined level. A nui-
sance maneuver causes an unnecessary interruption to the mission of the vehicle which is
undesirable.

We are interested in the probability of NMAC for a predicted trajectory. As long as
there is at least one trajectory which complies with an acceptable maximum risk nothing
happens, i.e. the flight continues along its predetermined trajectory. If the probability for a
particular trajectory exceeds the acceptable level, we need to find another trajectory which
has a probability less than the acceptable level, compare with Figure 3.3. If the trajectory

Figure 3.3: An illustration of an encounter with the ellipse representing the uncer-
tainty of intruder position. Here two trajectories, corresponding to a maneuver (man)
and no maneuver (nom), are checked. At time ta the maneuver trajectory results in
an acceptable P(NMAC|man), here less than 0.05, and the flight continues along
nom. At time ta + 1 the maneuver trajectory yields P(NMAC|man) = 0.05. If no
other maneuver yields a lower probability man is initiated.

corresponding to a last resort avoidance maneuver exceeds the level of acceptable risk
at the subsequent time instant the evasive maneuver is executed immediately. The main
reason for executing an avoidance maneuver as late as possible is to minimize the amount
of nuisance maneuvers [103]. The tracking filter accuracy increases over time since the
estimate is based on more measurements. The more certain estimate of intruder position
and velocity we have access to the better we can judge whether an avoidance maneuver is
really necessary or not.

For an accurate estimate of probability of NMAC we must be able to accurately predict
the relative trajectory. The predicted trajectory must also be feasible, i.e. the trajectory
must be such that it corresponds to a maneuver which the vehicle can actually perform.
This means that the acceleration in (3.6) is limited, where the actual limit dependence on
vehicle platform and power.
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3.2 Probability of Near Mid-Air Collision

Denote the predicted relative position with s(t), where t = 0 represents the present time.
For a predicted trajectory the probability of NMAC is

P(NMACt>0) = P
(

min
t>0
|s(t)|<R

)
, (3.8)

where |s(t)| corresponds to the distance between the vehicles and R is the safety zone
radius. Here we assume the safety zone is given by a sphere. This is not necessary, but
it makes the notation simpler. The probability (3.8) is a prediction from current time into
the future. This means that (3.8) is actually a function of current time, denoted with ta (a
as in absolute time). Usually we omit the dependence on ta for notational convenience.

Closest point of approach (CPA) is the point where the distance between two vehicles
is at its minimum. For an illustration see Example 3.1.

Example 3.1

For a straight trajectory CPA occurs when the vectors representing relative position and
relative velocity respectively are perpedendicular. Time to CPA, tcpa, is for a constant
velocity defined by the equation

vT s(tcpa) = vT (s(0) + vtcpa) = 0. (3.9)

Using the closest point of approach we can write the probability of NMAC as

P(NMACt>0) = P
(
|CPA|<R

)
. (3.10)

There are other suggestions on risk measures, where the most common found in lit-
erature is the instantaneous probability of NMAC (or conflict with respect to separation)
given by [90, 91, 22, 23]

P(NMACt) = P
(
|s(t)|<R

)
, (3.11)

which is then typically maximized over t. A collision detection system based on bearing
measurements explicitly is described in [6], without providing any details about parameter
settings. In [62] they investigate the performance of a collision avoidance system based on
line-of-sight rate, and come to the conclusion that range information is highly beneficial.

The definition of probability of NMAC according to (3.8) and (3.10) yields the prob-
ability for a predicted trajectory. We can compute probability of NMAC for a predicted
trajectory by sampling N times from estimated intruder state vector and for each sample
i compute CPA(i). Then P(NMACt>0) is approximately given by

P(NMACt>0) ≈ 1
N

N∑
i=1

I
(
|CPA(i)|<R

)
, (3.12)

where I(·) is the indicator function. For an illustration see Figure 3.4.
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Figure 3.4: Sample N times (in the picture N = 3) from estimated intruder state
vector and compute {|CPA(i)|}Ni=1. Then P(NMAC) is approximately given by the
frequency of |CPA(i)| < R.

3.3 Detection using hypothesis testing

Near mid-air collision avoidance can be cast as a hypothesis testing [57, 105, 51], where
the hypotheses are

H0 : no NMAC encounter⇔ NMACt>0 ⇔ |CPA| > R,
H1 : NMAC encounter⇔ NMACt>0 ⇔ |CPA| < R.

(3.13)

These hypotheses are either outcomes or assumed known depending on the context. The
actions of the NMAC avoidance system is either an avoidance maneuver initiated at any
absolute time ta (= avoidance) or no avoidance maneuver at all (= no avoidance). Since
we consider relative position and velocity to be stochastic we do not know, in advance,
what the outcome of the encounter will be exactly. We need to resort to the probability of
the outcome. The characterization of the performance of the NMAC avoidance system is
possible through [109]

avoidance unsuccessful⇔ H1

∣∣ avoidance, (3.14a)

avoidance necessary⇔ H1

∣∣ no avoidance. (3.14b)

The events in (3.14) means that the encounter results in a NMAC given an avoidance
maneuver or no avoidance maneuver respectively. It is desirable to have a system which
achieves a low probability of unsuccessful avoidance when the necessity of avoidance is
high. On the other hand, when there is no need for avoidance, i.e. probability of avoidance
necessary is low, then the system should not initate any avoidance maneuver.

Remark 3.1. Compare with standard notation in detection theory, i.e. missed detection
and false alarm, which here corresponds to

missed detection⇔ no avoidance
∣∣H1, (3.15a)

false alarm⇔ avoidance
∣∣H0. (3.15b)

The second event (3.15b) is also referred to as a nuisance maneuver. The main problem
with (3.15) is that it does not provide any information regarding the success of any applied
avoidance maneuver.

The principle of computing the probability of NMAC for a predicted trajectory fits
nicely in a setting where there is a requirement on maximum acceptable probability of
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NMAC. Assume the requirement is that the collision avoidance system must have a certain
capability of avoiding NMACs, i.e.

P(avoidance unsuccessful) = Preq. (3.16)

Assume that we, at a certain absolute time ta, have a computed probability of NMAC that
is Preq. The computed value is based on the relative state probability density function
(pdf) and a predicted relative trajectory. Consider now that we simulate a large number
of encounter simulations at the same time ta using (3.12). The initial conditions are
given by the same relative state pdf and the predicted trajectory is the same as well. The
outcome, i.e. the frequency of NMACs, will tend to Preq as the number of simulations
tend to infinity. This is quite intuitive, and is also confirmed in [72]. To simplify further
analysis and be able to focus on the risk assessment computations we need to make three
assumptions

• The video camera has detected the intruder at a minimum distance,

• The tracking filter estimate of relative state is sufficiently accurate,

• The vehicle has a minimum maneuverability.

The extent of these assumptions (minimum distance, sufficiently accurate and minimum
maneuverability) must be such that Preq is larger than computed P(H1

∣∣ avoidance) at
the point in time ta when the first risk assessment computation is performed. Then for
successive computations of P(H1

∣∣ avoidance), if it at any point reaches Preq we initiate
the avoidance maneuver, compare with Figure 3.3. The outcome of encounter simulations,
the frequency of unsuccessful avoidance, will then tend to

P(avoidance unsuccessful) = Preq. (3.17)

The fact that we in practice compute P(H1

∣∣ avoidance) at discrete points in time ta
means that the result will never be identical to Preq. Note that (3.17) does not make
any distinction between whether the encounter is NMAC or non-NMAC for the original,
no avoidance trajectory. The case with a non-NMAC encounter resulting in avoidance
unsuccessful is often referred to as an induced NMAC. We also know that Preq will
not be exceeded if no avoidance maneuver is executed, i.e. the outcome of encounter
simulations will tend to

P(avoidance necessary) < Preq, (3.18)

This result is explained by the fact that the probability of avoidance unsuccessful and
avoidance necessary will approach each other and eventually coincide at or near closest
point of approach, see Example 3.2. Any avoidance maneuver becomes less effective the
closer the relative position is to CPA. Since an avoidance maneuver is never initiated and
the probabilities coincide the relation follows.

Compare the result above with instantaneous probability, or any other method for
that matter, where we need to find thresholds Pth which yield as a result the required
probability because Pth 6= Preq. The encounter simulations would now have to include
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the verification of the thresholds. Moreover, the thresholds are in general neither easy to
find or constant with respect to e.g. tracking performance [72].

Using the probability of NMAC computed for a predicted trajectory the encounter
simulations can focus on verifying sensor and tracking filter performance. For example
we need camera probability of detection and tracking filter convergence, both as func-
tions of distance. The result must be such that there is enough distance left for at least one
avoidance maneuver, with a collision risk below the requirement, to be available. More-
over, camera probability of false alarm and tracking filter performance must be such that
maximum level of false alarm rate is not exceeded. For example, the more uncertain the
tracking filter is the more nuisance avoidance maneuvers will be executed because the
probability of NMAC will be larger for non-NMAC encounters, i.e.

P(avoidance
∣∣H0) = P(nuisance) (3.19)

will be larger for a worse tracking performance. As noted earlier this is the argument
for waiting as long as possible before initiating an avoidance maneuver. The longer we
can wait the more time will the sensor and tracking filter have to detect and converge
respectively. To obtain the probability of nuisance maneuvers we typically have to resort
to simulations. For an illustration of probability of avoidance unsuccessful and avoidance
necessary see Example 3.2.

Example 3.2
Consider two near head-on collision scenarios in two dimensions, see Figure 3.5, with

Figure 3.5: A NMAC and a non-NMAC encounter in a relative coordinate system
with the x−axis pointing along line-of-sight. The ratio of mean and standard devia-
tion is set to five for distance and closing speed. Standard deviation for distance and
speed orthogonal to line-of-sight are both two. Initial distance |s(0)| is 1500 meters
and speed |v(0)| is 100 m/s.

|CPA| = 100 and 200 meters respectively. The two scenarios correspond to a NMAC
and non-NMAC encounter respectively. Probability of NMAC with and without avoid-
ance maneuver is shown in Figure 3.6 as a function of absolute time ta. The avoidance
maneuver is simplified such that an instantaneous turn of 60 degrees is performed at time
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ta + 3. Note that the two curves eventually coincide which is quite intuitive considering
the effect of an avoidance maneuver is gradually reduced and eventually it has no effect at
all at or near closest point of approach. Here we assume Preq = 0.05, which means that
P(H1

∣∣ avoidance) is 0.05. In the left plot we conclude that the P(H1

∣∣ no avoidance) is
approximately 0.98−0.99, which is obtained from the gap between zero and the no avoid-
ance trajectory curve at the time the avoidance trajectory curve crosses the Preq−level. In
the right plot the avoidance trajectory curve never exceeds 0.05 and therefore no avoid-
ance maneuver will be executed. This is desirable because probability of avoidance nec-
essary, represented by the no avoidance trajectory curve, tends to a small value below the
Preq−level. If a smaller Preq is used then probability of avoidance unsuccessful will be
smaller. However, we would also obtain a larger probability of avoidance unnecessary
if the lower Preq−level cuts the avoidance trajectory curve in the non-NMAC scenario.
For more information and several examples on the performance of collision avoidance
systems see [68, 109].

Figure 3.6: Probability of NMAC as a function of absolute time, no maneuver and
avoidance maneuver (instantaneous after 3 sec) respectively. Left plot shows the
NMAC encounter and the right the non-NMAC encounter from Figure 3.5.

3.4 Probability of level-crossings

The problem with the Monte-Carlo method (3.12) is that it requires a too large number
of samples, see Paper C. We need to find another method for computing probability of
NMAC which is computationally tractable for real-time processing. A way forward is
to look upon NMAC as a level-crossing, or down-crossing, of the surface of the safety
sphere, see Figure 3.7. Here we use a coordinate system which is rotated such that

ŝy(0) = ŝz(0) = 0, (3.20)

i.e. the x−axis is aligned with line-of-sight.
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Figure 3.7: A NMAC occurs if the relative position crosses the surface of the sphere.

We assume the predicted relative trajectory is deterministic conditionally upon initial
intruder state. That is, given the initial state the future trajectory of the intruder is known.
Typically we assume the intruder follows a straight path. Here we consider short periods
of time, say prediction times up to a minute. For disturbances along the path which are
not excessive the assumption on a known future relative trajectory given the initial state
should not be too far from the truth. For the own vehicle we have the possibility to use
more or less complex motion models for prediction due to known dynamics. It is probably
useless though to use too complex models since the true trajectory will deviate more or
less from the predicted. The result on short-range conflict detection given in [91] can be
used to determine the effect of disturbances and modelling errors. To be able to compute
probability of NMAC for a predicted trajectory we will assume that the relative position
follows a piecewise straight path. In practice this is obviously not correct, but it is possible
to make the error arbitrarily small by making the straight segments short enough.

For computational tractability we need to limit the predicition time t to a finite T , i.e.
we consider the event NMAC(0,T ) instead of NMACt>0. This is no restriction as long as
T is larger than the time it takes to perform an avoidance maneuver and some additional
time for the effect of the maneuver to become evident in the probability.

3.4.1 One dimension and constant velocity

In one dimension the process describing relative position sx(t) is confined to lie on a
straight line. Assume we wish to compute the probability

P
(

min
0<t<T

sx(t) < 0
)
. (3.21)

Recall that t represents prediction time, and that (3.21) is also a function of absolute time
ta. This probability can be split using two mutually exclusive events, sx(0) < 0 and
sx(0) > 0. At the same time we note that if sx(0) < 0 we automatically have that the
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minimum of the process is less than zero, i.e.

P
(

min
0<t<T

sx(t) < 0
)

= P
(

min
0<t<T

sx(t) < 0 ∩ sx(0) > 0
)

+ P
(
sx(0) < 0

)
.

(3.22)

The first probability in the sum in (3.22) can be seen as a level-crossings problem. The
position sx(t) must cross the level zero since it starts with sx(0) > 0, i.e. a down-crossing.
Let us start by considering a constant velocity

ṡx(t) = vx(t), 0 < t < T, (3.23a)
vx(t) = vx(0), (3.23b)

which means that we can reformulate the down-crossings probability according to

P
(

min
0<t<T

sx(0) + vx(0)t < 0 ∩ sx(0) > 0
)
. (3.24)

If a down-crossing is to occur the relative velocity must be negative, otherwise sx(t) will
only increase. Moreover, the minimum of sx(0) + vx(0)t with a negative velocity and
0 < t < T is attained at t = T . We can therefore write the probability as

P
(
sx(0) + vx(0)T < 0 ∩ sx(0) > 0 ∩ vx(0) < 0

)
. (3.25)

This event is depicted in Figure 3.8. The ellipse represents the joint probability density
function (pdf) for sx(0) and vx(0) and is denoted by psx(0),vx(0)(s, v). We see from

Figure 3.8: The probability density for sx(0) and vx(0) integrated over the area
sx(0) > 0 and vx(0) < −sx(0)/T yields the probability of τ < T .

Figure 3.8 that the sought probability is given by the integral of psx(0),vx(0)(s, v) over the
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area limited by sx(0) > 0 and vx(0) < −sx(0)/T . To simplify the expression for the
probability we can define a time τ according to

τ =
{ sx
−vx if sx> 0 ∩ vx< 0,
∞ otherwise,

(3.26)

which yields the expression

P
(
sx(0) + vx(0)T < 0 ∩ sx(0) > 0 ∩ vx(0) < 0

)
= P(τ < T ). (3.27)

The time τ can be interpreted as a time-to-go (ttg), i.e. the time left before sx(τ) =
0. Based on the distribution for τ it is straightforward to obtain the expression for the
probability density function

pτ (t) =

0∫
−∞

−vpsx,vx(−vt, v)dv, t <∞. (3.28)

See Example 3.3 for the case with Gaussian distributed variables.

Example 3.3: Gaussian distributed sx(0) and vx(0)
If sx(0) and vx(0) are jointly Gaussian distributed,[

sx
vx

]
∼ N

([
ŝx
v̂x

]
,

[
σ2
sx ρxσsxσvx

ρxσsxσvx σ2
vx

]
︸ ︷︷ ︸

Psx

)
, (3.29)

we have

P(τ < T )

=
1

2πσsxσvx(1− ρx)1/2

0∫
−∞

−vT∫
0

e
− 1

2

s− ŝx
v − v̂x

TP−1
sx

s− ŝx
v − v̂x


dsdv

(3.30)

The expression for pτ (t) is derived in Appendix A.

Note that it is possible to obtain the expression for P(τ < T ) through the use of Rice’s
formula [71]. Rice’s formula gives a method for computing the intensity of level-crossings
for a stochastic process.

3.4.2 One dimension and piecewise constant velocity

The result for a straight path is possible to extend to a piecewise straight path given by

ṡ(t) = v(j), Tj < t < Tj+1, (3.31a)

v(j) = v(0) +
j∑
l=1

∆v(l), (3.31b)
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where all ∆v(j) are known. An important observation is that if it is unlikely that v(j)
x

changes sign, i.e.

P
(
sign(v(j)

x ) = sign(v(0)
x )
)

= 1, (3.32)

or very close to one, then NMAC(Tj ,Tj+1) for different j:s are mutually exclusive. With
this assumption we can write

P(NMAC(0,T )) = P(∪J−1
j=0 NMAC(Tj ,Tj+1))

=
J−1∑
j=0

P(NMAC(Tj ,Tj+1)).
(3.33)

Now we can focus the computation on each segment with constant velocity v(j). By
considering what the initial conditions at t = 0 would be if the position and velocity are
s(Tj) and v(j) at t = Tj we can reuse the results from the case with constant velocity.
Denote the new relative position at t = 0 by s(j), and we have

s(j) = s(Tj)− Tjv(j). (3.34)

An advantage using s(j) instead of s(Tj) comes from the fact that the covariance of s(j) is
equal to the covariance of s(0) for all j = 0, . . . , J − 1. This is clear from the expression

s(j) = s(0)−
j∑
l=1

Tl∆v(l), (3.35)

which is derived in Paper C. The probability of down-crossing is now given by

P(NMAC(0,T )) =
J−1∑
j=0

P(Tj < τ (j) < Tj+1), (3.36)

where

τ (j) =

{
s(j)x
−v(j)x

if s(j)
x > 0 ∩ v

(j)
x < 0,

∞ otherwise,
(3.37)

3.4.3 Two dimensions

In two dimensions the probability of NMAC is

P(NMAC(0,T )) = P
(

min
0<t<T

√
s2
x(t) + s2

y(t)<R
)
, (3.38)

that is the relative position shall not cross the circle with radius R. A reasonable ap-
proximation is to consider the crossing of a line perpendicular to line-of-sight, see Figure
3.9. For notational convenience we place the line at x = 0, keeping in mind that we
have the possibility to change the outcome by changing the location of the line. The
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Figure 3.9: The crossing of the circle is approximated by the crossing of a line.

only requirement is that the line must be orthogonal to line-of-sight (x−axis). The rea-
son is that we can reuse the results from Section 3.4.1. The stochastic time τ provides a
measure on time-to-go, i.e. the time left before the relative position crosses the y−axis.
If the velocity |vy(0)| is too small there will be a crossing, too small in the sense that
|vy(0)τ + sy(0)| < R. This means that we can express the probability of NMAC within
T seconds according to

P(N̂MAC(0,T )) = P(|vy(0)τ + sy(0)|<R ∩ τ <T ). (3.39)

The event N̂MAC(0,T ) denotes the crossing of the safety line instead of the safety circle,
see Figure 3.9. In the case where τ is independent of sy(0) and vy(0) it is possible to
express the sought probability according to

P(N̂MAC(0,T )) =

T∫
0

P(|vy(0)t+ sy(0)|<R)pτ (t)dt. (3.40)

For an illustration see Example 3.4.

Example 3.4: Gaussian distributed state vector in two dimensions
If sy(0) and vy(0) are Gaussian distributed[

sy(0)
vy(0)

]
∼ N

([
ŝy(0)
v̂y(0)

]
, Py

)
, (3.41)

then vy(0)t+ sy(0) is also Gaussian distributed

sy(0) + vy(0)t ∼ N
(
ŝy(0) + v̂y(0)t,

[
1 t

]
Py

[
1
t

])
. (3.42)

Moreover, if sx(0) and vx(0) are Gaussian distributed as in Example 3.3, then the ex-
pression for pτ (t) is given by Appendix A. If sx(0) and vx(0) are uncorrelated with
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sy(0) and vy(0) the expression for probability of NMAC according to (3.40) is applica-
ble. Probability of NMAC can then computed by applying Simpson’s rule [1] on (3.40).

The extension to piecewise straight paths is equivalent to the one-dimensional case.
By using s(j) (3.35) and v(j) (3.31b) we have

P(N̂MAC(0,T )) =
J−1∑
j=0

P
(
|v(j)
y τ (j) + s(j)

y |<R ∩ Tj<τ
(j)<Tj+1

)
. (3.43)

As for a straight path we can simplify the expression in (3.43) for the independent case
according to

P(N̂MAC(0,T )) =
J−1∑
j=0

Tj+1∫
Tj

P
(
|v(j)
y t+ s(j)

y |<R
)
pτ (t)dt. (3.44)

For the computation of (3.39) and (3.43) in the general, dependent case see Paper C.

3.4.4 Three dimensions

In three dimensions the probability of NMAC is

P(NMAC(0,T )) = P
(

min
0<t<T

√
s2
x(t) + s2

y(t) + s2
z(t)<R

)
, (3.45)

that is the relative position shall not cross a sphere with radius R. The approximation
is to consider the crossing of a circular disc perpendicular to line-of-sight, see Figure
3.10. Similar to the two-dimensional case we can express the approximate probability of

Figure 3.10: The crossing of the sphere is approximated by the crossing of a disc.
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NMAC within T seconds according to

P(N̂MAC(0,T )) = P(τ
√
v2
y(0) + v2

z(0)︸ ︷︷ ︸
v⊥

<R ∩ τ <T ). (3.46)

For notational brevity we assume here that sy(0) ≡ 0 and sz(0) ≡ 0. The variance of
sy(0) and sy(0) are given by [8]

σsy = var
(
sx(η − η̂)

)
= ŝ2

xσ
2
η + σ2

sxσ
2
η,

σsz = var
(
sx(ε− ε̂)

)
= ŝ2

xσ
2
ε + σ2

sxσ
2
ε .

(3.47)

For angle-only tracking with an angle measurement error less than 0.5 mrad and an ini-
tial distance less than 4000 meters we can neglect sy(0) and sz(0) without introducing
significant errors. If the simplification is not appropriate it is however straightforward to
include sy(0) and sz(0), compare with two dimensions in Section 3.4.3 and Paper C. In
the case where τ is independent of vy(0) and vz(0) the probability is given by

P(N̂MAC(0,T )) =

T∫
0

P(v⊥t < R)pτ (t)dt. (3.48)

The main difference between two and three dimensions is, for a given τ = t, how to
compute the probability of v⊥ to be within a circle with radius R/t. If vy(0) = vy and
vz(0) = vz are Gaussian distributed

vy ∼ N (v̂y, σ2
y), vz ∼ N (v̂z, σ2

z) (3.49)

we can use the fact that the sum of the squares is possible to express as a weighted sum
of two non-central χ2− variables each with one degree of freedom, denoted by χ2

1(λ).
Here λ is the non-centrality parameter. Consider the simplest case where vy and vz are
uncorrelated. This is no restriction since the correlated case is handled equivalently [95,
100]. Then the velocities squared and normalized with their respective variances are

v2
y

σ2
y

∼ χ2
1(λy), λy =

v̂2
y

σ2
y

,

v2
z

σ2
z

∼ χ2
1(λz), λz =

v̂2
z

σ2
z

.

(3.50)

One method to compute the probability of the weighted sum is via the characteristic func-
tion, for details see Paper D. Another method is to express the weighted sum as an infinite
series of central χ2− variables [95, 100], denoted by χ2

l , i.e.

P(v2
⊥ <

R2

t2
) =

∞∑
l=0

clP
(
ξl <

R2

κt2
)
, ξl ∼ χ2

2+2l. (3.51)

In practice we need to truncate the sum after a finite number of terms L, and the pos-
itive scale parameter κ can be used for better convergence. We know from [95] that
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κ = min(σ2
y, σ

2
z) provides a fast convergence. Moreover, it guarantees a mixture repre-

sentation, i.e.

∞∑
l=0

cl = 1, and cl ≥ 0, ∀l. (3.52)

A mixture representation together with the fact that the central χ2− distribution is a de-
creasing function with respect to its degree of freedom, P

(
ξl+1 < x

)
≤ P

(
ξl < x

)
, yield

an upper bound on the truncation error according to

|P̂L(v2
⊥ <

R2

t2
)− P(v2

⊥ <
R2

t2
)| =

∞∑
l=L+1

clP
(
ξl <

R2

κt2
)
≤

P
(
ξL <

R2

κt2
)(

1−
L∑
l=0

cl
)
.

(3.53)

See Algorithm 3.1 for details on the realization.

Algorithm 3.1 (P(v2
⊥ <

R2

t2 ) as an infinite series).

1. Initialization: Assume σz ≤ σy

κ = σ2
z

c0 =
κ

σyσz
e−

λy+λz
2 ,

P
(
ξ0 <

R2

κt2
)

= 1− e−
R2

2κt2 ,

P̂0(v2
⊥ <

R2

t2
) = c0P

(
ξ0 <

R2

κt2
)
.

2. Repeat until P
(
ξL <

R2

κt2

)(
1−

∑L
l=0 cl

)
< ε

cl =
1
l

l∑
r=1

grcl−r,

gr =
rλy
2

(1− κ

σ2
y

)r−1 +
rλz
2

(1− κ

σ2
z

)r−1+

1− rλy
2

(1− κ

σ2
y

)r +
1− rλz

2
(1− κ

σ2
z

)r,

P
(
ξl <

R2

κt2
)

= P
(
ξl−1 <

R2

κt2
)
− R2l

(2κt2)ll!
e−

R2

2κt2 ,

P̂l(v2
⊥ <

R2

t2
) = P̂l−1(v2

⊥ <
R2

t2
) + clP

(
ξl <

R2

κt2
)
.
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Remark 3.2. Simulations indicate that

κ =
2σ2

yσ
2
z

σ2
y + σ2

z

(3.54)

yields a faster convergence than κ = min(σ2
y, σ

2
z). To be able to quarantee a mixture rep-

resentation the conditions in (3.52) must be met. We know from [95] that for
∑∞
l=0 cl = 1

a sufficient requirement is that κ < 2min(σ2
y, σ

2
z). Moreover, a sufficient condition for

cl ≥ 0, ∀l is that gr ≥ 0, ∀r. It is possible to show that this is the case, assuming σz ≤ σy ,
if

λy ≥ λz
σ2
y

σ2
z

⇔ |v̂y| ≥ |v̂z|
σ2
y

σ2
z

. (3.55)

Remark 3.3. For large λy+λz the number of terms L needs to be large for the truncation
error to be small. This can also be deduced from Algorithm 3.1 where c0 ≈ 0 for large
λy + λz .

Example 3.5 illustrates how to compute the probability in (3.48) for the Gaussian case.

Example 3.5: Gaussian distributed state vector in three dimensions
If vy(0) and vz(0) are Gaussian distributed[

vy(0)
vz(0)

]
∼ N

([
v̂y(0)
v̂z(0)

]
, Pyz

)
, (3.56)

we apply a change of variables according to[
vy′(0)
vz′(0)

]
= U

[
vy(0)
vz(0)

]
, Pyz = U

[
σ2
y′ 0
0 σ2

z′

]
UT , (3.57)

where U is a unitary matrix. We can then compute P(v⊥t < R) using Algorithm 3.1
with mean and variance for vy′(0) and vz′(0) inserted. If sx(0) and vx(0) are Gaussian
distributed as well the expression for pτ (t) is given by Appendix A. The probability
P(N̂MAC(0,T )) can then computed by applying Simpson’s rule [1] on (3.40), assuming
τ is independent of v⊥. Note that when applying Simpson’s formula we need to compute
P(v⊥tk < R) for a number K of discretized time instants tk. This means that we need to
keep both K and L small for a low total computational load.

The extension to piecewise straight paths is equivalent to the one-dimensional case.
By using s(j) (3.35) and v(j) (3.31b) we have

P(N̂MAC(0,T ))

=
J−1∑
j=0

P
(√

(v(j)
y τ (j) + s

(j)
y )2 + (v(j)

z τ (j) + s
(j)
z )2<R ∩ Tj<τ

(j)<Tj+1

)
.

(3.58)

The computation of (3.46) and (3.58) are given by Paper D.





4
Concluding Remarks

In this section we provide a summary of the results of this thesis and discuss possible
future research.

4.1 Summary

In this thesis we have provided efficient methods for estimation and detection in general,
and for terrain-aided navigation and collision avoidance in particular.

The marginalized particle filter, presented in Paper A, utilizes linear substructure for
efficient estimation. The part of the state vector which is confined to a linear model, con-
ditionally upon the nonlinear part, is estimated using the Kalman filter. The remaining
nonlinear part with lower dimension is estimated by the particle filter. The filter is applied
to a simplified terrain-aided navigation in which we assume altitude is known and excel-
lent performance is achieved. The idea of marginalization is extended in Paper B, where
we derive a filter which is optimized for the structure inherent in terrain-aided navigation.
Here we split the linear substructure in two parts, one unimodal part estimated by the
Kalman filter and one multimodal part estimated by the GPB1 filter. The multimodal part
corresponds to altitude, which has a separable posterior pdf conditionally upon the non-
linear states. Application of the filter on both simulated and authentic data show excellent
performance.

In Paper C we derive the basic theory for efficient conflict detection in two dimensions.
The efficiency is obtained by using the concept of level-crossings to describe conflicts.
Conflict is declared if the relative position at any point in time crosses a line segment. This
makes the computation of probability of conflict computationally tractable as opposed to
a sampling based method. The formulation based on level-crossings makes it possible
to apply marginalization. For example in the two-dimensional case with independence
between variables along and cross line-of-sight we can compute three out of four integrals
analytically. The fourth integral is computed numerically using Simpson’s formula. The
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theory is then extended for near mid-air collision avoidance in three dimensions in Paper
D. Here we approximate the crossing of a safety sphere with the crossing of a disc in order
to make the idea of level-crossings applicable. Application of the method on simulated
data yields promising results.

4.2 Future Research

The marginalized particle filter is, when applicable, a very effective method to decrease
the computational load compared to the standard particle filter. There exist theorems
which provide measures on what is gained in terms of sampling variance when the marginal-
ized particle filter is applied instead of the particle filter. However, these theorems assume
independent samples. This means that resampling is not covered. Intuition and simula-
tions indicate that the marginalized particle filter is even more effective when resampling
is introduced. More studies should be conducted to clarify the theory behind this effect
and also if any new insights could be used to further increase the effectiveness.

Here we have derived computationally tractable methods for computing the probabil-
ity of conflict for a predicted trajectory. The method is applicable to three dimensions,
uncertain initial conditions and piecewise straight paths. The main restriction concerns
potential disturbances and uncertainties along the predicted relative flight trajectory. Typi-
cal disturbances are unknown intentions of the intruder and that the vehicles do not follow
the assumed path exactly due to wind and simplified aircraft dynamics. The obvious ex-
tension is to include the effect of disturbances by combining the results here and the ones
given in [91] for short term conflict detection.

The assumption on a normally distributed estimate of the state vector from the track-
ing filter is usually quite good [72]. This is true at least for the application considered
here with short initial distances, around 4000 meters, and high measurement update rate,
around 10 Hz. Probably there are cases where the assumption on normality fails. The
derived methods for computing probability of conflict are generic in the sense that they
do not require the input to be Gaussian distributed. They do however need the probability
density function (pdf) for the relative state vector and for the non-Gaussian case this can
be difficult to capture. An interesting question is if it is possible to obtain an upper bound
on the probability of conflict based on estimated moments, typically mean and covariance,
of the state vector instead of the pdf. A potential solution could be convex optimization
techniques applied to Chebyshev bounds [17].

The expressions for probability of conflict are rather complicated, especially in the
case with dependence between the variables along and cross line-of-sight. It is also dif-
ficult to obtain useful bounds on the approximation error, particularly for the geometric
approximation but in the general case also for the numerical approximation. The Gram-
Charlier expansion, and the similar Edgeworth expansion, constitute methods for expand-
ing a distribution in terms of the normal distribution and its derivatives [54]. It would
be interesting to investigate the applicability of these expansions on the probability of
conflict and to see if expressions are attainable with bounds on the approximation errors.



A
Derivation of pτ(t)

Derivation of the expression for pτ (t) in the case with normally distributed sx and vx.

pτ (t) =

0∫
−∞

−vpsx,vx(−vt, v)dv

=
1
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0∫
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Diagonalize Px
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where κ = ρxσsx/σvx. Insert (A.2) into the exponent in (A.1) and write as a polynomial
of v [
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Complete the square for v
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2

+ g′0, (A.4)

and insert into (A.1)
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Change variable to x = g2v − g1/g2
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Abstract

The particle filter offers a general numerical tool to approximate the pos-
terior density function for the state in nonlinear and non-Gaussian filtering
problems. While the particle filter is fairly easy to implement and tune, its
main drawback is that it is quite computer intensive, with the computational
complexity increasing quickly with the state dimension. One remedy to this
problem is to marginalize out the states appearing linearly in the dynamics.
The result is that one Kalman filter is associated with each particle. The main
contribution in this article is to derive the details for the marginalized parti-
cle filter for a general nonlinear state-space model. Several important spe-
cial cases occurring in typical signal processing applications will also be dis-
cussed. The marginalized particle filter is applied to an integrated navigation
system for aircraft. It is demonstrated that the complete high-dimensional
system can be based on a particle filter using marginalization for all but two
states. Excellent performance on real flight data is reported.

1 Introduction

The nonlinear non-Gaussian filtering problem considered here consists of recursively
computing the posterior probability density function of the state vector in a general discrete-
time state-space model, given the observed measurements. Such a general model can be
formulated as

xt+1 = f(xt, wt), (1a)
yt = h(xt, et). (1b)
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Here, yt is the measurement at time t, xt is the state variable, wt is the process noise, et
is the measurement noise, and f, h are two arbitrary nonlinear functions. The two noise
densities pwt and pet are independent and are assumed to be known.

The posterior density p(xt|Yt), where Yt = {yi}ti=0, is given by the following general
measurement recursion

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2a)

p(yt|Yt−1) =
∫
p(yt|xt)p(xt|Yt−1)dxt, (2b)

and the following time recursion

p(xt+1|Yt) =
∫
p(xt+1|xt)p(xt|Yt)dxt, (2c)

initiated by p(x0|Y−1) = p(x0) [20]. For linear Gaussian models, the integrals can be
solved analytically with a finite dimensional representation. This leads to the Kalman fil-
ter recursions, where the mean and the covariance matrix of the state are propagated [1].
More generally, no finite dimensional representation of the posterior density exists. Thus,
several numerical approximations of the integrals (2) have been proposed. A recent im-
portant contribution is to use simulation based methods from mathematical statistics, se-
quential Monte Carlo methods, commonly referred to as particle filters [11, 12, 16].

Integrated navigation is used as a motivation and application example. Briefly, the
integrated navigation system in the Swedish fighter aircraft Gripen consists of an inertial
navigation system (INS), a terrain-aided positioning (TAP) system and an integration fil-
ter. This filter fuses the information from INS with the information from TAP. For a more
thorough description of this system the reader is referred to [32, 33]. TAP is currently
based on a point-mass filter as presented in [6], where it is also demonstrated that the
performance is quite good, close to the Cramér-Rao lower bound. Field tests conducted
by the Swedish air force have confirmed the good precision. Alternatives based on the
extended Kalman filter have been investigated [5], but have been shown to be inferior par-
ticularly in the transient phase (the EKF requires the gradient of the terrain profile, which
is unambiguous only very locally). The point-mass filter, as described in [6], is likely to
be changed to a marginalized particle filter in the future for Gripen.

TAP and INS are the primary sensors. Secondary sensors (GPS and so on) are used
only when available and reliable. The current terrain-aided positioning filter has three
states (horizontal position and altitude), while the integrated navigation system estimates
the accelerometer and gyroscope errors, and some other states. The integration filter is
currently based on a Kalman filter with 27 states, taking INS and TAP as primary input
signals.

The Kalman filter which is used for integrated navigation requires Gaussian variables.
However, TAP gives a multi-modal un-symmetric distribution in the Kalman filter mea-
surement equation and it has to be approximated with a Gaussian distribution before being
used in the Kalman filter. This results in severe performance degradation in many cases,
and is a common cause for filter divergence and system re-initialization.

The appealing new strategy is to merge the two state vectors into one, and solve in-
tegrated navigation and terrain-aided positioning in one filter. This filter should include
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all 27 states, which effectively would prevent application of the particle filter. However,
the state equation is almost linear, and only two states enter the measurement equation
nonlinearly, namely horizontal position. Once linearization (and the use of EKF) is abso-
lutely ruled out, marginalization would be the only way to overcome the computational
complexity. More generally, as soon as there is a linear sub-structure available in the gen-
eral model (1) this can be utilized in order to obtain better estimates and possibly reduce
the computational demand. The basic idea is to partition the state vector as

xt =
[
xlt
xnt

]
, (3)

where xlt denotes the state variable with conditionally linear dynamics and xnt denotes
the nonlinear state variable [14, 32]. Using Bayes’ theorem we can then marginalize out
the linear state variables from (1) and estimate them using the Kalman filter [22], which
is the optimal filter for this case. The nonlinear state variables are estimated using the
particle filter. This technique is sometimes referred to as Rao-Blackwellization [14]. The
idea has been around for quite some time, see e.g., [12, 7, 8, 2, 14, 31]. The contribution
of this article is the derivation of the details for a general nonlinear state-space model
with a linear sub-structure. Models of this type are common and important in engineer-
ing applications, e.g., positioning, target tracking and collision avoidance [18, 4]. The
marginalized particle filter has been successfully used in several applications, for instance
in aircraft navigation [32], underwater navigation [23], communications [9, 37], nonlinear
system identification [28, 36], and audio source separation [3].

Section 2 explains the idea behind using marginalization in conjunction with general
linear/nonlinear state-space models. Three nested models are used, in order to make the
presentation easy to follow. Some important special cases and generalizations of the noise
assumptions are discussed in Section 3. To illustrate the use of the marginalized particle
filter a synthetic example is given in Section 4. Finally, the application example is given
in Section 5 and the conclusions are stated in Section 6.

2 Marginalization

The variance of the estimates obtained from the standard particle filter can be decreased by
exploiting linear sub-structures in the model. The corresponding variables are marginal-
ized out and estimated using an optimal linear filter. This is the main idea behind the
marginalized particle filter. The goal of this section is to explain how the marginalized
particle filter works by using three nested models. The models are nested in the sense that
the first model is included in the second, which in turn is included in the third. The rea-
son for presenting it in this fashion is to facilitate reader understanding, by incrementally
extending the standard particle filter.

2.1 The Standard Particle Filter

The particle filter is used to get an approximation of the posterior density p(xt|Yt) in the
general model (1). This approximation can then be used to obtain an estimate of some
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inference function, g(·), according to

I(g(xt)) = Ep(xt|Yt)[g(xt)] =
∫
g(xt)p(xt|Yt)dxt. (4)

In the following the particle filter, as it was introduced in [16], will be referred to as
the standard particle filter. For a thorough introduction to the standard particle filter the
reader is referred to [11, 12]. The marginalized and the standard particle filter are closely
related. The marginalized particle filter is given in Algorithm 1 and neglecting steps 4a
and 4c results in the standard particle filter algorithm.

Algorithm 1 (The marginalized particle filter).

1. Initialization: For i = 1, . . . , N , initialize the particles, xn,(i)0|−1 ∼ pxn0 (xn0 ) and set

{xl,(i)0|−1, P
(i)
0|−1} = {x̄l0, P̄0}.

2. For i = 1, . . . , N , evaluate the importance weights q(i)
t = p(yt|Xn,(i)

t , Yt−1) and
normalize

q̃
(i)
t = q

(i)
t∑N

j=1 q
(j)
t

.

3. Particle filter measurement update (resampling): Resample N particles with re-
placement,

Pr(xn,(i)t|t = x
n,(j)
t|t−1) = q̃

(j)
t .

4. Particle filter time update and Kalman filter:

(a) Kalman filter measurement update:
Model 1: (10),
Model 2: (10),
Model 3: (22).

(b) Particle filter time update (prediction): For i = 1, . . . , N , predict new parti-
cles,

x
n,(i)
t+1|t ∼ p(x

n
t+1|t|X

n,(i)
t , Yt).

(c) Kalman filter time update:
Model 1: (11),
Model 2: (17),
Model 3: (23).

5. Set t := t+ 1 and iterate from step 2.

The particle filter algorithm 1 is quite general and several improvements are available
in the literature. It is quite common to introduce artificial noise in step 3 in order to coun-
teract the degeneracy problem. Depending on the context various importance functions
can be used in step 4b. In [11] several refinements to the particle filter algorithm are
discussed.
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2.2 Diagonal Model

The explanation of how the marginalized particle filter works is started by considering the
following model,

Model 1.

xnt+1 = fnt (xnt ) +wnt , (5a)

xlt+1 = Alt(x
n
t )xlt +wlt, (5b)

yt = ht(xnt ) +Ct(xnt )xlt +et. (5c)

The gaps in the equations above are placed there intentionally, in order to make the com-
parison to the general model (18) easier. The state noise is assumed white and Gaussian
distributed according to

wt =
[
wlt
wnt

]
∼ N (0, Qt), Qt =

[
Qlt 0
0 Qnt

]
. (6a)

The measurement noise is assumed white and Gaussian distributed according to

et ∼ N (0, Rt). (6b)

Furthermore, xl0 is Gaussian,

xl0 ∼ N (x̄0, P̄0). (6c)

The density of xn0 can be arbitrary, but it is assumed known. The Al and C matrices are
arbitrary. �

Model 1 is called “diagonal model” due to the diagonal structure of the state equa-
tion (5a) – (5b). The aim of recursively estimating the posterior density p(xt|Yt) can be
accomplished using the standard particle filter. However, conditioned on the nonlinear
state variable, xnt , there is a linear sub-structure in (5), given by (5b). This fact can be
used to obtain better estimates of the linear states. Analytically marginalizing out the
linear state variables from p(xt|Yt) and using Bayes’ theorem gives (Xn

t = {xni }ti=0)

p(xlt, X
n
t |Yt) = p(xlt|Xn

t , Yt)︸ ︷︷ ︸
Optimal KF

p(Xn
t |Yt)︸ ︷︷ ︸
PF

, (7)

where p(xlt|Xn
t , Yt) is analytically tractable. It is given by the Kalman filter (KF), see

Lemma 1 below for the details. Furthermore, p(Xn
t |Yt) can be estimated using the particle

filter (PF). If the same number of particles are used in the standard particle filter and the
marginalized particle filter the latter will, intuitively, provide better estimates. The reason
for this is that the dimension of p(xnt |Yt) is smaller than the dimension of p(xlt, x

n
t |Yt),

implying that the particles occupy a lower dimensional space. Another reason is that
optimal algorithms are used in order to estimate the linear state variables. Let ÎsN (g(xt))
denote the estimate of (4) using the standard particle filter with N particles. When the
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marginalized particle filter is used the corresponding estimate is denoted by ÎmN (g(xt)).
Under certain assumptions the following central limit theorem holds,

√
N(ÎsN (g(xt))− I(g(xt))) =⇒ N (0, σ2

s), N →∞ (8a)
√
N(ÎmN (g(xt))− I(g(xt))) =⇒ N (0, σ2

m), N →∞ (8b)

where σ2
s ≥ σ2

m. A formal proof of (8) is provided in [14, 13]. For the sake of notational
brevity the dependence of xnt in At, Ct, and ht are suppressed below.

Lemma 1
Given Model 1, the conditional probability density functions for xlt|t and xlt+1|t are given
by

p(xlt|Xn
t , Yt) = N (x̂lt|t, Pt|t), (9a)

p(xlt+1|Xn
t+1, Yt) = N (x̂lt+1|t, Pt+1|t), (9b)

where

x̂lt|t = x̂lt|t−1 +Kt(yt − ht − Ctx̂lt|t−1), (10a)

Pt|t = Pt|t−1 −KtCtPt|t−1, (10b)

St = CtPt|t−1C
T
t +Rt, (10c)

Kt = Pt|t−1C
T
t S
−1
t , (10d)

and

x̂lt+1|t = Altx̂
l
t|t, (11a)

Pt+1|t = AltPt|t(A
l
t)
T +Qlt. (11b)

The recursions are initiated with x̂l0|−1 = x̄0 and P0|−1 = P̄0.

Proof: Straightforward application of the Kalman filter [22, 21].

The second density, p(Xn
t |Yt), in (7) will be approximated using the standard particle

filter. Bayes’ theorem and the Markov property inherent in the state-space model can be
used to write p(Xn

t |Yt) as

p(Xn
t |Yt) =

p(yt|Xn
t , Yt−1)p(xnt |Xn

t−1, Yt−1)
p(yt|Yt−1)

p(Xn
t−1|Yt−1), (12)

where an approximation of p(Xn
t−1|Yt−1) is provided by the previous iteration of the par-

ticle filter. In order to perform the update (12) analytical expressions for p(yt|Xn
t , Yt−1)

and p(xnt |Xn
t−1, Yt−1) are needed. They are provided by the following lemma.

Lemma 2
For Model 1 p(yt|Xn

t , Yt−1) and p(xnt+1|Xn
t , Yt) are given by

p(yt|Xn
t , Yt−1) = N (ht + Ctx̂

l
t|t−1, CtPt|t−1C

T
t +Rt), (13a)

p(xnt+1|Xn
t , Yt) = N (fnt , Q

n
t ). (13b)
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Proof: Basic facts about conditionally linear models, see e.g., [19, 35].

The linear system (5b) – (5c) can now be formed for each particle, {xn,(i)t }Ni=1 and
the linear states can be estimated using the Kalman filter. This requires one Kalman filter
associated with each particle. The overall algorithm for estimating the states in Model 1 is
given in Algorithm 1. From this algorithm it should be clear that the only difference from
the standard particle filter is that the time update (prediction) stage has been changed. In
the standard particle filter the prediction stage is given solely by step 4b in Algorithm 1.
Step 4a is referred to as the measurement update in the Kalman filter [21]. Furthermore,
the prediction of the nonlinear state variables, x̂nt+1|t is obtained in step 4b. According
to (5a) the prediction of the nonlinear state variables does not contain any information
about the linear state variables. This implies that x̂nt+1|t cannot be used to improve the
quality of the estimates of the linear state variables. However, if Model 1 is generalized
by imposing a dependence between the linear and the nonlinear state variables in (5a)
the prediction of the nonlinear state variables can be used to improve the estimates of the
linear state variables. In the subsequent section it will be elaborated on how this affects
the state estimation.

2.3 Triangular Model

Model 1 is now extended by including the term Ant (xnt )xlt in the nonlinear state equation.
This results in a “triangular model”, defined below.

Model 2.

xnt+1 = fnt (xnt )+Ant (xnt )xlt+w
n
t , (14a)

xlt+1 = Alt(x
n
t )xlt +wlt, (14b)

yt = ht(xnt ) +Ct(xnt )xlt +et, (14c)

with the same assumptions as in Model 1. �

Now, from (14a) it is clear that x̂nt+1|t does indeed contain information about the linear
state variables. This implies that there will be information about the linear state variable,
xlt, in the prediction of the nonlinear state variable, x̂nt+1|t. To understand how this af-
fects the derivation it is assumed that step 4b in Algorithm 1 has just been completed.
This means that the predictions, x̂nt+1|t, are available and the model can be written (the
information in the measurement, yt, has already been used in step 4a)

xlt+1 = Altx
l
t + wlt, (15a)

zt = Ant x
l
t + wnt , (15b)

where

zt = xnt+1 − fnt . (15c)
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It is possible to interpret zt as a measurement and wnt as the corresponding measurement
noise. Since (15) is a linear state-space model with Gaussian noise, the optimal state
estimate is given by the Kalman filter according to

x̂l∗t|t = x̂lt|t + Lt(zt −Ant x̂lt|t), (16a)

P ∗t|t = Pt|t − LtNtLTt , (16b)

Lt = Pt|t(Ant )TN−1
t , (16c)

Nt = Ant Pt|t(A
n
t )T +Qnt , (16d)

where “∗” has been used to distinguish this second measurement update from the first
one. Furthermore, x̂lt|t, and Pt|t are given by (10a) and (10b) respectively. The final step
is to merge this second measurement update with the time update to obtain the predicted
states. This results in

x̂lt+1|t = Altx̂
l
t|t + Lt(zt −Ant x̂lt|t), (17a)

Pt+1|t = AltPt|t(A
l
t)
T +Qlt − LtNtLTt , (17b)

Lt = AltPt|t(A
n
t )TN−1

t , (17c)

Nt = Ant Pt|t(A
n
t )T +Qnt . (17d)

For a formal proof of this the reader is referred to Appendix A.1. To make Algorithm 1
valid for the more general Model 2 the time update equation in the Kalman filter (11) has
to be replaced by (17).

The second measurement update is called measurement update due to the fact that
the mathematical structure is the same as a measurement update in the Kalman filter.
However, strictly speaking it is not really a measurement update, since there does not
exist any new measurement. It is better to think of this second update as a correction to
the real measurement update, using the information in the prediction of the nonlinear state
variables.

2.4 The General Case

In the previous two sections the mechanisms underlying the marginalized particle filter
have been illustrated. It is now time to apply the marginalized particle filter to the most
general model.

Model 3.

xnt+1 = fnt (xnt )+Ant (xnt )xlt+G
n
t (xnt )wnt , (18a)

xlt+1 = f lt(x
n
t ) +Alt(x

n
t )xlt +Glt(x

n
t )wlt, (18b)

yt = ht(xnt ) +Ct(xnt )xlt +et, (18c)

where the state noise is assumed white and Gaussian distributed with

wt =
[
wlt
wnt

]
∼ N (0, Qt), Qt =

[
Qlt Qlnt

(Qlnt )T Qnt

]
. (19a)
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The measurement noise is assumed white and Gaussian distributed according to

et ∼ N (0, Rt). (19b)

Furthermore, xl0 is Gaussian,

xl0 ∼ N (x̄0, P̄0). (19c)

The density of xn0 can be arbitrary, but it is assumed known. �

In certain cases some of the assumptions can be relaxed. This will be discussed in
the subsequent section. Before moving on it is worthwhile to explain how models used in
some applications of marginalization relate to Model 3. In [24] the marginalized particle
filter was applied to underwater navigation using a model corresponding to (18), save the
fact that Gnt = I,Glt = I, f lt = 0, Ant = 0. In [18] a model corresponding to linear state
equations and a nonlinear measurement equation is applied to various problems, such as
car positioning, terrain navigation, and target tracking. Due to its relevance this model
will be discussed in more detail in Section 3. Another special case of Model 3 has been
applied to problems in communication theory in [9, 37]. The model used there is linear.
However, depending on an indicator variable the model changes. Hence, this indicator
variable can be thought of as the nonlinear state variable in Model 3. A good and detailed
explanation of how to use the marginalized particle filter for this case can be found in [14].
They refer to the model as a jump Markov linear system.

Analogously to what has been done in (7), the filtering distribution, p(xt|Yt) is split
using Bayes’ theorem,

p(xlt, X
n
t |Yt) = p(xlt|Xn

t , Yt)p(X
n
t |Yt). (20)

The linear state variables are estimated using the Kalman filter in a slightly more general
setting than which was previously discussed. However, it is still the same three steps that
are executed in order to estimate the linear state variables. The first step is a measurement
update using the information available in yt. The second step is a measurement update
using the information available in x̂nt+1|t and finally there is a time update. The following
theorem explains how the linear state variables are estimated.

Theorem 1
Using Model 3 the conditional probability density functions for xlt and xlt+1 are given by

p(xlt|Xn
t , Yt) = N (x̂lt|t, Pt|t), (21a)

p(xlt+1|Xn
t+1, Yt) = N (x̂lt+1|t, Pt+1|t), (21b)

where

x̂lt|t = x̂lt|t−1 +Kt(yt − ht − Ctx̂lt|t−1), (22a)

Pt|t = Pt|t−1 −KtMtK
T
t , (22b)

Mt = CtPt|t−1C
T
t +Rt, (22c)

Kt = Pt|t−1C
T
t M

−1
t , (22d)
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and

x̂lt+1|t = Āltx̂
l
t|t +Glt(Q

ln
t )T (Gnt Q

n
t )−1zt

+ f lt + Lt(zt −Ant x̂lt|t), (23a)

Pt+1|t = ĀltPt|t(Ā
l
t)
T +GltQ̄

l
t(G

l
t)
T − LtNtLTt , (23b)

Nt = Ant Pt|t(A
n
t )T +Gnt Q

n
t (Gnt )T , (23c)

Lt = ĀltPt|t(A
n
t )TN−1

t , (23d)

where

zt = xnt+1 − fnt , (24a)

Ālt = Alt −Glt(Qlnt )T (Gnt Q
n
t )−1Ant , (24b)

Q̄lt = Qlt − (Qlnt )T (Qnt )−1Qlnt . (24c)

Proof: See Appendix A.1.

It is worth noting that if the cross-covariance, Qlnt , between the two noise sources wnt
and wlt is zero, then Ālt = Alt and Q̄lt = Qlt. The first density, p(xlt|Xn

t , Yt), on the right
hand side in (20) is now taken care of. In order for the estimation to work the second
density, p(Xn

t |Yt), in (20) is taken care of according to (12). The analytical expressions
for p(yt|Xn

t , Yt−1) and p(xnt |Xn
t−1, Yt−1) are provided by the following theorem.

Theorem 2
For Model 3 p(yt|Xn

t , Yt−1) and p(xnt+1|Xn
t , Yt) are given by

p(yt|Xn
t , Yt−1) = N (ht + Ctx̂

l
t|t−1, CtPt|t−1C

T
t +Rt), (25a)

p(xnt+1|Xn
t , Yt) = N (fnt +Ant x̂

l
t|t, A

n
t Pt|t(A

n
t )T

+Gnt Q
n
t (Gnt )T ). (25b)

Proof: Basic facts about conditionally linear models, see [19]. The details for this par-
ticular case can be found in [35].

The details for estimating the states in Model 3 have now been derived, and the com-
plete algorithm is Algorithm 1. As pointed out before, the only difference between this
algorithm and the standard particle filtering algorithm is that the prediction stage is differ-
ent. If steps 4a and 4c are removed from Algorithm 1 the standard particle filter algorithm
is obtained.

In this article the most basic form of the particle filter has been used. Several more re-
fined variants exist, which in certain applications can give better performance. However,
since the aim of this article is to communicate the idea of marginalization in a general
linear/nonlinear state-space model the standard particle filter has been used. It is straight-
forward to adjust the algorithm given in this paper to accommodate e.g., the auxiliary
particle filter [34] and the Gaussian particle filter [26, 27]. Several ideas are also given in
the articles collected in [11].
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The estimates as expected means of the linear state variables and their covariances are
given by [32]

x̂lt|t =
N∑
i=1

q̃
(i)
t x̂

l,(i)
t|t ≈ Ep(xlt|Yt)

[
xlt
]
, (26a)

P̂t|t =
N∑
i=1

q̃
(i)
t

(
P

(i)
t|t + (x̂l,(i)t|t − x̂

l
t|t)(x̂

l,(i)
t|t − x̂

l
t|t)

T
)

(26b)

≈ Ep(xlt|Yt)
[(

(xlt)
2 − Ep(xlt|Yt)

[
(xlt)

2
])2
]
. (26c)

where q̃(i)
t are the normalized importance weights, provided by step 2 in Algorithm 1.

3 Important Special Cases and Extensions

Model 3 is quite general indeed and in most applications special cases of it are used. This
fact, together with some extensions will be the topic of this section.

The special cases are just reductions of the general results presented in the previous
section. However, they still deserve some attention in order to highlight some important
mechanisms. It is worth mentioning that linear sub-structures can enter the model more
implicitly as well, for example, by modeling colored noise and by sensor offsets and
trends. These modeling issues are treated in several introductory texts on Kalman filtering,
see e.g., Section 8.2.4 in [17]. In the subsequent section some noise modeling aspects are
discussed. This is followed by a discussion of a model with linear state equations and a
nonlinear measurement equation.

3.1 Generalized Noise Assumptions

The Gaussian noise assumption can be relaxed in two special cases. First, if the measure-
ment equation (18c) does not depend on the linear state variables, xlt, i.e., Ct(xnt ) = 0,
the measurement noise can be arbitrarily distributed. In this case (18c) does not contain
any information about the linear state variables, and hence cannot be used in the Kalman
filter. It is solely used in the particle filter part of the algorithm, which can handle all
probability density functions.

Second, if Ant (xnt ) = 0 in (18a), the nonlinear state equation will be independent of
the linear states, and hence cannot be used in the Kalman filter. This means that the state
noise, wnt , can be arbitrarily distributed.

The noise covariances can depend on the nonlinear state variables, i.e., Rt = Rt(xnt )
and Qt = Qt(xnt ). This is useful for instance in terrain navigation, where the nonlinear
state variable includes information about the position. Using the horizontal position and a
geographic information system (GIS) on-board the aircraft noise covariances depending
on the characteristics of the terrain at the current horizontal position can be motivated.
This issue will be elaborate upon in Section 5.
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3.2 An Important Model Class

A quite important special case of Model 3, is a model with linear state equations and a
nonlinear measurement equation. In Model 4 below such a model is defined.

Model 4.

xnt+1 = Ann,tx
n
t +Anl,tx

l
t+G

n
t w

n
t , (27a)

xlt+1 = Aln,tx
n
t +All,tx

l
t+G

l
tw

l
t, (27b)

yt = ht(xnt ) +et, (27c)

with wnt ∼ N (0, Qnt ) and wlt ∼ N (0, Qlt). The distribution for et can be arbitrary, but it
is assumed known. �

The measurement equation (27c) does not contain any information about the linear
state variable, xlt. Hence, as far as the Kalman filter is concerned (27c) cannot be used in
estimating the linear states. Instead all information from the measurements enter the
Kalman filter implicitly via the second measurement update using the nonlinear state
equation (27a) and the prediction of the nonlinear state, x̂nt+1|t, as a measurement. This
means that in Algorithm 1, step 4a can be left out. In this case the second measurement
update is much more than just a correction to the first measurement update. It is the only
way in which the information in yt enters the algorithm.

Model 4 is given special attention as several important state estimation problems can
be modeled in this way. Examples include positioning, target tracking and collision avoid-
ance [18, 4]. For more information on practical matters concerning modeling issues, see
e.g., [30, 29, 4, 32]. In the applications mentioned above the nonlinear state variable, xnt ,
usually corresponds to the position, whereas the linear state variable, xlt, corresponds to
velocity, acceleration and bias terms.

If Model 4 is compared to Model 3 it can be seen that the matrices Ant , A
l
t, G

n
t , and

Glt are independent of xnt in Model 4, which implies that

P
(i)
t|t = Pt|t ∀ i = 1, . . . , N. (28)

This follows from (23b) – (23d) in Theorem 1. According to (28) only one instead of
N Riccati recursions is needed, which leads to a substantial reduction in computational
complexity. This is of course very important in real-time implementations. A further
study of the computational complexity of the marginalized particle filter can be found
in [25].

If the dynamics in (18a) – (18b) is almost linear it can be linearized to obtain a model
described by (27a) – (27b). Then the extended Kalman filter can be used instead of
the Kalman filter. As is explained in [30, 29] it is common that the system model is
almost linear, whereas the measurement model is severely nonlinear. In these cases use
the particle filter for the severe nonlinearities and the extended Kalman filter for the mild
nonlinearities.
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4 An Illustrating Example

In order to make things as simple as possible the following two dimensional model will
be used

xt+1 =
[
1 T
0 1

]
xt + wt, (29a)

yt = h(zt) + et, (29b)

where the state vector is xt =
[
zt żt

]T
. Hence, the state consists of a physical variable

and its derivative. Models of this kind are very common in applications. One example
is bearings only tracking, where the objective is to estimate the angle and angular veloc-
ity and the nonlinear measurement depends on the antenna diagram. Another common
application is state estimation in a DC-motor, where the angular position is assumed to
be measured nonlinearly. As a final application terrain navigation in one dimension is
mentioned, where the measurement is given by a map. A more realistic terrain navigation
example is discussed in Section 5.

Model (29) is linear in żt and nonlinear in zt. The state vector can thus be partitioned
as xt =

[
xnt xlt

]T
, which implies that (29) can be written as

xnt+1 = xnt +Txlt+w
n
t , (30a)

xlt+1 = xlt +wlt, (30b)

yt = ht(xnt ) +et, (30c)

This corresponds to the triangular model given in Model 2. Hence, the Kalman filter for
the linear state variable is given by (22) – (24) where the nonlinear state is provided by
the particle filter. The estimate of the linear state variable is given by (23a) which for this
example is

x̂lt+1|t = (1− ltT )x̂lt|t + ltT
xnt+1 − xnt

T
, (31)

where

nt = T 2pt|t + qnt , lt =
T

nt
pt|t. (32)

Intuitively (31) makes sense, since the velocity estimate is given as a weighted average of
the current velocity and the estimated momentary velocity, where the weights are com-
puted from the Kalman filter quantities. In cases where (29a) is motivated by Newtons’
force law the unknown force is modeled as a disturbance and qnt = 0. This implies
that (31) is reduced to

x̂lt+1|t =
xnt+1 − xnt

T
. (33)

Again this can intuitively be understood, since conditioned on the knowledge of the non-
linear state variable, (30a) can be written

xlt =
xnt+1 − xnt

T
. (34)
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Thus, (30b) does not add any information for the Kalman filter, since xlt is a deterministic
function of the known nonlinear state variable.

5 Integrated Aircraft Navigation

As was explained in the introduction, the integrated navigation system in the Swedish
fighter aircraft Gripen consists of an inertial navigation system (INS), a terrain-aided po-
sitioning (TAP) system and an integration filter. This filter fuses the information from
INS with the information from TAP, see Fig. 1. The currently used integration filter, is

TAP-

INS

Integration
filter

-

-yt

-

����Σ

6

-

Figure 1: The integrated navigation system consists of an inertial navigation sys-
tem (INS), a terrain-aided positioning (TAP) system and an integration filter. The
integration filter fuse the information from INS with the information from TAP.

likely to be changed to a marginalized particle filter in the future for Gripen, see Fig. 2. A

yt

INS

Marginalized
particle filter

-

-

-

����Σ

6

-

Figure 2: Using the marginalized particle filter for navigation. The terrain infor-
mation is now incorporated directly in the marginalized particle filter. The radar
altimeter delivers the hight measurement yt.

first step in this direction was taken in [18], where a six dimensional model was used for
integrated navigation. In six dimensions, the particle filter is possible to use, but better
performance can be obtained. As demonstrated in [18], 4000 particles in the marginalized
filter outperforms 60000 particles in the standard particle filter.

The feasibility study presented here applies marginalization to a more realistic nine
dimensional sub-model of the total integrated navigation system. Already here, the di-
mensionality has proven to be too large for the particle filter to be applied directly. The
example contains all ingredients of the total system, and the principle is scalable to the full
27-dimensional state vector. The model can be simulated and evaluated in a controlled
fashion, see [32] for more details. In the subsequent sections the results from field trials
are presented.
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5.1 The Dynamic Model

In order to apply the marginalized particle filter to the navigation problem a dynamic
model of the aircraft is needed. In this article the overall structure of this model is dis-
cussed. For details the reader is referred to [32] and the references therein. The errors in
the states are estimated instead of the absolute states. The reason is that the dynamics of
the errors are typically much slower than the dynamics of the absolute states. The model
has the following structure

xnt+1 = Ann,tx
n
t +Anl,tx

l
t +Gnt w

n
t , (35a)

xlt+1 = Aln,tx
n
t +All,tx

l
t +Gltw

l
t, (35b)

yt = h

([
Lt
lt

]
+ xnt

)
+ et. (35c)

There are 7 linear states, and 2 nonlinear states. The linear states consist of 2 velocity
states and 3 states for the aircraft in terms of heading, roll, and pitch. Finally there are
2 states for the accelerometer bias. The nonlinear states correspond to the error in the
horizontal position, which is expressed in latitude, Lt, and longitude, lt.

The total dimension of the state vector is thus 9, which is too large to be handled
by the particle filter. The highly nonlinear nature of measurement equation (35c), due
to the terrain elevation database, implies that an extended Kalman filter cannot be used.
However, the model described by (35) clearly fits into the framework of the marginalized
particle filter.

The measurement noise in (35c) deserves some special attention. The radar altimeter,
which is used to measure the ground clearance, interprets any echo as the ground. This
is a problem when flying over trees. The tree tops will be interpreted as the ground, with
a false measurement as a result. One simple, but effective, solution to this problem is to
model the measurement noise as

pet(·) = πN (m1, σ1) + (1− π)N (m2, σ2), (36)

where π is the probability of obtaining an echo from the ground, and (1 − π) is the
probability of obtaining an echo from the tree tops. The probability density function (36)
is shown in Fig. 3. Experiments have shown that this, in spite of its simplicity, is a quite
accurate model [10]. Furthermore, m1, m2, σ1, σ2, and π in (36) can be allowed to
depend on the current horizontal position, Lt, lt. In this way information from the terrain
data base can be inferred on the measurement noise in the model. Using this information
it is possible to model whether the aircraft is flying over open water or over a forest.

5.2 Result

The flight that has been used is shown in Fig. 4. This is a fairly tough flight for the
algorithm, in the sense that during some intervals data are missing, and sometimes the
radar altimeter readings become unreliable. This happens at high altitudes and during
sharp turns (large roll angle), respectively. In order to get a fair understanding of the
algorithms performance, 100 Monte Carlo simulations with the same data have been per-
formed, where only the noise realizations have been changed from one simulation to the



86 Paper A Marginalized Particle Filters for Mixed Linear/Nonlinear State-space Models

Figure 3: A typical histogram of the error in the data from the radar altimeter. The
first peak corresponds to the error in the ground reading and the second peak corre-
sponds to the error in the readings from the tree tops.

other. Many parameters have to be chosen, but only the number of particles used are
commented here (see [15] for more details). In Fig. 5 a plot of the error in horizontal
position as a function of time is presented, for different number of particles. The true
position is provided by the differential GPS (DGPS). From this figure it is obvious that
the estimate improves as more particles are used. This is natural since the theory states
that the densities are approximated better the more particles used. The difference in per-
formance is mainly during the transient, where it can be motivated to use more particles.
By increasing the number of particles the convergence time is significantly reduced and a
better estimate is obtained. This is true up to 5000 particles. Hence, 5000 particles where
used in this study. The algorithm can be further improved, and in [15] several suggestions
are given.

The conclusion from this study is that the marginalized particle filter performs well,
and provides an interesting and powerful alternative to methods currently used in inte-
grated aircraft navigation systems.

6 Conclusions

The marginalization techniques have systematically been applied to general nonlinear
and non-Gaussian state-space models, with linear sub-structures. This has been done in
several steps, where each step implies a certain modification of the standard particle filter.
The first step was to associate one Kalman filter with each particle. These Kalman filters
were used to estimate the linear states. The second step was to use the prediction of the
nonlinear state as an additional measurement. This was used to obtain better estimates
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Figure 4: The flight path used for testing the algorithm. The flight path is clockwise
and the dark regions in the figure are open water.

of the linear state variables. The complete details for the marginalized particle filter were
derived for a general nonlinear and non-Gaussian state-space model. Several important
special cases were also described. Conditions implying that all the Kalman filters will
obey the same Riccati recursion were given.

Finally, a terrain navigation application with real data from the Swedish fighter aircraft
Gripen was presented. The particle filter is not a feasible algorithm for the full nine-
state model since a huge number of particles would be needed. However, since only two
states (the aircrafts horizontal position) appear nonlinearly in the measurement equation,
a special case of the general marginalization algorithm can be applied. A very good result
can be obtained with only 5000 particles, which is readily possible to implement in the
computer currently used in the aircraft.
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Figure 5: The horizontal position error as a function of time units for different
numbers of particles. The marginalized particle filter given in Algorithm 1 has been
used.

A Appendix

A.1 Proof for Theorem 1

The proof of (16) and (17) is provided as a special case of the proof below.

Proof: For the sake of notational brevity the dependence on xnt in (18) is suppressed in
this proof. Write (18) as

xlt+1 = f lt +Altx
l
t +Gltw

l
t, (37a)

z1
t = Ant x

l
t +Gnt w

n
t , (37b)

z2
t = Ctx

l
t + et, (37c)

where z1
t and z2

t are defined as

z1
t = xnt+1 − fnt , (37d)

z2
t = yt − ht. (37e)

Inspection of the above equations gives that z1
t and z2

t can both be thought of as mea-
surements, since mathematically (37b) and (37c) possess the structure of measurement
equations. The fact that there is a cross-correlation between the two noise processes wlt
and wnt , since Qlnt 6= 0 in (19a), has to be taken care of. This can be accomplished us-
ing the Gram-Schmidt procedure to de-correlate the noise [17], [21]. Instead of wlt the
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following can be used

w̄lt = wlt − E[wlt(w
n
t )T ](E[wnt (wnt )T ])−1wnt

= wlt −Qlnt (Qnt )−1wnt , (38)

resulting in E[w̄lt(w
n
t )T ] = 0 and

Q̄lt = E[w̄lt(w̄
l
t)
T ] = Qlt −Qlnt (Qnt )−1Qlnt . (39)

Using (37b) and (38), (37a) can be rewritten according to (Gnt is assumed invertible. The
case of a non-invertible Gnt is treated in [5])

xlt+1 = Altx
l
t +Glt[w̄

l
t +Qlnt (Qnt )−1(Gnt )−1(z1

t

−Ant xlt)] + f lt , (40)

= Āltx
l
t +Gltw̄

l
t +GltQ

ln
t (Gnt Q

n
t )−1z1

t + f lt , (41)

where

Ālt = Alt −GltQlnt (Gnt Q
n
t )−1Ant . (42)

The de-correlated system is

xlt+1 = f lt + Āltx
l
t +GltQ

ln
t (Gnt Q

n
t )−1z1

t +Gltw̄
l
t, (43a)

z1
t = Ant x

l
t +Gnt w

n
t , (43b)

z2
t = Ctx

l
t + et, (43c)

which is a linear system with Gaussian noise. Moreover, from (37d) and (37e) it can
be seen that Z1

t and Z2
t are known if Xn

t+1 and Yt are known. The actual proof, using
induction, of the theorem can now be started. At time zero; p(xl0|Xn

0 , Y−1) = p(xl0|xn0 ) =
N (x̄l0, P̄0). Now, assume that p(xlt|Xn

t , Yt−1) is Gaussian at an arbitrary time, t.
The recursions are divided into three parts. First, the information available in the ac-

tual measurement, yt, i.e., z2
t is used. Once the measurement update has been performed

the estimates, x̂lt|t and Pt|t are available. These can now be used to calculate the pre-
dictions of the nonlinear state, x̂nt+1|t. These predictions will provide new information
about the system. Second, this new information is incorporated by performing a second
measurement update using the artificial measurement, z1

t . Finally a time update, using
the result from the second step, is performed.

Part 1: Assume that both p(xlt|Xn
t , Yt−1) = N (x̂lt|t−1, Pt|t−1) and z2

t are available.
This means that p(xlt|Xn

t , Yt) can be computed,

p(xlt|Xn
t , Yt) =

p(yt|xnt , xlt)p(xlt|Xn
t , Yt−1)∫

p(yt|xnt , xlt)p(xlt|Xn
t , Yt−1)dxlt

. (44)

Using the fact that the measurement noise and thereby p(yt|xnt , xlt) is Gaussian and the
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Kalman filter [1] it can be seen that p(xlt|Xn
t , Yt) = N (x̂lt|t, Pt|t) where

x̂lt|t = x̂lt|t−1 +Kt(z2
t − Ctx̂lt|t−1), (45a)

Pt|t = Pt|t−1 −KtMtK
T
t , (45b)

Kt = Pt|t−1C
T
t M

−1
t , (45c)

Mt = CtPt|t−1C
T
t +Rt. (45d)

Part 2: At this stage z1
t becomes available. Use

p(xlt|Xn
t+1, Yt) =

p(xnt+1|xnt , xlt)p(xlt|Xn
t , Yt)∫

p(xnt+1|xnt , xlt)p(xlt|Xn
t , Yt)dxlt

(46)

analogously to part 1 p(xlt|Xn
t+1, Yt) = N (x̂l∗t|t, P

∗
t|t) where

x̂l∗t|t = x̂lt|t + Lt(z1
t −Ant x̂lt|t), (47a)

P ∗t|t = Pt|t − LtN∗t LTt , (47b)

Lt = Pt|t(Ant )T (N∗t )−1, (47c)

N∗t = Ant Pt|t(A
n
t )T +Gnt Q

n
t (Gnt )T . (47d)

Part 3: The final part is the time update, i.e., to compute

p(xlt+1|Xn
t+1, Yt) =∫
p(xlt+1|xnt+1, x

n
t , x

l
t)p(x

l
t|Xn

t+1, Yt)dx
l
t. (48)

Since the state noise is Gaussian this corresponds to the time update handled by the
Kalman filter. Hence, p(xlt+1|Xn

t+1, Yt) = N (x̂lt+1|t, Pt+1|t) where

x̂lt+1|t = Āltx̂
l
t|t +Glt(Q

ln
t )T (Gnt Q

n
t )−1z1

t

+ f lt + Lt(z1
t −Ant x̂lt|t), (49a)

Pt+1|t = ĀltPt|t(Ā
l
t)
T +GltQ̄

l
t(G

l
t)
T − LtNtLTt , (49b)

Lt = ĀltPt|t(A
n
t )TN−1

t , (49c)

Nt = Ant Pt|t(A
n
t )T +Gnt Q

n
t (Gnt )T . (49d)
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Abstract

This paper details an approach to the integration of INS (Inertial Navigation
System) and TAP (Terrain-Aided Positioning). The solution is characterized
by a joint design of INS and TAP, meaning that the highly nonlinear TAP is
not designed separately but jointly with the INS using one and the same filter.

The applied filter extends the theory of the MPF (Marginalized Particle Filter)
given by [26]. The key idea with MPF is to estimate the nonlinear part using
the particle filter and the part which is linear, conditionally upon the nonlinear
part, is estimated using the Kalman filter. The extension lies in the possibility
to deal with a third multi-modal part, where the discrete mode variable is also
estimated jointly with the linear and nonlinear parts. Conditionally upon the
mode and the nonlinear part, the resulting subsystem is linear and estimated
using the Kalman filter.

Given the nonlinear motion equations which the INS uses to compute navi-
gation data, the INS equations must be linearized for the MPF to work. A set
of linearized equations is derived and the linearization errors are shown to be
insignificant with respect to the final result. Simulations are performed and
the result indicates near-optimal accuracy when compared to the Cramer-Rao
lower bound.

1 Introduction

Accurate and reliable navigation systems have been identified as a critical enabling tech-
nology for enhanced aircraft capabilities in the coming 10-20 years. One reason is the
foreseen increased use of unmanned aerial vehicles (UAVs). Following the introduc-
tion of UAVs the requirements on the navigation system (cost, size and performance) is
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strengthened, and no stand-alone navigation sensor is capable of meeting them all. The
solution is to blend the output from two or more navigation sensors to achieve an overall
good enough accuracy and reliability.

Due to its reliability and short-term accuracy, even for flight conditions involving
substantial maneuvering, inertial navigation systems (INS) are usually regarded as the
primary source of navigation data. The major drawback with inertial navigation is that
initialization and sensor errors cause computed quantities to drift. To stabilize the drift and
ensure long-term accuracy the inertial navigation system is integrated with one or more
aiding sources. The standard aiding source today is the global positioning system (GPS),
see e.g. [7, 9, 3]. Although satellite navigation is seeing a widespread use, problems
with the GPS such as reception limitation and interference increase the relevance of other
aiding navigation sensors. One example is terrain-referenced navigation, or terrain-aided
positioning (TAP). The principle is to measure terrain variations along the flight path and
compare it to a database with stored terrain elevation for given positions. Although TAP
does not suffer from the limitations applicable for GPS, there are other criteria which must
be met. The distance to the ground needs to be within the operating range of the radar
altimeter, you need a terrain elevation map over the area of interest and last but not least
you need terrain variation along the flight path (which is not always the case e.g. when
flying over water). Nevertheless, often the drawbacks of TAP are easier to accept than
those for GPS, and the idea of using the terrain height [16], [4] or landmarks [11], [18]
for positioning purposes has been around for quite some time now.

The challenge with TAP is to deal with its highly nonlinear, non-analytical character-
istics. When facing a nonlinear estimation problem, a standard tool among practitioners
is to apply the extended Kalman filter (EKF). Due to TAPs multi-modal character, corre-
sponding to a measured terrain profile matching several profiles in the database, the EKF
often fails. Better performance is obtained using grid-based methods, e.g. the point-mass
filter [4], where the probability is discretized over the state space. This is possible due
to the low dimensionality of TAP (either two or three dimensions if considering altitude
besides horizontal position).

Traditionally, integrating TAP with INS has been performed using separate filters, one
for TAP estimating position and another for estimating INS quantities using position from
TAP as input [23]. Here, we use state-of-the-art joint design, meaning that we blend TAP
and INS tightly in one and the same filter, see Figure 1.

Using this tight fusion technique means that we need to solve a nonlinear, high-
dimensional problem. Here high-dimensional means that we have to consider not only
position but also INS computed quantities such as velocity, attitude and heading. This
rules out grid-based methods which, due to the computational load increasing exponen-
tially with the dimension, are tractable only up to three dimensions. Simulation-based
methods, such as the particle filter (PF) [12], have the promising feature of theoretically
being independent of dimensionality. Simulation results indicate however that this is not
the case in practice, although less dependent compared to the grid-based methods. More-
over, based on analysis and simulations [21] we know that a high performance INS with
position error typically in the range of one nautical mile per hour (1.825 km/hr) is not
very well suited for the particle filter. This has to do with the process noise being so
small, making the particles cluster in state space and thereby increasing the discretiza-
tion error of the particle filter. For the stand-alone particle filter to work on the blended
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Figure 1: Chosen configuration for blended INS/TAP. The pressure altimeter is used
to stabilize INS vertical channel.

INS/TAP described here the number of particles needed for filter convergence is simply
too large to be computationally tractable [21].

However, we derive a set of linearized equations for the INS errors and we show that
the linearization errors are small. Particularly this is true when the errors are kept small
either using a high performance INS or by feeding the error back to the INS. Still the
problem is highly nonlinear due to TAP, but now with a conditionally linear sub-structure
corresponding to the additional INS related quantities. This means that conditionally upon
position the INS related quantities can be estimated using the extended Kalman filter while
position is estimated using the particle filter. The combined Kalman/particle filter is also
known as the marginalized particle filter (MPF) [26] or the Rao-Blackwellized particle
filter (RBPF) [2].

For the system to be able to provide accurate estimates of position we need an accurate
estimate of altitude. One way forward and the one detailed in this paper is to use measure-
ments from a radar altimeter (RA). The ground clearance measurements from the RA are
however subject to a mode dependent error characteristic. The measurement error reflects
e.g. whether there are a lot of trees on the ground or not. Conditionally upon the mode
and nonlinear horizontal position, altitude is straightforwardly estimated by the Kalman
filter. The MPF from [26] is here extended to account for this multi-modal character of
the terrain elevation measurements. The extension consists of including estimation of the
discrete RA measurement error mode as a third part in the joint filter design. The use of an
airborne laser scanner (ALS) to measure ground clearance [8] is an interesting alternative
to the radar altimeter. The accuracy and possibility to filter measurements which originate
from tree reflections should yield significantly better estimation accuracy. On the other
hand, the ALS has problem penetrating fog, rain and clouds which limits its applicability.
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2 Outline

This paper begins by a derivation of INS error dynamics in Section 3. The INS nonlinear
equations, for the sake of completeness given in Appendix A.1, are linearized and the re-
sulting linear INS error equations are shown to accurately describe the aircraft dynamics.
The non-analytical and highly nonlinear terrain-aided positioning system is introduced in
Section 4. The derivation of the extended marginalized particle filter (MPF) is given in
Section 5. The derivation consists of three lemmas, where each lemma provides result on
how to estimate the linear, multi-modal and nonlinear parts respectively. The details on
the algorithm for the blended INS/TAP system is given in 6 where we also analyze con-
vergence properties of the filter. The algorithm is tested in a simulation study as described
in 7. Finally conclusions are elaborated on in Section 8.

3 INS Error Dynamics

Collect all navigation variables, i.e. latitudeL, longitude l, altitude h, velocity in north vn,
east ve and down vd directions and attitude and heading represented by a transfomation
matrix from body to navigation frame Cnb , in a state vector

z =
[
L l h vn ve vd vec(Cnb )

]T
. (1)

The input variables, i.e. accelerations f b and angular rates ωb, are collected in the vector

w =
[
f bx f by f bz ωbx ωby ωbz

]T
. (2)

For details regarding the navigation and input variables see Appendix A.1. The state dy-
namics, given by (77), (79) and (85) in Appendix A.1, can compactly be written according
to

ż = f(z, w). (3)

Denote the corresponding INS state and input vectors by zins and wins. Due to initializa-
tion and sensor errors the state vector computed by the INS will differ from the true state
vector. Define the INS state and sensor errors according to

x = z − zins, u = w − wins. (4)

Combining (3)–(4) we can write the error dynamics as

ẋ = ż − żins = f(z, w)− f(z − x,w − u). (5)

The goal is to provide a set of linearized equations describing the INS error dynamics,

ẋ(t) = A(t)x(t) +B(t)u(t) + ∆, (6)

such that ∆ representing the linearization error is small. Below we derive x, u, A and B
in (6) such that

|∆i|
|[Ax]i|

< 0.01, i = 1, . . . , n, ∀x ∈ Table 1 (7)
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where n is the number of states in x. We will show that x and u according to

x =
[
L̃ l̃ h̃ ṽn ṽe γn γe γd bax bay

]T
, (8)

u =
[
uh uax uay uγx uγy uγz ubx uby

]T
. (9)

and A and B according to Appendix A.2 are adequate. The vector x in (8) is extended
with two states for accelerometer biases bax and bay compared to (4). Moreover, u in (9)
consists of white noise components including process noise for the accelerometer biases
ubx and uby . Note that there is no accelerometer bias or noise along body frame z−axis.
Instead white noise uh enters the equation for altitude error h̃ directly. The reason for this
is that the INS is supported by a pressure altimeter, see Figure 1, which compensates for
any drift in the vertical channel.

Table 1: Ranges on navigation data.

|L| ≤ 70 deg |L̃| ≤ 2000/r0 rad

h ≤ 5000 m |h̃| ≤ 100 m

|vtot| ≤ 200 m/s |ṽtot| ≤ 2 m/s

|γn,e| ≤ 5 · 10−4 rad |γd| ≤ 1 · 10−3 rad

|f bx,y,z| ≤ 20 m/s2 |bax,y| ≤ 5 · 10−3 m/s2

From (77) and (5) the expressions for the latitude and longitude errors become

˙̃L =
vn

rL(L) + h
− vn − ṽn
rL(L− L̃) + h− h̃

,

˙̃
l =

ve cos−1 L

rl(L) + h
− (ve − ṽe) cos−1(L− L̃)

rl(L− L̃) + h− h̃
.

(10)

Apply Taylor expansion on (10) around h, ε2 and L and we can rewrite the equations
according to

˙̃L =
1
r0
ṽn + ∆L̃

˙̃
l =

ve sinL
r0 cos2 L

L̃+
1

r0 cosL
ṽe + ∆l̃.

(11)

Inserting values on the errors involved from Table 1, the magnitude on ∆L̃ and ∆l̃ in (11)
is

|∆L̃|
|[Ax]L̃|

< ε2 +
vnh̃

ṽnr0
< 9 · 10−3,

|∆l̃|
|[Ax]l̃|

<
ṽeε

2 + veh̃/r0

veL̃ tanL+ ṽe
< 8 · 10−3.

(12)
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From (77) we see that the equation for the altitude error h̃ becomes

˙̃
h = −ṽd. (13)

The INS is unstable in the vertical channel with a time constant of approximately 10
minutes [20]. For an operational INS the vertical channel must therefore be stabilized.
Typically this is done using a pressure sensor. A simple and reasonable assumption is that
the pressure sensor error drifts according to a random walk process, where the driving
noise is described by the uh-component in (9). Moreover, we assume that the stabiliza-
tion works through an altitude filter such that the INS altitude error follows the pressure
altitude error, resulting in the equation

˙̃
h ≈ uh. (14)

Applying (5) on (79) gives the velocity error equation

˙̃vn = C̃nb f
b + (Cnb − C̃nb )ãb − (Ω̃nen + 2Ω̃nie)v

n−
(Ωnen − Ω̃nen + 2(Ωnie − Ω̃nie))ṽ

n + g̃n,
(15)

with f b,ins = f b − ãb and g̃n ≈
[
0 0 g̃d

]T
. Taylor expansion on ω̃nen using (81) and

(5) around ε2, h and L and on ω̃nie around L provides

ω̃nen + 2ω̃nie = ˆ̃ωnen + 2ˆ̃ωnie + ∆δω,

ˆ̃ωnen + 2ˆ̃ωnie =


ṽe
r0
− 2ωieL̃ sinL
− ṽnr0

− veL̃
r0 cos2 L −

ṽe tanL
r0

− 2ωieL̃ cosL

 . (16)

We can also simplify ωnen − ω̃nen + 2(ωnie − ω̃nie) in (15) according to

ωnen − ω̃nen + 2(ωnie − ω̃nie) = ω̂nen + 2ωnie + ∆ω,

ω̂nen + 2ωnie =

 ve
r0

+ 2ωie cosL
−vnr0

−ve tanL
r0

− 2ωie sinL

 . (17)

Moreover, define a small-angle transformation γn =
[
γn γe γd

]T
, in skew-symmetric

matrix form denoted by Γn, through

C̃nb = Cnb − C
n,ins
b = Cnb − Cn,ins

n Cnb

= (I − Cn,ins
n )Cnb = ΓnCnb + ∆C̃nb

.
(18)

The small-angle transformation describes a rotation of the navigation frame computed
by the INS relative to the true navigation frame. The rest term ∆C̃nb

consists of second
and higher order terms of γn which are obtained after Taylor expansion of I − Cn,ins

n .
Applying the approximations on the velocity error equation in (15), together with fn =
Cnb f

b, Γnfn = −Fnγn and Ωnvn = −V nωn, yields

˙̃vn = −Fnγn + Cnb ã
b + Ṽ n(ω̂nen + 2ωnie)+

V n(ˆ̃ωnen + 2ˆ̃ωnie) + g̃n + ∆ṽn .
(19)
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The error introduced in ṽn and ṽe when going from (15) to (19) is upper limited by

‖∆ṽn,e‖∞ ≤ ‖∆C̃nb
f b‖∞ + ‖Γnãb‖∞

+ ‖Ṽ n∆ω‖∞ + ‖V n∆ω̃‖∞.
(20)

Using (16) and (17) we have

‖∆C̃nb
f b‖∞ ≤ 2γ2

dmax(f bx, f
b
y , f

b
z )

‖Γnãb‖∞ ≤ 2γdmax(bax, b
a
y, b

a
z),

‖Ṽ n∆ω‖∞ ≤ ṽ(
ṽ tanL
r0

+
ε2vL tanL

r0
+ 2ωieL̃),

‖V n∆ω̃‖∞ ≤ v(
ṽε2 tanL

r0
+
vh̃L tanL

r2
0

+ 2ωieL̃2),

(21)

with v = max(vn, ve). Using values from Table 1 we obtain

‖∆ṽn,e‖∞
|[Ax]ṽn,e |

≤ (40 + 10 + 4 + 2) · 10−6

(10000 + 5000 + 300 + 100) · 10−6

≤ 4 · 10−3.

(22)

Finally, using (85) and (18) it is straightforward to show [20] that the linearized equa-
tion for γn is given by

γ̇n = Cnb ω̃
b
ib − ω̃nin − Ωninγ

n + ∆γn ,

‖∆γn‖∞ ≤ 2γ2
d(
v tanL
r0

+ ωie),
(23)

where v = max(vn, ve) and ṽ = max(ṽn, ṽe). The rest term ∆γn consists of second and
higher order terms of γn. The error is therefore upper limited by

‖∆γn‖∞
|[Ax]∆γn

|
≤ 0.4 · 10−9

(1000 + 500 + 100) · 10−9
< 3 · 10−4. (24)

The error characteristics for the accelerometers and rate gyros are in general involved,
see e.g. [19]. The easiest, but for the application adequate, way to model the accelerom-
eter errors is to use a slowly varying offset and white noise. Normally there also exist
offsets in the rate gyros, but these are for the application here considered small and there-
fore neglected. Note however, the algorithm is readily modifiable to include the influence
of gyro drift in cases where the gyro offset is larger or the time interval is longer. The
accelerometer offset, or bias, can with good accuracy be modelled as a first order Gauss-
Markov process,

ḃa = −1
τ
ba + ub ≈ ub. (25)

The last approximation is valid because the time constant τ is usually rather large. We
will here incorporate accelerometer biases acting only in the x- and y-directions in body
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frame. This is an implication from the assumption that the INS altitude error follows the
pressure altitude, meaning that any z-accelerometer bias is compensated for through the
stabilization of the vertical channel. This is true for situations where roll and pitch angles
are close to zero. During a turn, climb and/or dive the altitude filter is effected by x-
and/or y− accelerometer biases. Here we assume turns, climbs and/or dives are rare such
that we can neglect this effect.

To be able to apply our discrete time filter (6) has to be discretized

xt+1 = Ftxt +Gtut. (26)

For a small sampling period Ts the Euler approximation provides

Ft = I + TsAt,

Gt = Ts(I +
Ts
2
At)Bt,

E[utuTt ] = Qt/Ts,

(27)

where A(t) = At, B(t) = Bt and E[u(t)uT (t)] = Q(t) = Qt are considered constant
during the sampling period.

4 Terrain-Aided Positioning

The idea behind terrain-aided positioning is to use the terrain height profile, obtained by
projecting the path of the aircraft onto the ground. The INS computed altitude provides
a measurement of altitude above mean-sea level. At the same time the ground clearance,
i.e. the distance between the aircraft and the ground, is measured using a radar altimeter.
The difference between these two measurements provides a measurement on the terrain
height at the location where the measurement was performed. A number of such measure-
ments build up a measured terrain height profile. The aircraft carries a terrain elevation
database where the terrain height is stored as a function of sampled horizontal position.
The measured terrain height profile is compared with all possible profiles obtained from
the database. The database profile which resembles the measured profile the most is se-
lected, and thereby determines the aircraft’s position.

The equation for terrain-aided positioning is

yt = hins
t − hra

t = h(Lt, lt)− h̃t + et, (28)

where yt is measured terrain height and h(·) is the terrain height given by the database
as a function of horizontal position, i.e. latitude and longitude. The term h̃t is the INS
altitude error. Moreover, et is the measurement noise, having a probability density which
here is given by

p(et) =
2∑

λt=1

Pr(λt)N (m(λt)
t , R

(λt)
t ), (29)

i.e. a Gaussian mixture with two modes. The first mode (λt = 1) represents the case
where the radar altimeter beam hits the ground and thereby reflecting the true ground
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clearance. The second mode (λt = 2) models the case where the beam hits a tree top,
giving a measurement of the ground clearance which is too small. The probability for
each of the two events is Pr(λt = 1) and Pr(λt = 2) respectively. The radar altimeter
is a pulsed system operating at 4.3 GHz which makes it sensitive to reflections from e.g.
trees. Together with a wide beam lobe (≈ 50 deg) the radar altimeter normally measures
the closest distance to the ground or any obstacle, even during moderate roll and pitch
angles. To eliminate roll and pitch dependent errors the measurements from the radar
altimeter are not used when roll or pitch angle is larger than 25 deg.

A simple way of avoiding the mode dependent error characteristics is to approximate
the probability density in (29) with a single Gaussian. However, it is shown in [15] that the
gain when taking advantage of multi-modal characteristics can be significant. Simulations
show that e.g. horizontal position is estimated with approximately 70% better accuracy.

5 The Marginalized Particle Filter

The main idea of the particle filter is to discretize the posterior probability density for the
state xt according to

p(xt|Yt) ≈
N∑
i=1

w̄
(i)
t δ

x
(i)
t

(xt), (30)

where δ is the delta-Dirac function and Yt = {y0, . . . , yt} is the stacked vector of mea-
surements. The weights w̄(i)

t , where
∑N
i=1 w̄

(i)
t = 1, together with the particles x(i)

t are
such that they together yield a set of samples approximately drawn from the posterior
probability density. Theoretically we can solve almost any estimation problem using the
particle filter, as long as the number of particles N is high enough.

In many cases the underlying motion model has structures which can be exploited for
the purpose of decreasing N and thereby the computational load. Consider a state-space
model which can be written on the form

xn
t+1 = fn

t (xn
t ) +F n

t x
l
t +Gn

t u
n
t , (31a)

xd
t+1 = fd

t (xn
t )+F d

t x
d
t +Gd

t u
d
t , (31b)

xl
t+1 = f l

t(x
n
t ) +F l

tx
l
t +Gl

tu
l
t, (31c)

yt = ht(xn
t ) +Htx

d
t + et(λt), (31d)

where xt =
[
(xn
t )T (xd

t )T (xl
t)
T
]T

. The superscripts n, d and l denote which part
of the state vector has a nonlinear, discrete and linear structure respectively. Note that
spaces in (31) are used to emphasize what parts of the state vector are affected by other
parts and the measurements. This is important for the results derived below. Assume that
the process noise is Gaussian distributed according to

ut =

un
t

ud
t

ul
t

 ∼ N (0, Qt), Qt =

Qn
t 0 0

0 Qd
t 0

0 0 Ql
t

 . (32)
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See [26] on how to deal with a mutually correlated process noise. Also assume that xd
0

and xl
0 are Gaussian distributed i.e.

xd
0 ∼ N (0, P d

0 ), xl
0 ∼ N (0, P l

0). (33)

The measurement noise et is a sum of M Gaussians according to

et ∼
M∑
λt=1

Pr(λt)N (m(λt)
t , R

(λt)
t ), (34)

with mode transition probabilities

πλtλt−1
= Pr(λt|λt−1), λt, λt−1 = 1, . . . ,M. (35)

The aim is to recursively estimate the probability density function (pdf) for xt given
all available measurements Yt. The pdf is then used to compute an estimate of xt, here
the mean value, and the corresponding covariance of the estimate. The direct approach
is to apply the particle filter. However, for the class of systems described by (31) there
exists a more efficient way. Consider the probability density p(xl

t, x
d
t , X

n
t |Yt), where

Xn
t = {xn

0 , . . . , x
n
t } is the stacked vector of state history. This pdf can be factorized

using Bayes´ rule according to

p(xl
t, x

d
t , X

n
t |Yt) =

p(xl
t|xd

t , X
n
t , Yt)p(x

d
t |Xn

t , Yt)p(X
n
t |Yt) =

p(xl
t|Xn

t , Yt)p(x
d
t |Xn

t , Yt)p(X
n
t |Yt).

(36)

Assume for now that we have an estimate based on the particle filter of p(Xn
t |Yt) accord-

ing to

p(Xn
t |Yt) ≈

N∑
i=1

w̄
(i)
t δ

X
n,(i)
t

(Xn
t ). (37)

From (37) we have the probability density

p(xn
t |Yt) ≈

N∑
i=1

w̄
(i)
t δ

x
n,(i)
t

(xn
t ), (38)

by extracting xn
t from Xn

t . Moreover, combining (36) and (37) we have estimates of

p(xl
t|Yt) =

∫
p(xl

t|Xn
t , Yt)p(X

n
t |Yt)dXn

t

≈
N∑
i=1

w̄
(i)
t p(xl

t|X
n,(i)
t , Yt),

p(xd
t |Yt) =

∫
p(xd

t |Xn
t , Yt)p(X

n
t |Yt)dXn

t

≈
N∑
i=1

w̄
(i)
t p(xd

t |X
n,(i)
t , Yt).

(39)
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In the forthcoming three Lemmas we derive expressions for how to recursively compute
p(Xn

t |Yt), p(xl
t|Xn

t , Yt) and p(xd
t |Xn

t , Yt), i.e.

Lemma 1: p(xl
t|Xn

t , Yt) by the Kalman filter,
Lemma 2: p(xd

t |Xn
t , Yt) by a bank of M t+1 Kalman filters,

Lemma 3: p(Xn
t |Yt) by the particle filter.

The recursions are such that we do not need knowledge of the state history Xn
t but only

xn
t−1 and xn

t . The derived expressions are then used together with (38) and (39) to obtain
estimates of the posterior pdfs of xl

t, x
d
t and xn

t .

Lemma 1 (Conditionally linear single Gaussian)
For the state-space model (31), with the assumptions according to (32)–(33), we have that

p(xl
t|Xn

t , Yt) = N (x̂l
t|t, P

l
t|t), (40a)

p(xl
t+1|Xn

t+1, Yt) = N (x̂l
t+1|t, P

l
t+1|t), (40b)

where

x̂l
t|t = x̂l

t|t−1, P l
t|t = P l

t|t−1, (41)

and

x̂l
t+1|t = (F l

t −Kp,tF
n
t )x̂l

t|t+

Kp,t(xn
t+1 − fn

t (xn
t )) + f l

t(x
n
t ),

P l
t+1|t = F l

tP
l
t|t(F

l
t)
T +Gl

tQ
l
t(G

l
t)
T −Kp,tSp,tK

T
p,t,

Kp,t = F l
tP

l
t|t(F

n
t )TS−1

p,t ,

Sp,t = Gn
tQ

n
t (Gn

t )T + F n
t P

l
t|t(F

n
t )T .

(42)

Proof: Conditionally upon Xn
t , xl

t is independent of Yt and thereby unaffected by the
multi-modal noise et given by (34). The result then follows immediately from [26].

In practice the above means that we can estimate p(xl
t|Yt) as the weighted sum of N

Kalman filters applied to each sequence of {Xn,(i)
t }Ni=1.

Lemma 2 (Conditionally linear multi-modal Gaussian)
For the state-space model (31), with the assumptions according to (32)–(35) and Λt =
{λ0, . . . , λt}, we have that

p(xd
t |Xn

t , Yt) =
∑
Λt

ᾱ
(Λt)
t N (x̂d,(Λt)

t|t , P
d,(Λt)
t|t ), (43a)

p(xd
t+1|Xn

t , Yt) =
∑
Λt

ᾱ
(Λt)
t N (x̂d,(Λt)

t+1|t , P
d,(Λt)
t+1|t ), (43b)
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where

x̂
d,(Λt)
t|t = x̂

d,(Λt−1)
t|t−1 +

P
d,(Λt−1)
t|t−1 HT

t (S(Λt)
f,t )−1(yt − ŷ(Λt)

t|t−1),
(44a)

P
d,(Λt)
t|t = P

d,(Λt−1)
t|t−1 −

P
d,(Λt−1)
t|t−1 HT

t (S(Λt)
f,t )−1Ht(P

d,(Λt−1)
t|t−1 )T ,

(44b)

ŷ
(Λt)
t|t−1 = ht(xn

t )−Htx̂
d,(Λt−1)
t|t−1 −m(λt)

t , (44c)

S
(Λt)
f,t = R

(λt)
t +HtP

d,(Λt−1)
t|t−1 HT

t , (44d)

x̂
d,(Λt)
t+1|t = fd

t (xn
t ) + F d

t x̂
d,(Λt)
t|t ,

P
d,(Λt)
t+1|t = F d

t P
d,(Λt)
t|t (F d

t )T +Gd
tQ

d
t (Gd

t )T ,
(45)

and

α
(Λt)
t = N (ŷ(Λt)

t|t−1, S
(Λt)
f,t )πλtλt−1

ᾱ
(Λt−1)
t−1 ,

ᾱ
(Λt)
t =

α
(Λt)
t∑

Λt
α

(Λt)
t

(46)

Proof: The probability p(xd
t |Xn

t , Yt) can be written according to

p(xd
t |Xn

t , Yt) =
∑
Λt

p(xd
t |Xn

t , Yt,Λt)Pr(Λt|Xn
t , Yt). (47)

Conditionally upon λt, et is a single Gaussian. Together with ᾱ(Λt)
t = Pr(Λt|Xn

t , Yt) the
result for (43)–(45) follows from [26]. Using Bayes´ rule repeatedly and the principle of
induction, the probability Pr(Λt|Xn

t , Yt) is recursively given by

Pr(Λt|Xn
t , Yt) =

p(yt|Xn
t , Yt−1,Λt)Pr(Λt|Xn

t , Yt−1)
p(yt|Xn

t , Yt−1)
=

p(yt|Xn
t , Yt−1,Λt)Pr(λt|λt−1)Pr(Λt−1|Xn

t−1, Yt−1)∑
Λt
p(yt|Xn

t ,Yt−1,Λt)Pr(λt|λt−1)Pr(Λt−1|Xn
t−1,Yt−1)

=

p(yt|Xn
t , Yt−1,Λt)Pr(λt|λt−1)ᾱ(Λt−1)

t−1∑
Λt
p(yt|Xn

t , Yt−1,Λt)Pr(λt|λt−1)ᾱ(Λt−1)
t−1

.

(48)

From [26] we know that p(yt|Xn
t , Yt−1,Λt) = N (ŷ(Λt)

t|t−1, S
(Λt)
f,t ). Together with the mode

transition probability πλtλt−1
= Pr(λt|λt−1) the formulas in (46) follows.

In practice this means that we have to apply one Kalman filter for each sequence of
particles and each sequence of modes. The number of possible mode sequences increases
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exponentially with time and must somehow be limited. One way is to include the esti-
mate of the mode sequence in the particle filter, which automatically limits the number
such that only the most probable mode sequences survive. Another way is to merge mode
sequences which are identical from t − L up to and including t, so as to keep the num-
ber constant (= ML), using e.g. the generalized pseudo-Bayesian (GPB) or interacting
multiple model (IMM) filter [14, 5, 22].

Lemma 3 (Gaussian distributed likelihood and prior)
The probability p(Xn

t |Yt) is recursively given by

p(Xn
t |Yt) =

p(yt|Xn
t , Yt−1)p(xn

t |Xn
t−1, Yt−1)

p(yt|Yt−1)
p(Xn

t−1|Yt−1).
(49)

For the state-space model (31), with the assumptions according to (32)–(35), we have that

p(yt|Xn
t , Yt−1) =

∑
Λt

α
(Λt)
t , (50a)

p(xn
t+1|Xn

t , Yt) = N (x̂n
t+1|t, P

n
t+1|t), (50b)

where

x̂n
t+1|t = fn

t (xn
t ) + F n

t x̂
l
t|t,

P n
t+1|t = F n

t P
l
t|t(F

n
t )T +Gn

tQ
n
t (Gn

t )T ,
(51)

with α(Λt)
t given by (46).

Proof: Expression (49) is given by repeated use of Bayes’ rule. For p(xn
t+1|Xn

t , Yt) see
[26]. For p(yt|Xn

t , Yt−1) rewrite it according to

p(yt|Xn
t , Yt−1) =∑

Λt

p(yt|Xn
t , Yt−1,Λt)Pr(Λt|Xn

t−1, Yt−1) =

∑
Λt

N (ŷ(Λt)
t|t−1, S

(Λt)
f,t )πλtλt−1

ᾱ
(Λt−1)
t−1 =

∑
Λt

α
(Λt)
t ,

(52)

where the last step is given by (46).

For the particle filter algorithm, we can choose to use p(xn
t |X

n,(i)
t−1 , Yt−1) to update

the samples, i.e.

x
n,(i)
t ∼ p(xn

t |X
n,(i)
t−1 , Yt−1), (53)
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knowing that this is a Gaussian density and thereby easy to sample from. The weights are
then calculated according to

w
(i)
t = w̄

(i)
t−1p(y

n
t |X

n,(i)
t , Yt−1) = w̄

(i)
t−1

∑
Λt

α
(i,Λt)
t ,

w̄
(i)
t =

w
(i)
t∑

k w
(k)
t

,

(54)

which together with (53) yield (38).
A very important special case of (31) is when the matrices F n

t , Gn
t , F d

t , Gd
t , F l

t , G
l
t

and Ht are independent of xn
t . In this case one can deduce from Lemma 1 and 2 that the

Kalman filter covariance matrices are

P
l,(i)
t|t = P l

t|t and P d,(i,Λt)
t|t = P

d,(Λt)
t|t , (55)

i.e. independent of Xn,(i)
t , and at each time t we only have to update it once for xl

t

and Λt times (each mode sequence) for xd,(Λt)
t . This implies that, for a given number of

samplesN , the computational load for the marginalized particle filter is approximately the
same as for the stand-alone particle filter. In this case, given that the number of samples
needed for MPF is significantly lower than for the particle filter, the gain with respect to
computational load can be substantial.

6 Blended INS/TAP using MPF

6.1 The applied algorithm

For the purpose of applying the marginalized particle filter we separate the position and
altitude states from the others in (8) according to

xn
t =

[
L̃t l̃t

]T
,

xd
t = h̃t,

xl
t =

[
ṽn,t ṽe,t γn,t γe,t γd,t bax,t bay,t

]T
.

(56)

Using the system equations derived in Sections 3 and 4, the discrete state propagation and
measurement equations becomexn

t+1

xd
t+1

xl
t+1

 = Ft

xn
t

xd
t

xl
t

+Gt

[
ud
t

ul
t

]
. (57a)

yt = h

([
Lins
t

lins
t

]
+ xn

t

)
− xd

t + et, (57b)
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where h(·) in (57b) is the terrain database height with input arguments latitude Lt =
Lins
t + L̃t and longitude lt = lins

t + l̃t and

Ft = I + TsAt =

F n
n,t 02×1 F n

l,t

01×2 1 01×7

F l
n,t 01×7 F l

l,t

 ,
Gt = Ts(I +

Ts
2
At)Bt =

 02×1 Gn
t

Ts(1 + Ts
2 ) 01×7

07×1 Gl
t

 ,
ud
t = uht ,

ul
t =

[
uax,t uay,t uγx,t uγy,t uγz,t ubx,t uby,t

]T
.

(58)

Note that the state propagation model in (57a) is linear as opposed to the more general
nonlinear model used in Section 5.

To only have to compute one covariance matrix P l
t , the matrices F l

l,t, F
n
l,t, G

n
t and

Gl
t must all be independent of xn

t . This is achieved by not compensating INS computed
quantities with estimated errors before entering Ft, i.e. xt = xins

t + x̃t ≈ xins
t . An

alternative is to compensate using the MPF estimates, meaning that we use the same
compensation for all i = 1, . . . , N . The second alternative should be better if the INS
errors are large, but for simplicity the first alternative is chosen here.

For the altitude error xd
t = h̃t we choose to estimate it using the GPB filter. This

means that we use two Kalman filters, each one conditioned on one of the modes in (29).
For each time t the number of modes is always two. The recursions are then given by

x̂
d,(i,λt)
t|t = x̂

d,(i)
t|t−1+

P
d,(i)
t|t−1H

T
t (S(i,λt)

f,t )−1(yt − ŷ(i,λt)
t|t−1 ),

P
d,(i,λt)
t|t = P

d,(i)
t|t−1−

P
d,(i)
t|t−1H

T
t (S(i,λt)

f,t )−1Ht(P
d,(i)
t|t−1)T ,

α
(i,λt)
t = N (ŷ(i,λt)

t|t−1 , S
(i,λt)
f,t )

2∑
λt−1=1

πλtλt−1
ᾱ

(λt−1)
t−1 ,

ŷ
(i,λt)
t|t−1 = h(xn,(i)

t )−Htx̂
d,(i)
t|t−1 −m

(λt)
t ,

S
(i,λt)
f,t = R

(λt)
t +HtP

d,(i)
t|t−1H

T
t .

(59)

To keep the number of mode sequences constant the result from the two Kalman filters
are merged, using ᾱ(i,λt)

t = α
(i,λt)
t /

∑2
λt=1 α

(i,λt)
t , according to

x̂
d,(i)
t|t =

2∑
λt=1

ᾱ
(i,λt)
t x̂

d,(i,λt)
t|t ,

P
d,(i)
t|t =

2∑
λt=1

ᾱ
(i,λt)
t (P d,(i,λt)

t|t + (x̂d,(i,λt)
t|t − x̂d,(i)

t|t )2).

(60)
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We will add some artificial process noise uadd
t for the latitude and longitude error

states, to deal with particle filter discretization errors and to further decrease the number
of needed particles. This will change the state propagation equation for horizontal position
in (57a) to

xn
t+1 = F n

n,tx
n
t + F n

l,tx
l
t +Gn

t u
l
t + uadd

t︸ ︷︷ ︸
un
t

, (61)

which should be compared to the propagation equation for xl
t, i.e.

xl
t+1 = F l

n,tx
n
t + F l

l,tx
l
t +Gl

tu
l
t. (62)

The process noises un
t and ul

t are mutually correlated. On the other hand, hereQadd
t � Ql

t

which yields un
t ≈ uadd

t and the correlation is therefore neglected.
A summary of the applied algorithm is given in Algorithm 1.

Algorithm 1 (The MPF for blended INS/TAP).

1. Initialization:
For i = 1, . . . , N , sample xn,(i)

0 ∼ p(xn
0), and set

{x̂l,(i)
0|−1, P

l
0|−1} = {0, P l

0},

{x̂d,(i)
0|−1, P

d,(i)
0|−1} = {0, P d

0 },

{ᾱ(i,1)
−1 , ᾱ

(i,2)
−1 } = {Pr(λt = 1),Pr(λt = 2)}.

2. GPB filter measurement update:
For i = 1, . . . , N and λt = 1, 2, compute

{x̂d,(i,λt)
t|t , P

d,(i,λt)
t|t , α

(i,λt)
t } using (59),

ᾱ
(i,λt)
t = α

(i,λt)
t /(α(i,1)

t + α
(i,2)
t ),

{x̂d,(i)
t|t , P

d,(i)
t|t } using (60).

3. Particle filter measurement update:
For each i = 1, . . . , N , update

w
(i)
t = w̄

(i)
t−1

∑2
λt=1 α

(i,λt), w̄(i)
t = w

(i)
t /

∑
i w

(i)
t .

4. Resampling:
Resample N times with replacement according to

Pr(x(i)
t = x

(k)
t ) = w̄

(i)
t .

5. Kalman filter measurement uppdate:
For each i = 1, . . . , N , set
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x̂
l,(i)
t|t = x̂

l,(i)
t|t−1, P l

t|t = P l
t|t−1.

6. GPB filter time update:
For each i = 1, . . . , N , compute

x̂
d,(i)
t+1|t = x̂

d,(i)
t|t ,

P
d,(i)
t+1|t = P

d,(i)
t|t + Ts(1 + Ts/2)2Qd

t .

7. Particle filter time update:
For i = 1, . . . , N , sample

x
n,(i)
t+1 ∼ p(xn

t+1|X
n,(i)
t , Yt) using (50b).

8. Kalman filter time update:
For each i = 1, . . . , N , compute

{x̂l,(i)
t+1|t, P

l,(i)
t+1|t} according to (42).

6.2 Convergence Analysis of Algorithm 1

For the estimation of xn
t there are to the authors knowledge not many results which can be

used for convergence analysis. The results that do exist e.g. [10] are unfortunately rather
conservative. Simulations indicate however that given a large enough number of samples
the estimate of xn

t does converge.
We can on the other hand analyze the behaviour of xl

t and xd
t . Below we show that the

estimates of both xl
t and xd

t always converge, although they likely converge to something
wrong if the estimate of xn

t diverges. Rewrite the model for xl
t according to

xl
t+1 = F l

l,tx
l
t + F l

n,tx
n
t +Gl

tu
l
t

zl
t = xn

t+1 − F n
n,tx

n
t = F n

l,tx
l
t + un

t ,
(63)

The term F l
n,tx

n
t in (63) can be regarded as a known input signal.

Suppose first that the aircraft is traveling without any turns, at constant speed, at the
same altitude, and that the path is located around 60 degrees latitude. In this case, the
eigenvalues of F l

l,t all lie on or slightly outside the unit-circle. For the Riccati recursion
to converge a necessary condition is that the system is detectable [17]. For detectability
in this case we need full observability. To investigate the observability we can use the
observability matrix

O(t, t+ k) =

 Ht

...
Ht+k−1Ft+k−2 · · ·Ft

 , (64)

where in our case Ht = F n
l,t and Ft = F l

l,t. We know from [24] that if rank
(
O(t, t +

k)
)

= dim(xt), then the system is observable. It is straightforward to verify, under the
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flight conditions stated above, we actually have full observability after only four steps, i.e.
k = 4. On the other hand, most of the singular values of O(t, t + k) are very small, and
this is true for larger values on k as well.

To clarify, we can simplify the system equations further by discarding those elements
which are insignificant during shorter periods of time, say one or two minutes. For these
short periods of time we can neglect that the earth rotates and that the surface of the earth
is curved, i.e.

ωnie ≈ 03×1, ωnen ≈ 03×1. (65)

The simplification above means that the state transition matrix will look like

F l
l,t =

I + Ts

02×2
0 fd −fe cnb,11 cnb,12

−fd 0 fn cnb,21 cnb,22

05×2 05×5

 . (66)

Moreover, although the term fn in (19) can be regarded as a known input signal (at least
fn,ins is known), it is convenient for the analysis to rewrite it as

fn = v̇n + (Ωnen + 2Ωnie)v
n − gn ≈

 v̇n
v̇e

v̇d − gd

 . (67)

From the simplified system matrix F l
l,t above and the expression for the specific force

fn we can draw two conclusions. First of all, if there is no horizontal acceleration, i.e.
v̇n = v̇e = 0, γd will not be observable. This is easily seen from (66), because in this case
fn ≈ fe ≈ 0 and γd will thereby not have any influence on vn or ve, hence unobservable.
Secondly, flying along a straight path means that only the sum of−fdγn and bae , and fdγe
and ban, where

ban = cnb,11b
a
x + cnb,12b

a
y,

bae = cnb,21b
a
x + cnb,22b

a
y,

(68)

are observable. We need a change in Cnb to be able estimate the individual components in
the two sums.

The detectability criteria is only a necessary condition for the Riccati recursion to
converge. A necessary and sufficient condition is to also require that the system is unit-
circle controllable [17]. Here, it is straightforward to verify, by inspection of Gkt , that the
system is actually controllable, and thereby also unit-circle controllable.

The same reasoning as for xl
t applies to xd

t . Rewrite the model for xd
t according to

xd
t+1 = xd

t +Gd
t u

d
t

zd
t = yt − h

([
Lins
t

lins
t

]
+ xn

t

)
= −xd

t + et(λt).
(69)

It is obvious that the model is both observable and controllable thereby providing suffi-
cient conditions for the Riccati equation to converge. The mode variable λt could possi-
bly cause the estimate to converge to something wrong, but simulations show that this is
highly unlikely.
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7 Simulation Results

In this section we apply the marginalized particle filter according to Algorithm 1 on simu-
lated inertial navigation data. Terrain elevation data is taken from a commercial database,
which contains terrain elevation at discrete points separated with 50 metres in both north
and east directions. Elevation data at intermediate points is computed using bilinear in-
terpolation. The flight trajectory projected onto the ground is depicted in Figure 2.

Figure 2: Terrain elevation profile along the flight trajectory.

As can be deduced from Figure 2 the flight trajectory makes a turn after about half
of the distance. The main reason for this turn is to make γn and γe distinguishable from
bax and bay . The measurements are assumed unavailable during the turn, to imitate the fact
that the radar altimeter provides poor ground clearance measurements when the absolute
value of the bank angle |φ| is large. The bank angle during the turn is 60 deg. Moreover,
to make γd observable, the speed along the path changes from time to time according to
Figure 3. Note that the turn and speed changes are used to make attitude, heading and
accelerometer biases observable. Position and velocity errors are observable without ac-
celerations meaning that the algorithm does not require accelerations for accurate position
and velocity estimates.

To simulate INS data we have used the truth flight profile given by Figure 2 and
3 and worked backwards through the nonlinear motion model given in Appendix A.1.
Sensor errors according to Table 2 have then been added to the exact sensor measurements
obtained from the backward propagation. Finally the sensor measurements, now with
errors added, are run through the nonlinear motion model to yield as close to authentic
INS data as possible. Note that INS initial alignment is not simulated but initial errors
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Figure 3: Ground speed along the flight trajectory.

given by Table 2 are used to initialize the INS computations. Simulated terrain elevation

Table 2: Simulated INS errors.

p(xn
0) U

(
− 1000

√
3

r0
, 1000

√
3

r0

)
· U
(
− 1000

√
3

r0 cosL0
, 1000

√
3

r0 cosL0

)
p(xd

0) N (0, 50)

p(xl
0) N

(
0,diag(1, 1, 0.05π

180 , 0.05π
180 , 0.1π

180 , 10−3 · 51×2)2
)

p(ud
t ) N (0, 0.2)

p(ul
t) N

(
0,diag(10−4, 10−4, 10−6 · 11×5)2

)
measurements have been created along the flight path by adding a random error defined
by

p(et) = 3/4 · N (0, 32) + 1/4 · N (12, 62), (70)

to the true terrain elevation. We have assumed mode transition probabilities for the mea-
surement noise from (35) according to[

π1
1 π1

2

π2
1 π2

2

]
=
[
3/4 3/4
1/4 1/4

]
. (71)

Note that these particular parameter values are not authentic but gives an adequate ex-
ample on the distribution of the radar altimeter measurement error over dense forest. In
practice the values are found empirically by comparing measurements from GPS, radar
altimeter and terrain height database over different types of terrain.

For the marginalized filter we used sampling period Ts = 1 sec and 12000 particles
(N = 12000). No significant improvement was obtained using more than 12000 particles.
For the additional process noise we chose

uadd
t ∼ N (0, 2 · 10−3 P n,MPF

t|t−1 ), (72)
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applied to xn
t according to (61). Deterministic resampling [12] were performed if∑

i

1/(w̄(i)
t )2 < 2N/3 (73)

and at least five filter iterations have past since the last resampling.
The result (RMSEt and

√
PMEAN
t ) based on 100 Monte Carlo simulations is depicted

in Figure 4 for position (sL = L̃ r0 and sl = l̃ r0 cosL) and altitude errors, Figure 5 for
velocity and acceleration errors, and Figure 6 for platform orientation errors respectively.
The RMSEt and PMEAN

t are computed according to

RMSEt =
(

1
100

100∑
m=1

||x̂MPF,(m)
t|t−1 − xtrue,(m)

t ||22
)1/2

, (74a)

PMEAN
t =

1
100

100∑
m=1

tr(PMPF,(m)
t|t−1 ), (74b)

m representing the m:th Monte Carlo simulation.
The RMSEt for horizontal position decreases to about 30 m after 40 sec, and the

stationary error level lies around 20 m. The RMSEt for the altitude converges to its
stationary value, approximately 1 m, after 30 sec. The RMSEt for horizontal velocity
drops below 0.2 m/s, and the INS horizontal platform orientation error (γn and γe) drop
below 0.02/

√
2 ≈ 0.015 deg for each of the two errors. The RMSEt for bax and bax

approach 3 · 10−3/
√

2 ≈ 2 · 10−3 m/s2, and for γd it approaches 0.075 deg. Note also
the distinct increase of the position and velocity error and uncertainty during the turn
(between time 150 to 175 sec). This is due to that no terrain elevation measurements are
used during this period of time.

In the same figures the corresponding Cramer-Rao posterior prediction bounds are
shown. The bound is computed according to [20]

PCR
0 = P0,

PCR
t+1 = FtP

CR
t

(
I − (I +R−1

t PCR
t )−1R−1

t PCR
t

)
FTt

+GtQtG
T
t ,

(75)

where Ft and Gt are taken from (58), Qt and P0 from Table 2 andR−1
t is given by

R−1
t = Ep(et)

[(
d
det

log p(et)
)2] ·

Ep(xn
t )

 ∂
∂xn
t
h(xn

t )
−1

07×1

 ∂
∂xn
t
h(xn

t )
−1

07×1

T . (76)

R−1
t is computed by evaluating the expectations in (76) using a large number of samples

from p(et) according to (70) and p(xn
0) ≈ p(xn

t ) according to Table 2. As can be seen
from the figures, the RMSEt of the filter estimates are all slightly larger than the corre-
sponding PCR

t , but the difference is small indicating that the applied filter is close to being
optimal with respect to RMSEt, at least after filter convergence.
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8 Conclusions

In this paper we have extended the MPF from [26] to account for a multi-modal measure-
ment noise. The extended filter has been applied on a tightly blended INS/TAP navigation
system. We have shown that by concentrating on the inertial navigation errors, we can lin-
earize the state transition equations without introducing any significant errors. The MPF
takes advantage of the linearized structure, and estimates it using relatively fast Kalman
filters. The highly nonlinear terrain-aided positioning system only depends on position,
meaning that we can focus the computer intensive particle filter on the position part of the
state vector only. Compared to applying a stand-alone particle filter we can decrease the
number of samples substantially and thereby making the applied MPF computationally
tractable.

Simulations have been performed on simulated inertial navigation data, using a com-
mercial terrain elevation database to simulate the terrain-aided positioning system. The
simulation result is compared with the Cramer-Rao lower bound. The comparison shows
that we obtain nearly optimal accuracy, at least after filter convergence. The deviation
between the lower bound and the simulation result partly depends on the fact that the
particle filter still only provides an approximate solution particularly due to discretization
errors. Another possible contributing factor to the deviation could be that the Cramer-Rao
bound is not a tight bound in this case. There could very well exist other bounds that are
tighter, see e.g. [27].

A Appendix

A.1 INS Motion Equations

Based on measured accelerations and angular rates in three dimensions the INS computes
position, velocity, attitude and heading. The computations are based on an accurate non-
linear motion model describing the kinematics of the system. These equations will not be
derived here, for detailed derivations see e.g. [6, 25, 13]. To be able to characterize the
INS mathematically we will need a number of coordinate frames given by:

i Inertial frame, fixed in the inertial space. For navigation periods shorter than days this
frame can be approximated with an earth centered non-rotating frame.

e Earth-centered frame, fixed to the earth, i.e it rotates with the earth.

n Navigation frame, with its center attached to the aircraft. The x, y and z-axis are
aligned with north, east and the ellipsoid normal respectively. The velocity e.g. is
denoted by vn = [vn, ve, vd]T .

b Body frame, attached to the aircraft, thereby always translating and rotating with the
aircraft. The x, y and z-axis points through the nose, right wing and belly respec-
tively. The acceleration e.g. is denoted by ab = [ax, ay, az]T .

The horizontal position is usually given as two angles, latitude and longitude. Latitude
refers to the angle between the normal to the reference ellipsoid and the equatorial plane,
and will be denoted by L. Longitude is the angle between the same normal and a plane
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intersecting the Greenwich meridian, and will be denoted by l. The reference ellipsoid is
defined by the World Geodetic System 1984 (WGS84), see [1] or Table 3 for numerical
values. The equations for latitude, longitude and altitude are

Table 3: Parameters for WGS84.

Parameter Notation Numerical value

Semimajor axis r0 6.378137 · 106 m

Reciprocal of flattening 1/f 298.2572

First eccentricity ε 0.08181919

Angular velocity ωie 7.292115 · 10−5 rad/sec

Gravity at equator g0 9.780325 m/s2

Gravity formula constant k 0.001931853

Gravity formula constant m 0.003449787

L̇ =
vn

rL + h
,

l̇ =
ve

(rl + h) cosL
,

ḣ = −vd.

(77)

In (77), the two radii of curvature are given by

rL =
r0(1− ε2)

(1− ε2 sin2 L)3/2
, rl =

r0

(1− ε2 sin2 L)1/2
, (78)

where the constant ε is the earth’s first eccentricity, see Table 3.
The velocity of the aircraft relative to the earth, expressed in the navigation (n) frame

and denoted by vn =
[
vn ve vd

]T
, is given as the solution to the differential equation

v̇n = Cnb f
b − (Ωnen + 2Ωnie)v

n + gn. (79)

The vector f b is the acceleration sensed by the accelerometers (specific force vector) and
Cnb is a transformation matrix from body frame to navigation frame. The matrices Ωnen
and Ωnie represent the rotation of the navigation frame relative to earth and earth relative
to inertial frame respectively, both expressed in the n-frame. The rotation described by
Ωnen arises when travelling over the curved surface of the earth. The matrices Ωnen and
Ωnie are both the skew-symmetric matrix

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (80)
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of the corresponding vector ω =
[
ωx ωy ωz

]T
. In vector form the rotations are given

by

ωnie =

 cosL
0

− sinL

ωie, ωnen =

 ve
rl+h

− vn
rL+h

− ve tanL
rl+h

 , (81)

where ωie is a scalar representing the angular velocity of the earth. For a numerical value
see Table 3.

The acceleration f b includes the effect of the gravity vector, gn, which represents the
sum of the earth’s gravitation, Gn, and the centripetal acceleration due to the rotation of
the earth, i.e.

gn = Gn − (Ωnie)
2rn, (82)

where rn is the position vector of the aircraft measured from the centre of the earth. The
WGS84 ellipsoid is defined in such a way that the angle between gn and the normal
to the ellipsoid is minimized. The deflection of the vertical, i.e. the remaining error
angle between the ellipsoid’s normal and the gravity vector, is usually less than 5 µrad.
Therefore, without introducing any significant errors, the gravity is approximately given
by [1]

gn ≈
[
0 0 gd

]T
,

gd = g0
1 + k sin2 L

(1− ε2 sin2 L)1/2
·(

1− 2h
r0

(
1 + f +m− 2f sin2 L

)
+

3h2

r2
0

)
.

(83)

For numerical values on g0, ε, f , k, m and r0 see Table 3.
The attitude and heading of the aircraft are often represented by an orthogonal matrix

Cnb , (Cnb )TCnb = I , relating a vector in the body frame to a vector in the navigation
frame. This matrix is referred to as a direction cosine matrix (DCM), and the coupling to
the attitude and heading of the aircraft is

Cnb =

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

1 0 0
0 cφ −sφ
0 sφ cφ

 . (84)

In (84), φ, θ and ψ are the roll, pitch and heading angles, and s and c are short for sin and
cos respectively. The corresponding matrix differential equation for Cnb is given by

Ċnb = Cnb Ωbib − ΩninC
n
b , (85)

where the skew-symmetric matrices Ωbib and Ωnin are again given by their vector coun-
terparts ωbib and ωnin according to (80). The vector ωbib corresponds to the angular rates
exhibited by the body frame, expressed in the body frame, i.e. the angular rates sensed by
the rate gyros. Moreover, ωnin = ωnie + ωnen.
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A.2 Discrete-Time Propagation Matrices

A(t) is given by

A(t) =

An
n(t) 02×1 An

l (t)
01×2 0 01×7

Al
n(t) 07×1 Al

l(t)


where

An
n(t) =

[
0 0

ve sinL
r0 cos2 L 0

]
,

An
l (t) =

[ 1
r0

0 0 0 0 0 0
0 1

r0 cosL 0 0 0 0 0

]
,

Al
n(t) =

[
dvnL dveL dγnL 0 dγdL 0 0
0 0 0 0 0 0 0

]T
,

Al
l(t) =



dvnvn dvnve 0 fz −fe cnb,11 cnb,12

dvevn dveve −fz 0 fn cnb,21 cnb,22

0 − 1
r0

0 dγnγe dγnγd 0 0
1
r0

0 dγeγn 0 dγeγd 0 0
0 tanL

r0
dγdγn dγdγe 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

and

dvnL = − v2
e

r0 cos2 L
+ 2ωieve cosL

dveL =
vnve

r0 cos2 L
− 2ωievd sinL+ 2ωievn cosL

dγnL = ωie sinL

dγdL =
ve

r0 cos2 L
+ ωie cosL

dvnvn =
vd
r0

dvnve = −2ve tanL
r0

− 2ωie sinL

dvevn =
ve tanL
r0

+ 2ωie sinL

dveve =
vn tanL
r0

+
vd
r0

dγeγn = −ωie sinL+
ve tanL
r0

, dγnγe = −dγeγn

dγdγn =
vn
r0
, dγnγd = −dγdγn

dγdγe = ωie cosL+
ve
r0
, dγeγd = −dγdγe .
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B(t) is given by

B(t) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 cnb,11 cnb,12 0 0 0 0 0
0 cnb,21 cnb,22 0 0 0 0 0
0 0 0 cnb,11 cnb,12 cnb,13 0 0
0 0 0 cnb,21 cnb,22 cnb,23 0 0
0 0 0 cnb,31 cnb,32 cnb,33 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.
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Figure 4: RMSEt (solid line),
√
PMEAN
t (dashed line) and

√
PCR
t (dash-dotted

line) for horizontal position
√
s2
L + s2

l and altitude h̃.
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Figure 5: RMSEt (solid line),
√
PMEAN
t (dashed line) and

√
PCR
t (dash-dotted

line) for horizontal velocity
√
ṽ2
n + ṽ2

e and accelerometer bias
√

(bax)2 + (bay)2.
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Figure 6: RMSEt (solid line),
√
PMEAN
t (dashed line) and

√
PCR
t (dash-dotted

line) for roll and pitch errors
√
γ2
n + γ2

e and yaw error γd.
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Abstract

We consider probabilistic methods for detecting conflicts as a function of
predicted trajectory. A conflict is an event representing collision or immi-
nent collision between vehicles or objects. The computations use state esti-
mate and covariance from a target tracking filter based on sensor readings.
Existing work is primarily concerned with risk estimation at a certain time
instant, while the focus here is to compute the integrated risk over the critical
time horizon. This novel formulation leads to evaluating the probability for
level-crossing. The analytic expression involves a multi-dimensional integral
which is hardly tractable in practice. Further, a huge number of Monte Carlo
simulations would be needed to get sufficient reliability for the small risks
that the applications often require. Instead, we propose a sound numerical
approximation that leads to evaluating a one-dimensional integral which is
suitable for real-time implementations.

1 Introduction

Collision or conflict avoidance is a crucial and enabling technology for autonomous vehi-
cles. This is particularly important when autonomous vehicles shall co-exist with manned
vehicles in an unregulated environment. Conflict is typically defined as an event where
two or more vehicles or objects are closer to each other than given by a safety zone. For
air traffic, the extent of the safety zone is defined by authorities [9], [2] and is such that
collision is considered imminent if entering the zone. Conflict avoidance can also be
utilized in manned vehicles for mitigating or avoiding accidents [12], [8].

This paper describes a method for detecting and avoiding hazardous situations based
on uncertain sensor readings. It is assumed that the probability density function for the

131
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state vector describing the relative motion is available. Usually, a tracking filter estimates
the state vector, which comprises a (relative) position and velocity in one, two or three
dimensions. There are many proposals for solving this problem, see e.g. [17] for a review.
Here we adopt a probabilistic point of view, where randomness is a fundamental part all
the way from sensor to decision. The majority of probabilistic methods found in literature
deal with instantaneous probability of conflict, i.e the probability of conflict at a certain
time instant. The time instant could e.g. correspond to the point of closest approach [6],
[7], [15] or the time instant which maximizes probability of conflict [21]. One problem
with instantaneous probability of conflict is how to interpret the result with respect to a
predicted, not necessarily straight, trajectory. Note that simply integrating instantaneous
probability over time does not yield a correct probability as a function of the time interval.
This comes from the fact that the events representing instantaneous conflict are dependent
for consecutive time points [16].

In some rare cases there are closed form analytical expressions for the probability
of conflict depending on how a conflict is defined and what uncertainties are involved
[20]. We propose a novel analytic framework that attacks the, in general, computationally
intractable problem of computing the probability of conflict for a given, not necessarily
straight, trajectory. Monte-Carlo or sampling methods are known to provide solutions to
arbitrary probabilistic problems [13], [24], [22], [21], they are also known to be computer
intensive particularly when the underlying probabilities are small [23]. Here we do not
rely on Monte-Carlo methods, but instead we make use of theory for stochastic processes
and level-crossings. The method is based on the probability density for time-to-go (ttg).
Time-to-go is the ratio between distance and closing speed, and is identified as essential
for conflict predictions [14]. A level-crossing occurs if the distance perpendicular to line-
of-sight is less than a threshold after ttg seconds. A similar approach was applied in [21]
for aircraft probability of conflict but for the case of known initial position and velocity.
Here we consider the situation with significant initial uncertainties, e.g. as a result of
tracking intruders based on angle-only sensors. We consider time horizons up to a couple
of minutes, and therefore neglect effects from disturbances on the predicted path. When
longer periods of time are considered the effects of for example wind disturbances for
aircraft conflict detection can be significant [5].

The result is extended to cover the important case with piecewise linear trajectories,
which provides a way forward to deal with arbitrary continuous paths [19]. We focus the
presentation to the two-dimensional case, to be able to concentrate on the fundamental
ideas.

In Section 2 we formulate the problem mathematically and state the prerequisites to
be able to provide a solution. Section 3 details a novel analytic method for computing
the probability of conflict when the velocity is constant. A conflict is here defined as
the crossing of a line segment. The conditions are based on the probability density for
time-to-go. The probability of crossing the line can be expressed as the expected value
of the distribution for the distance perpendicular to line-of-sight with respect to the prob-
ability density for time-to-go (ttg). Section 4 extends the theory to deal with piecewise
linear paths. In Section 5 we give some results comparing the sampling solution with the
analytical solution and finally in Section 6 we draw conclusions.
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2 Problem formulation

Let C(0,T ) denote the event of a conflict between two objects for the time period 0 < t <
T , i.e. C(0,T ) = 1 if a conflict occurs at any time during 0 < t < T and C(0,T ) = 0
otherwise. If a conflict is to take place or not is a function of future relative position s(t)
for t > 0, where t is prediction time. Here we define a conflict to occur if the relative
position crosses the line segment with endpoints (0,−h) and (0, h), see Figure 1. The

-

6

x

y

cs(0)cs(T )

h

−h

Figure 1: A conflict occurs if the relative position s(t) crosses the line segment.

line segment could represent the front/rear end of a car or be the result of approximat-
ing the safety zone surrounding an air vehicle. The location and length is a matter of
choice, but here we choose to place the line segment at x = 0 primarily for notational
convenience. While the relative position is a random variable we seek to compute the
probability of conflict, P

(
C(0,T )

)
. The objective is to find an efficient method for com-

puting P
(
C(0,T )

)
, efficient in the sense that it is computationally tractable for real-time

processing.
Let the state vector x(0) be comprised of two-dimensional relative position s(0) and

velocity v(0) in Cartesian coordinates. The state vector is rotated so the x-axis is pointing
towards the threat, i.e. rotated such that the mean of the initial distance perpendicular to
line-of-sight is zero

ŝy(0) = 0. (1)

We assume the joint probability density function (pdf) for x(0) is available

psx,vx,sy,vy (·). (2)

Typically, an estimate of x(0) is provided by a tracking filter [4]. Target tracking will
not be pursued here in detail, we simply state that based on measurements from a sensor,
the tracking filter provides estimates of the state vector x̂(0), together with its covariance
P (0), where

P (0) =
[
Px Pxy
PTxy Py

]
. (3)

To set explicit expressions we assume the tracking filter output is normally distributed,
i.e.

x(0) ∼ N (x̂(0), P (0)). (4)
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It should be stressed that the assumption on a normally distributed state vector is not a
requirement for the method to work. In principle, any distribution is applicable as long as
the probability density function for x(0) is available.

In the sequel we will leave out the dependency on time when t = 0 if unambiguous by
the context. Note that we will only deal with a relative time scale, represented by t = 0 as
the current time on an absolute time scale. At each new time instant on the absolute time
scale the tracking filter provides updated estimates x̂(0) and P (0).

3 Crossing in case of constant velocity

Consider the event C(0,T ) when the velocity is constant v(t) = v(0) = v. For a C(0,T ) to
occur the relative position must cross the line segment. This line segment is orthogonal to
the x−axis (line-of-sight), see Figure 2.
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Figure 2: Geometry for the limit of C(0,T ) in two dimensions.

3.1 Time-to-go

Define a stochastic time variable τ according to

τ =
{

sx(0)
−vx if sx(0)> 0 ∩ vx< 0,
∞ otherwise.

(5)

The τ represents time-to-go, i.e. the time it takes for the relative position to cross the
y-axis. A crossing of the y−axis occurs within 0 < t < T if the closing speed is −∞ <
vx < 0 and the initial distance is 0 < sx < −vxT . The probability density for τ is given
by Lemma 1.

Lemma 1 (Probability density function for τ )
For sx(t), t ∈ R+ with ṡx(t) = vx and a joint probability function for sx(0) and vx given
by psx,vx(s, v), the probability density function for τ is given by

pτ (t) =

0∫
−∞

−vpsx,vx(−vt, v)dv, t <∞. (6)

Proof: See Appendix A.1 or Rice’s formula [18].
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With the assumption (4) on normally distributed variables the density pτ (t) is given
by Corollary 1.

Corollary 1 (Normally distributed sx(0) and vx(0))
For sx(0) and vx(0) distributed according to[

sx
vx

]
∼ N

([
ŝx
v̂x

]
,

[
σ2
sx ρxσsxσvx

ρxσsxσvx σ2
vx

])
, (7)

the probability density function for τ from (6) with κ = ρxσsx/σvx is given by

pτ (t) =
g0

g2
2

(
1− (2π)

1
2
g1

g2
e
g21
2g22 Φ

(
− g1

g2

))
, (8)

where

g0 =
1

2πσsxσvx(1− ρ2
x)

1
2
e
− (κv̂x−ŝx)2

2σ2
sx(1−ρ2x)

− v̂2x
2σ2
vx ,

g1 =
(t+ κ)(κv̂x − ŝx)
σ2
sx(1− ρ2

x)
+

v̂x
σ2
vx

,

g2 =
(

(t+ κ)2

σ2
sx(1− ρ2

x)
+

1
σ2
vx

) 1
2

,

(9)

and Φ(·) corresponds to the standard normal distribution

Φ(x) =

x∫
−∞

φ(ξ)dξ =
1√
2π

x∫
−∞

e−
ξ2

2 dξ. (10)

Proof: See [11].

To compute the one-dimensional normal distribution Φ(x) the error function in Matlab
can be used. If the error function is not available a very accurate result is given by [3]

Φ(x) ≈√
1
4
−

7e−
x2
2 +16ex2(

√
2−2)+(7+ πx2

4 )e−x2

120
+

1
2
,

(11)

for x ≥ 0. According to [3] the relative error in (11) is less than 3× 10−4.
See Example 1 for an illustration of pτ (t).

Example 1: Normal approximation of pτ (t)
Consider a bearings-only tracking case where the covariance in distance and closing speed
is large [

sx vx
]T =

[
1000 −100

]T
,

Px =
[

2502 −0.8 · 250 · 25
−0.8 · 250 · 25 252

]
.

(12)
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In Figure 3, pτ (t) is compared with the corresponding normal probability density having
the same expected value and variance. Here the expected value and standard deviation of
τ are 10.2 and 1.86 respectively. As can be seen pτ is asymmetric with a heavier right tail
probability compared to the normal probability.

Figure 3: A comparison between pτ (t) (solid line) and the normal probability den-
sity with the same mean and variance (dashed line).

3.2 Conflict probability for a time interval

A conflict will occur if the relative position crosses the line segment, see Figure 2. The
condition for conflict is that given τ = t < T , if |vyt + sy| is smaller than h, i.e. the
distance when crossing the y−axis is less than h, there will be a conflict. A motivation
of the result when incorporating the fact that we are dealing with random variables is as
follows. Assume we know that τ = t < T , and we seek

P
(
|vyt+ sy|<h

)
. (13)

Since t is not known but a random variable we replace t with τ , i.e.

P(C(0,T )) = P
(
|vyτ + sy|<h ∩ τ < T

)
, (14)

where the intersection is incorporated because we are only interested in the case τ <
T . Split the time interval (0, T ) into K subintervals. Events corresponding to different
subintervals are mutually exclusive, which means that the probability of conflict is the
sum of conflict for each subinterval. For each subinterval k = 0, . . . ,K − 1 we factorize

P
(
|vyτ + sy|<h ∩ Tk<τ <Tk+1

)
=

P
(
|vyτ + sy|<h

∣∣Tk<τ <Tk+1

)
P
(
Tk<τ <Tk+1

)
,

(15)
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where Tk+1 − Tk = ∆T . Now let ∆T → 0 which yields

P(C(0,T )) =

T∫
0

P
(
|vyτ + sy|<h|τ = t

)
pτ (t)dt =

T∫
0

P
(
|vyt+ sy|<h

)
pτ (t)dt.

(16)

Note that (16) is valid only when sx, vx are independent of sy, vy . The general case is
given by Theorem 1.

Theorem 1 (Conflict for a straight path)
For s(t) =

[
sx(t) sy(t)

]T
, t ∈ R+ with ṡ(t) = v and a joint probability function for

x(0) given by (2) the probability of down-crossing a line with end points (0,−h) and
(0, h) within T sec is given by

P(C(0,T )) = P
(
|vyτ + sy|<h ∩ τ <T

)
=

T∫
0

∞∑
r=0

1
r!

Pr(ν̂x, t)dt.
(17)

The terms Pr(t) are given by the Taylor expansion of P
(
|vyt + sy| < h

∣∣ vx) around
vx = ν̂x, i.e.

Pr(t) =

∂rP
(
|vyt+ sy|<h

∣∣ vx)
∂vrx

∣∣∣∣
vx=ν̂x

∂rM(ξ, t)
∂ξr

∣∣∣∣
ξ=0

.
(18)

Here the moment-generating function is defined by

M(ξ, t) =

0∫
−∞

−veξ(v−ν̂x)psx,vx(−vt, v)dv, (19)

the conditional expected value of vx given τ = t is

ν̂x = ν̂x(t) = sol
{
∂M(ξ, t)

∂ξ

∣∣∣∣
ξ=0

= 0
}
. (20)

Note that P1(t) = 0 due to (20), and M(0, t) = pτ (t).
Proof: See Appendix A.2.

Under the assumption (4) that x(0) is normally distributed, the probability P(|vyt +
sy| < h

∣∣ vx = ν̂x) is given by Corollary 2
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Corollary 2 (Conflict for a Gaussian x(0))
For a normally distributed x(0) the probability of conflict from Theorem 1 is given by
inserting

P(|vyt+ sy| < h
∣∣ vx = ν̂x) =

Φ
(
h− ŝy(t)√
Psy(t)

)
− Φ

(
−h− ŝy(t)√

Psy(t)

)
,

(21)

where

ŝy(t) = ŝy + v̂yt+[
1
t

]T
PTxyP

−1
x

([
−t
1

]
ν̂x −

[
ŝx
v̂x

])
,

Psy(t) =
[
1
t

]T (
Py − PTxyPxPxy

)[
1
t

]
,

(22)

and

M(ξ, t) =

g0

g2
2

e−ν̂xξ
(

1− g1 + ξ

g2
e

(g1+ξ)2

2g22

√
2πΦ

(
− g1 + ξ

g2

))
,

ν̂x =

g0
g32

(
g1
g2
− (1 + g21

g22
)e

g21
2g22
√

2πΦ
(
− g1

g2

))
pτ (t)

,

(23)

and pτ (t) from Corollary 1.
Proof: Replace psx,vx,sy,vy (·) with the normal probability density.

3.3 Monte-Carlo Approximation

The probability according to (17) is in general, e.g. when x(0) is normally distributed,
not possible to compute analytically. A straightforward approximate solution is to use
a Monte-Carlo method, i.e. to draw N samples of x(0) from (4) and approximate the
probability with the outcome of the sampling, i.e.

P̂mc(C(0,T )) =

1
N

N∑
i=1

I
(
|τ (i)v(i)

y + s(i)
y | < h ∩ τ (i) < T

)
,

(24)

where I(·) is the indicator function and

τ (i) =

{
s(i)x
−v(i)x

if s(i)
x > 0 ∩ v

(i)
x < 0,

∞ otherwise.
(25)
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Denote the true value of the sought probability with p. The set of samples is binomially
distributed, Bin(N, p), but for a large enough N , usually Np(1 − p) > 20 is sufficient,
the probability is approximated well by [10]

P̂mc(C(0,T )) ∼ N (p, σ2),

σ2 =
p(1− p)
N

.
(26)

For a relative mean square error εrel ≤ σ
p we can compute needed number of samples

according to

N ≥ 1− p
ε2

relp
≈ 1
ε2

relp
, (27)

where the last approximation is valid for small p. Assume p = 0.01 and 3εrel ≤ 0.1, i.e
a relative error smaller than 10% with probability 0.997. These values plugged into (27)
suggests that we must use N ≥ 90000. For many on-line applications this means a too
high computational load.

3.4 Numerical Approximation

To be able to compute probability of conflict according to (17) the Taylor expansion has
to be truncated. For a given accuracy level ε we need to find a R such that

T∫
0

∞∑
r=R+1

1
r!

Pr(ν̂x, t)dt =

T∫
0

1
(R+ 1)!

PR+1(µ, t)dt < ε,

(28)

where the equality is valid for some −∞ < µ = µ(t) < 0. In the general case the rest
term is more or less cumbersome to analyze and we usually have to resort to simulations.
Recall that we apply a Taylor expansion due to Pxy 6= 0. The weaker correlation the
fewer terms we need in the expansion.

A sound and simple numerical approximation for computing a one-dimensional inte-
gral is given by Simpson’s rule [1]

tK∫
t0

f(t)dt = F (t0, tK ;K, f(t)) +RK

=
∆t
3

(
f(t0) + 2

K/2−1∑
k=1

f(t2k) + 4
K/2∑
k=1

f(t2k−1) + f(tK)
)

+RK ,

(29)

where ∆t = (tK − t0)/K and tk = k∆t+ t0. From [1] we know that the approximation
error is bounded by

RK <
∆t5

90

K/2−1∑
k=0

max
t2k<t<t2k+2

∣∣∂4f

∂t4
∣∣. (30)
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This can used for computing P(C(0,T )) according to

P̂simp(C(0,T )) = F (0, T ;K, f(t)), (31)

with

f(t) =
R∑
r=0

1
r!

Pr(ν̂x, t). (32)

Simpson’s rule provides a well-known and accurate method for computing (17), although
in some cases, e.g. when the variables are normally distributed with small variances, the
higher derivatives of P(|vyt+sy| < h)pτ (t) can be large. For an illustration see Example
2

Example 2: Two methods for P(C(0,T ))

Consider again the bearings-only case as in Example 1 where h = 150 and

x̂(0) =
[
1000 −100 0 10

]T
,

P (0) =


10002

γ2 −0.8 1000·100
γ2 0 0

−0.8 1000·100
γ2

10002

γ2 0 0
0 0 22 0
0 0 0 42

 . (33)

Here the correlation matrix Pxy is zero and the terms Pr(ν̂x, t) in (17) are therefore zero
for r ≥ 1. A comparison between the Monte-Carlo solution (24) with N = 1000000
and the numerical approximation (31) with ∆t = 0.5 is shown in Figure 4 for γ = 4 and
γ = 8. For comparison we have also computed an instantaneous probability of conflict as
a function of time according to

P(Ct) = P
(√

s2
x(t) + s2

y(t) < h
)
≈

1
M

M∑
i=1

I

(√(
s

(i)
x (t)

)2 +
(
s

(i)
y (t)

)2
< h

)
,

(34)

with M = 100000, plotted in Figure 4 with sampling time 0.1 sec. As described in
Section 1 the instantaneous probability of conflict is not straightforward to interpret with
respect to a predicted trajectory. From Figure 4 we conclude that P(Ct) is highly depen-
dent on estimated covariance P (0). The accuracy (3σ) for the Monte Carlo solution is for
p = 0.85 approximately

εmc = 3

√
p(1− p)
N

≈ 1 · 10−3. (35)

The actual difference between Monte Carlo and numerical approximation according to
(29) is less than 1 · 10−3, meaning that (31) yields a result which is at least as good as
the sampling method. This is confirmed by analysing the error given by (30). Computing
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an approximate fourth derivative of the integrand for γ = 8, which is the worst case, and
finding the maximum for each interval (t2k < t < t2k+2) yields

εsimp <
0.55

90

32−1∑
k=0

max
t2k<t<t2k+2

∣∣∂4f

∂t4
∣∣ ≈ 1.5 · 10−3. (36)

To summarize, in this case we obtain equal accuracy from Simpson’s rule compared to
the Monte Carlo solution. At the same time, comparison in Matlab shows that the com-
puting time is about 1000 times less using the implementation of Theorem 1 instead of
the Monte-Carlo solution.

Figure 4: The left plot shows the result for γ = 4 using Simpson’s rule (31) with
∆t = 0.5 (solid line), the Monte-Carlo solution (24) with N = 1000000 (dashed
line) and P(Ct) (34) (dotted line). The right plot compares the same solutions but
for γ = 8. The difference between the numerical solution (31) and the Monte-Carlo
solution (24) is too small to be visible.

4 Conflict in case of piecewise constant velocity

From now on we assume the relative position follows a piecewise straight path given by

ṡ(t) = v(j), Tj < t < Tj+1, (37a)

v(j) = v(0) +
j∑
l=1

∆v(l), (37b)

where all ∆v(j) are known. Note that the model in (37) is fairly general because we can
approximate any curved path arbitrarily well as long as we use a large enough number of
straight segments.
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4.1 Crossing of the line segment

According to (37) we assume piecewise constant velocity v(t) = v(j) for Tj < t < Tj+1.
The event C(0,T ) can always be expressed according to

C(0,T ) = ∪J−1
j=0 C(Tj ,Tj+1), (38)

i.e. the union of events for each segment Tj < t < Tj+1 with T0 = 0 and TJ = T .
A geometric interpretation of C(Tj ,Tj+1) in two dimensions is given by Figure 5. From

-

6

PP
PP

P

x

y

s(Tj)

s(Tj+1)

Figure 5: Geometry for C(Tj ,Tj+1) in two dimensions.

basic probability theory we know that

P(∪J−1
j=0 C(Tj ,Tj+1)) ≤

J−1∑
j=0

P(C(Tj ,Tj+1)). (39)

An important observation is that if it is unlikely that v(j)
x changes sign, i.e.

P
(
sign(v(j)

x ) = sign(v(0)
x )
)
≈ 1, (40)

then C(Tj ,Tj+1) for different j’s are mutually exclusive. With this assumption we can
write

P(C(0,T )) =
J−1∑
j=0

P(C(Tj ,Tj+1)). (41)

The change to be incorporated for C(Tj ,Tj+1) compared to the conditions for the con-
stant velocity case is caused by considering t = Tj instead of t = 0 as the starting time.
This yields changing variables to s(Tj) and v(j). It is possible to derive conditions for
C(Tj ,Tj+1) using s(Tj). However, a more efficient way is to consider the distance obtained
by extrapolating from s(Tj) backwards in time Tj sec using the current velocity v(j). This
yields the distance at t = 0 which would give s(Tj) after Tj sec using a constant velocity
v(j). This means that we are back to starting time t = 0 and it enables us to reuse results
from the case with constant velocity. Denote the distance obtained from extrapolation by
s(j), and we have

s(j) = s(Tj)− Tjv(j). (42)
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Another advantage using s(j) instead of s(Tj) comes from the fact that the covariance of
s(j) is equal to the covariance of s(0) for all j = 0, . . . , J − 1. This is clear from the
expression

s(j) = s(0)−
j∑
l=1

Tl∆v(l), (43)

which is derived in Appendix A.3.
Now we can define a random variable τ (j) according to

τ (j) =

{
s(j)x
−v(j)x

if s(j)
x > 0 ∩ v

(j)
x < 0,

∞ otherwise,
(44)

and the distribution for τ (j) is given by Corollary 3.

Corollary 3 (Probability density for τ (j))
For s(j)

x (t), with ṡ(j)
x (t) = v

(j)
x and a joint probability function for s(j)

x and v(j)
x given by

p
s
(j)
x ,v

(j)
x

(s, v), the density for τ (j) is given by

pτ(j)(t) =

0∫
−∞

−vp
s
(j)
x ,v

(j)
x

(−vt, v)dv t <∞. (45)

Proof: See Appendix A.1 with sx(0) and vx replaced by s(j)
x and v(j)

x .

In the case where x(0) is normally distributed, the probability density pτ(j)(t) is given
by Corollary 1 with x(0) replaced by x(j).

The probability of C(0,T ) is now given by Corollary 4.

Corollary 4 (Conflict for a piecewise straight path)

For s(j)(t) =
[
s

(j)
x (t) s

(j)
y (t)

]T
, with ṡ(j)

x (t) = v
(j)
x and a joint probability function for

x(j) given by p
s
(j)
x ,v

(j)
x ,s

(j)
y ,v

(j)
y

(·), the probability of down-crossing a line with end points
(0,−h) and (0, h) within T sec is given by

P(C(0,T )) =
J−1∑
j=0

P(C(Tj ,Tj+1))

=
J−1∑
j=0

Tj+1∫
Tj

∞∑
r=0

1
r!

P(j)
r (ν̂(j)

x , t)dt.

(46)

The terms P(j)
r (ν̂(j)

x , t), M (j)(ξ, t) and ν̂(j)
x are given by (18), (19) and (20) respectively

with s(j) from (43) and v(j) from (37b) inserted instead of s(0) and v(0).
Proof: See Appendix A.2 with sx, vx, sy , vy replaced by s(j)

x , v(j)
x , s(j)

y , v(j)
y .

Under the assumption that x(0) is normally distributed, the probability P
(
|v(j)
y t +

s
(j)
y | < h

∣∣ v(j)
x = ν̂

(j)
x

)
is given by Corollary 2 with x(0) replaced by x(j).
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4.2 Implementation

Two different methods for computing the probability of conflict are given below. The
first is the Monte-Carlo implementation as given by Algorithm 1 and the second is the
implementation of Corollary 4 as given by Algorithm 2.

Algorithm 1 (Monte-Carlo with accuracy ε).

• Choose N such that N ≥ 9p(1−p)
ε2 .

• Draw N samples, x(i)(0) ∼ N (x̂(0), P (0)).

• For i = 1, . . . , N : Compute

C(i)
(0,T ) = I

(
∪J−1
j=0

(
|τ (i,j)v(i,j)

y + s(i,j)
y |<h ∩ τ (i,j)<T

))
, (47)

where

τ (i,j) =

{
s(i,j)x

−v(i,j)x

if s(i,j)
x > 0 ∩ v

(i,j)
x < 0,

∞ otherwise,
(48)

and

s(i,j) = s(i)(0)−
j∑
l=1

Tl∆v(l),

v(i,j) = v(i)(0) +
j∑
l=1

∆v(l).

(49)

• Compute the probability of conflict

P̂mc(C(0,T )) =
1
N

N∑
i=1

C(i)
(0,T ). (50)

Algorithm 2 (Corollary 4 with accuracy ε).

• For j = 0, . . . , J − 1: Choose ∆tj and R such that

∆t5j
90

Kj/2−1∑
k=0

max
t2k<t<t2k+2

∣∣∂4f

∂t4
∣∣ < ε

J
, (51)

where ∆tj = Tj+1−Tj
Kj

and f(t) =
∑R
r=0

1
r!P

(j)
r (ν̂(j)

x , t)

• Compute the probability for each segment j = 0, . . . , J − 1 using (29)

P̂simp(C(Tj ,Tj+1)) = F (Tj , Tj+1;Kj , f(t)). (52)

• Compute the total probability of conflict

P̂simp(C(0,T )) =
J−1∑
j=0

P̂simp(C(Tj ,Tj+1)). (53)
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5 Simulation results

There are two simulated bearings-only tracking scenarios, the first one with values ac-
cording to

x̂(0) =
[
1000 −100 0 10

]T
,

P (0) =


106

γ2 − 0.8·105

γ2 0 − 0.3·4000
γ

− 0.8·105

γ2
104

γ2 0 0.3·400
γ

0 0 22 0
− 0.3·4000

γ
0.3·400
γ 0 42

 . (54)

with a scale factor γ = 4, and the second with the same values as in (54) but with a scale
factor set to γ = 8. A turn of −50 deg is performed in both cases after 3 sec. Absolute
quantities are given in Figure 6.
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Figure 6: Absolute geometry for own and intruder (int) vehicle, with angles in deg,
speeds in m/s and distance in m.

Methods for evaluation, i.e. compared to the truth given by the Monte Carlo solution
according to Algorithm 1 using N = 1000000, are:

• Algorithm 2 using R = 2, i.e. two terms in the Taylor expansion, and ∆t = 0.5.

• Algorithm 2 using R = 1, i.e. one term in the Taylor expansion, and ∆t = 0.5.

For comparison we have included the instantaneous probability of conflict given by (34)
again withM = 100000. The probability P(Ct) is plotted in Figure 7 with sampling time
0.1 sec.

As can be deduced from Figure 7, Algorithm 2 with R = 2 gives a close to identical
result compared to the Monte Carlo solution in both scenarios, the relative error is about
0.1% in both cases. Algorithm 2 with R = 1 gives a relative error about 2% for the first
scenario. For the second scenario the relative error increases to about 6%. The compar-
ison with instantaneous probability of conflict from (34) indicates that the interpretation
of P(Ct) is not straightforward. First of all, as noted in Section 1, P(Ct) yields the con-
flict risk for a certain point in time, it does not provide the risk for an entire trajectory.
Moreover, when we halve σsx and σvx, i.e. γ changes from 4 to 8, maxt P(Ct) decreases
with 17% while P(C(0,T )) decreases with 33%. That is, the decrease is more distinct for
P(C(0,T )) than for maxt P(Ct). In this case the more the probability decreases the better
because the true minimum distance is 189 m which is outside the range of conflict.
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To summarize, in this case we obtain a very accurate result from Algorithm 2. At the
same time, the computation time in Matlab is about 1000 times less using Algorithm 2
with R = 2 instead of Algorithm 1.

Figure 7: The upper plot shows the nominal position of the intruder (dash-dotted
line) and the own vehicle (solid line). The circle and square denote the positions
of the intruder and own vehicle respectively at the point of closest approach. An
instantaneous turn of −50 deg is performed after 3 sec. The lower plots show the
result using Algorithm 2 with R = 2 (solid line), Algorithm 2 with R = 1 (dash-
dotted line), the Monte-Carlo solution from Algorithm 1 withN = 1000000 (dashed
line) and P(Ct) from (34) (dotted with points). Simulation parameters are taken
from (54) with γ = 4 (lower left plot) and γ = 8 (lower right plot).

6 Conclusions

This paper presents a novel solution to the probability of conflict for a predicted relative
trajectory. The method does not rely on sampling techniques, but defining conflict as the
crossing of a line segment enable us to derive an analytical expression for the probability
of conflict. The analytical expression is a one-dimensional integral which is computed
using Simpson’s formula. The computation time using the novel solution is 3 orders of
magnitude less compared to a sampling based method.
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A Appendix

A.1 Proof of Lemma 1

Since τ ≥ 0 is true we can write

P(τ < T ) = P(0 < τ < T ). (55)

The probability can be divided into the two mutually exclusive events vx < 0 and vx > 0,
i.e.

P(0 < τ < T ) = P(0 < τ < T ∩ vx < 0)
+ P(0 < τ < T ∩ vx > 0).

(56)

From the definition of τ we have that τ = ∞ for vx > 0, which means that the second
probability in (56) is zero for finite T and

P(0 < τ < T ) = P(0 < τ < T ∩ vx < 0). (57)

Inserting τ = sx
−vx yields

P(τ < T ) = P(0 < sx < −vxT ∩ vx < 0)

=

0∫
−∞

−vT∫
0

psx,vx(s, v)dsdv.
(58)

The probability density for τ for t <∞ is given by

pτ (t) =
d

dt
P(τ < t) =

0∫
−∞

−vpsx,vx(−vt, v)dv. (59)

A.2 Proof of Theorem 1

Using the joint probability density for sx, vx, sy, vy ,

psx,vx,sy,vy (s, v, y, z) =
psy,vy|sx,vx(y, z)psx,vx(s, v),

(60)

we have

P(C(0,T )) =

0∫
−∞

−vT∫
0

F (s, v)psx,vx(s, v)dsdv (61)

where

F (s, v) = P
(
|sy + vyt| < h|sx = s, vx = v

)
=

∫∫
|y+tz|<h

psy,vy|sx,vx(y, z)dydz. (62)
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Note that t = s
−v in (62). Now changing integration variable from s to t = s

−v yields

P(C(0,T )) =
0∫

−∞

T∫
0

−vF (−vt, v)psx,vx(−vt, v)dtdv.
(63)

Taylor expansion of F (−vt, v) around ν̂x yields

F (−vt, v) = P
(
|sy + vyt| < h|sx = −vt, vx = v

)
= F (−ν̂xt, ν̂x) +

∞∑
r=1

1
r!
∂rF (−vt, v)

∂vr

∣∣∣∣
v=ν̂x

(v − ν̂x)r
(64)

Inserting into (63) yields

P(C(0,T )) =

T∫
0

F (−ν̂xt, ν̂x)pτ (t)dt

+

T∫
0

∞∑
r=1

1
r!
∂rF (−vt, v)

∂vr

∣∣∣∣
v=ν̂x

·
0∫

−∞

−v(v − ν̂x)rpsx,vx(−vt, v)dvdt.

(65)

Choose ν̂x = ν̂x(t) such that

0∫
−∞

−v(v − ν̂x)psx,vx(−vt, v)dv = 0, (66)

which means that the first order term corresponding to r = 1 in (65) disappears. Now
define a moment-generating function according to

M(ξ, t) =

0∫
−∞

−veξ(v−ν̂x)psx,vx(−vt, v)dv, (67)

and the result follows.
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A.3 Derivation of (43)

Using v(j) = v(l) +
∑j
r=l+1 ∆v(r), the stochastic variable s(Tj) can be written according

to

s(Tj) = s(0) +
j−1∑
l=0

(Tl+1 − Tl)v(l)

= s(0) +
j−1∑
l=0

(Tl+1 − Tl)(v(j) −
j∑

r=l+1

∆v(r))

= s(0) + Tjv
(j) −

j∑
l=1

Tl∆v(l).

(68)

Denote s(j) = s(0)−
∑j
l=1 Tl∆v

(l), which yields s(Tj) = s(j) + Tjv
(j).

References

[1] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions
With Formulas, Graphs and Mathematical Tables. US Department of Commerce, 10
edition, 1964.

[2] ASTM. F2411-07 Standard Specification for Design and Performance of an Air-
borne Sense-and-Avoid System, 2007.

[3] R.J. Bagby. Calculating normal probabilities. The American Mathematical Monthly,
102(1):46–49, Jan 1995.

[4] S. Blackman and R. Popoli. Design and Analysis of Modern Tracking Systems.
Artech House, 1999.

[5] G. Chaloulos and J. Lygeros. Effect of wind correlation on aircraft conflict proba-
bility. Journal of Guidance, Control, and Dynamics, 30(6), 2007.

[6] K. Chan. Analytical expressions for computing spacecraft collision probabilities.
In Proceedings of the 11th Annual AAS/AIAA Space Flight/Mechanics Meeting,
2001.

[7] K. Chan. Improved analytical expressions for computing spacecraft collision proba-
bilities. Advances in the Astronautical Sciences, 114, Part II: Spaceflight Mechanics,
2003.

[8] A. Eidehall, J. Pohl, F. Gustafsson, and J. Ekmark. Toward autonomous collision
avoidance by steering. IEEE Transactions on Intelligent Transportation Systems,
8(1), 2007.

[9] FAA. Aeronautical Information Manual - Official Guide to Basic Flight Information
and ATC Procedures, 2008.



150 Paper C Probabilistic Conflict Detection for Piecewise Straight Paths

[10] A. Gut. An Intermediate Course in Probability. Springer-Verlag, 1995.

[11] D.V. Hinkley. On the ratio of two correlated normal random variables. Biometrika,
56(3):635–639, 1969.

[12] J. Jansson. Collision Avoidance Theory with Applications to Automotive Collision
Mitigation. PhD thesis 950, Department of Electrical Engineering, Linköping Uni-
versity, Linköping, Sweden, 2005.

[13] J. Jansson and F. Gustafsson. A framework and automotive application of collision
avoidance decision making. Automatica, 2008.

[14] M. J. Kochenderfer, J. D. Griffith, and J. K. Kuchar. Hazard alerting using line-of-
sight rate. In Proceedings of the AIAA Guidance, Navigation and Control Confer-
ence and Exhibit, 2008.

[15] J. Krozel and M. Peters. Strategic conflict detection and resolution for free flight. In
Proceedings of the 36th IEEE Conference on Decision and Control, 1997.

[16] J.K. Kuchar. A unified methodology for the evaluation of hazard alerting systems.
PhD thesis, Massachusetts Inst. of Technology, Dept. of Aeronautics and Astronau-
tics, Cambridge, MA, 1995.

[17] J.K. Kuchar and L.C. Yang. A review of conflict detection and resolution methods.
IEEE Transactions on Intelligent Transportation Systems, 1(4):179–189, 2000.

[18] G. Lindgren. Lectures on stationary stochastic processes.
http://www.maths.lth.se/matstat/staff/georg/Publications/
lecture.pdf, 2004.

[19] R. A. Paielli. Algorithms for tactical conflict resolution and strategic conflict prob-
ability reduction. In Proceedings of the 1st AIAA Aircraft, Technology Integration
and Operations Forum, 2001.

[20] R.A. Paielli and H. Erzberger. Conflict probability estimation for free flight. Journal
of Guidance, Control and Dynamics, 20(3):588–596, 1997.

[21] M. Prandini, J Hu, J Lygeros, and S. Sastry. A probabilistic approach to aircraft con-
flict detection. IEEE Transactions on Intelligent Transportation Systems, 1(4):199–
220, 2000.

[22] M. Prandini, J. Lygeros, A. Nilim, and S. Sastry. Randomized algorithms for proba-
bilistic aircraft conflict detection. In Proceedings of the 38th Conference on Decision
and Control, 1999.

[23] L. Yang, J. H. Yang, J. Kuchar, and E. Feron. A real-time Monte Carlo implemen-
tation for computing probability of conflict. In Proceedings of the AIAA Guidance,
Navigation and Control Conference and Exhibit, 2004.

[24] L.C. Yang and J.K. Kuchar. Prototype conflict alerting system for free flight. Journal
of Guidance, Control and Dynamics, 20(4):768–773, 1997.



Paper D

Probabilistic Near Mid-Air Collision
Avoidance

Authors: Nordlund, P-J. and Gustafsson, F.

Edited version of the paper: P-J. Nordlund and F. Gustafsson. Probabilistic near mid-
air collision avoidance. Submitted to IEEE Transactions on Aerospace and Electronic
Systems, 2008.
http://www.control.isy.liu.se/research/reports/2008/2872.pdf

Preliminary version: Published as Technical Report LiTH-ISY-R-2872, Dept. of Electri-
cal Engineering, Linköping University, SE-581 83 Linköping, Sweden.

151





Probabilistic Near Mid-Air Collision Avoidance

Per-Johan Nordlund∗, and Fredrik Gustafsson∗∗

∗Department of Decision Support
Saab Aerosystems

581 88 Linköping, Sweden
per-johan.nordlund@saabgroup.com

∗∗Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden
fredrik@isy.liu.se

Abstract

We propose a probabilistic method to compute the near mid-air collision risk
as a function of predicted flight trajectory. The computations use state esti-
mate and covariance from a target tracking filter based on angle-only sensors
such as digital video cameras. The majority of existing work is focused on
risk estimation at a certain time instant. Here we derive an expression for
the integrated risk over the critical time horizon. This is possible using prob-
ability for level-crossing, and the expression applies to a three-dimensional
piecewise straight flight trajectory. The Monte Carlo technique provides a
method to compute the probability, but a huge number of simulations is
needed to get sufficient reliability for the small risks that the applications
require. Instead we propose a method which through sound geometric and
numerical approximations yield a solution suitable for real-time implemen-
tations. The algorithm is applied to realistic angle-only tracking data, and
shows promising results when compared to the Monte Carlo solution.

1 Introduction

To maintain a safe distance between each other, manned aircraft flying in controlled
airspace use the service provided by an Air Traffic Control (ATC). ATC informs and
orders human pilots to perform maneuvers in order to avoid Near Mid-Air Collisions
(NMAC). A NMAC between two aircraft occurs if the relative distance between them
becomes less than a predefined distance [9, 4]. The last decade semi-automatic systems
such as TCAS (Traffic Collision Avoidance System) [15] have been implemented that
essentially move this responsibility from ATC to the pilot. The TCAS system, however,
assumes that both aircraft exchange data on speed, height and bearing over a data link
and that both systems cooperate. When operating small UAVs this assumption is often no
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longer valid. A typical UAV operates on altitudes where small intruding aircraft are often
present that do not carry transponders.

This paper presents a method for detecting and avoiding hazardous situations based
on uncertain sensor readings. There are many proposals for solving this problem, see e.g.
[16] for a review. Here we consider data from a passive angle-only sensor. A challenge
with angle-only measuring sensors is how to deal with the significant uncertainty obtained
in estimated distance and relative speed. One approach to increase accuracy in the dis-
tance estimate is to perform own platform maneuvers [21]. The method in this paper does
not rely on accurate distance estimates. The proposed method is based on computing the
probability of NMAC for a predicted trajectory. The majority of existing methods are
based on instantaneous probability of NMAC [8, 14, 20]. Instantaneous probability cor-
responds to the probability that the relative position is within a predefined volume at a
certain time instant. It is not straightforward how to interpret instantaneous probability of
NMAC with respect to an entire future trajectory.

We present an approximate solution to the in general computationally intractable prob-
lem of computing the probability of NMAC for a predicted trajectory. Although Monte-
Carlo methods are known to be able to approximate probabilities arbitrarily well [23, 13],
they are also known to be computer intensive particularly when the underlying probabil-
ities are small. Here we do not rely on Monte-Carlo methods, but instead we make use
of theory for stochastic processes and level-crossings as in [17]. The event corresponding
to NMAC can be seen as the crossing of a safety sphere surrounding the vehicle. The
concept of avoiding the safety sphere is also adopted in [6] but confined to determinis-
tic trajectories. We derive expressions for the probability that the relative trajectory will
cross the safety sphere, both for straight and piecewise straight trajectories. By appropri-
ate approximations of the safety zone the probability of crossing the boundary becomes
computationally tractable. The essence of the proposed method is to consider the crossing
of a disc instead of the crossing of the sphere. The results for two dimensions given by
[17] are extended to three dimensions. The main difference between two and three di-
mensions is that we need to compute a probability over a circular disc instead of a line. In
contrast to the two-dimensional case, there does not exist any method to analytically com-
pute the probability over the circular disc. An alternative approach is then needed, and
we use the fact that the characteristic function exists as an analytical expression, and then
compute the probability by numerically inverting the characteristic function. The result is
extended to cover the important case with piecewise linear trajectories, which provides a
way forward to deal with curved paths in general and avoidance maneuvers in particular
[19]. We consider time horizons up to a couple of minutes, and therefore neglect effects
from disturbances on the predicted path. When longer periods of time are considered the
effects of for example wind disturbances can be significant [7].

In Section 2 we formulate the problem mathematically and state the prerequisites to
be able to provide a solution. Section 3 details the exact conditions for a NMAC to occur.
The conditions are based on the minimum relative distance for a given predicted trajec-
tory. If the minimum relative distance is less than a predefined threshold that particular
trajectory will lead to a NMAC. We start by giving the solution for a straight path in Sec-
tion 3.1 and then continue to the case with piecewise straight paths in Section 3.2. Section
4 provides an approximate solution to compute the probability of NMAC. This solution
is based on sampling methods and yields an arbitrarily small approximation error but is
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computationally demanding. In Section 5 we present a novel solution based on an approx-
imation of the NMAC geometry. A NMAC will occur if the predicted relative position
ever crosses the surface of a predefined sphere. If we instead of a sphere consider the
crossing of a circular disc with certain properties the problem becomes computationally
tractable. The probability of crossing the circle can be computed using the distribution
of the distance perpendicular to line-of-sight weighted with the probability density for
time-to-go (ttg) and then integrated over a time interval. Details on the implementation
of the disc approximation is given in Section 6. In Section 7 we give some results com-
paring the sampling solution with the geometric solution and finally in Section 8 we draw
conclusions.

2 Problem formulation

The probability of near-midair collision (NMAC) between two aerial vehicles for a given
time period (0, T ) is defined as

P
(
NMAC(0,T )

)
= P

(
min

0<t<T
|s(t)|<R

)
, (1)

where s(t) represents the relative position between the two vehicles at time t ≥ 0 and t is
the prediction time. R is the radius of a safety zone, which we assume has the shape of a
sphere, and R = 150 m, see Figure 1.

Figure 1: A NMAC occurs if the relative position crosses the safety sphere.

The definition according to (1) means that if the distance

|s(t)| =
√
s2
x(t) + s2

y(t) + s2
z(t)

for any 0 < t < T falls below R, no matter for how long, we have a NMAC.
Typically, an estimate of relative position is provided by an angle-only tracking fil-

ter [5]. Target tracking will not be pursued here in detail, we simply state that based on
measurements from an angle measurement unit e.g. an electro-optical sensor, the track-
ing filter estimates three-dimensional relative position s(0) and velocity v(0) in cartesian
coordinates together with their covariances. To simplify the problem formulation we as-
sume the angle measurement unit is accurate and the coordinate system is rotated such
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that the x− axis is aligned with line of sight. This means that

sy(0) ≡ sz(0) ≡ 0 (2)

and the estimated state vector used for the probability computations is

x̂(0) =
[
ŝx(0) v̂x(0) v̂y(0) v̂z(0)

]T
. (3)

The corresponding estimated covariance matrix is, using var(sy) = var(sz) = 0 from
(2),

P (0) =
[
Psx C
CT Pyz

]
,

Psx =
[

σ2
sx ρxσsxσvx

ρxσsxσvx σ2
vx

]
,

(4)

and similar for Pyz . We assume the tracking filter output is normally distributed, i.e.

x̂(0) ∼ N (x(0), P (0)). (5)

Note that we will only deal with a relative time scale, represented by t = 0 as the current
time on an absolute time scale. At each new time instant on the absolute time scale the
tracking filter provides updated estimates of x(0) and P (0).

We seek a method capable of accurately computing probability of NMAC when the
underlying probability of NMAC is 0.01 or larger. The figure 0.01 comes from the per-
formance of TCAS, which based on simulation studies has a failure rate of around 0.1
[3, 15]. Taking into account that the sensor and tracking filter have a limited intruder de-
tection capability makes 0.01 reasonable. We must be able to detect a collision scenario
with better accuracy than 0.1, due to e.g. sensor and tracking limitations, to achieve an
overall system accuracy of 0.1. The computation accuracy should be 10% or better, i.e.
if the probability is 0.01 then the method should provide a result which does not deviate
more than 10% from 0.01. The method must be computationally tractable for real-time
processing.

3 Crossing of the safety zone

3.1 Constant velocity

Let us first consider the event NMAC(0,T ) assuming a constant velocity

ṡ(t) = v(0), 0 < t < T, (6a)
v(t) = v(0), (6b)

The definition of NMAC(0,T ) according to (1) can also be written as

P
(
NMAC(0,T )

)
=

P
(

min
0<t<T

|s(t)|<R ∩ |s(0)|>R
)

+ P
(
|s(0)|<R

)
.

(7)
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The definition means that we use two mutually exclusive events for |s(0)| to split the
probability, and at the same time noting that if |s(0)|<Rwe automatically have a distance
which is less than R. The first probability term in (7) corresponds to a down-crossing
of the surface of the sphere. The situation of a down-crossing is depicted in Figure 2.
The minimum relative distance mint>0 |s(t)| is attained when s(t) is orthogonal to v.

Figure 2: Crossing of the safety sphere for a straight path.

This point is called closest point of approach and denoted by cpa. The time until cpa is
reached, tcpa, can be computed using the equation

vT
(
s(0) + vtcpa

)
= 0, (8)

which yields

tcpa = −v
T s(0)
|v|2

. (9)

The main condition for NMAC(0,T ) then becomes

min
0<t<T

|s(t)| = |s(tcpa)| = |s(0) + vtcpa| < R, (10)

which we denote

C1 = |s(0) + vtcpa| < R. (11)

A finite end time t < T means that tcpa as computed by (9) could yield tcpa > T . As
long as tcpa < T , condition C1 applies, but in case tcpa > T we can still have a NMAC
situation if

C4 = |s(0) + vT | < R. (12)

The two remaining conditions needed for a complete description of a down-crossing are
tcpa > 0 and |s(0)| > R. The first one corresponds to the two vehicles approaching each
other, and the second one comes from the definition of a down-crossing. To summarize,
the conditions for NMAC(0,T ) are

NMAC(0,T ) = (C1 ∩ C2 ∪ C4) ∩ C3 ∪ C̄3, (13)
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where ∩ denotes intersection, ∪ union, C̄ complement of C and

C1 = |s(0) + vtcpa| < R,

C2 = 0 < tcpa < T,

C3 = |s(0)| > R,

C4 = |s(0) + vT | < R.

(14)

3.2 Piecewise constant velocity

From now on we assume the relative position follows a piecewise straight path given by

ṡ(t) = v(j), Tj < t < Tj+1, (15a)

v(j) = v(0) +
j∑
l=1

∆v(l), (15b)

where all ∆v(l) are known. Note that the model in (15) is fairly general because we can
approximate any continuous curved path arbitrarily well as long as we use a large enough
number of straight segments.

The event NMAC(0,T ) can always be expressed according to

NMAC(0,T ) = ∪J−1
j=0 NMAC(Tj ,Tj+1), (16)

i.e. the union of events for each segment Tj < t < Tj+1 with T0 = 0 and TJ = T . A
geometric interpretation of NMAC(0,T ) for two segments is given by Figure 3.

Figure 3: Crossing of the safety sphere for a piecewise straight path with two seg-
ments.

The change to be incorporated for NMAC(Tj ,Tj+1) compared to the conditions for the
constant velocity case is caused by considering t = Tj instead of t = 0 as the starting
time. This yields changing variables to s(Tj) and v(j). It is possible to derive conditions
for NMAC(Tj ,Tj+1) using s(Tj). However, a more efficient way is to consider the distance
obtained by extrapolating from s(Tj) backwards in time Tj seconds using the current
velocity v(j). This yields the distance at t = 0 which would give s(Tj) after Tj seconds
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using a constant velocity v(j), compare with Figure 3. This means that we are back to
starting time t = 0 and it enables us to reuse results from the case with constant velocity.
Denote the distance obtained from extrapolation by s(j), and we have

s(j) = s(Tj)− Tjv(j). (17)

An advantage using s(j) instead of s(Tj) comes from the fact that the covariance of s(j) is
equal to the covariance of s(0) for all j = 0, . . . , J − 1. This is clear from the expression
[17]

s(j) = s(0)−
j∑
l=1

Tl∆v(l). (18)

Inserting the new variables into the conditions from (14) yield

C
(j)
1 = |s(j) + v(j)t(j)cpa| < R,

C
(j)
2 = Tj < t(j)cpa < Tj+1,

C
(j)
3 = |s(j) + Tjv

(j)| > R,

C
(j)
4 = |s(j) + v(j)Tj+1| < R,

(19)

where

t(j)cpa = − (v(j))T s(j)

|v(j)|2
. (20)

Recall that we are dealing with stochastic variables, which means that we compute

P
(
NMAC(0,T )

)
=

P
(
∪J−1
j=0 (C(j)

1 ∩ C(j)
2 ∪ C(j)

4 ) ∩ C(j)
3 ∪ C̄(j)

3

)
.

(21)

4 Monte-Carlo Approximation

The probability according to (21) is in general very difficult to compute. A straightforward
approximate solution is to use a Monte-Carlo method, i.e. to draw N samples of x(0)
from (5) and approximate the probability with the outcome of the sampling, i.e.

P̂mc

(
NMAC(0,T )

)
=

1
N

N∑
i=1

I

(
∪J−1
j=0 (C(i,j)

1 ∩ C(i,j)
2 ∪ C(i,j)

4 ) ∩ C(i,j)
3 ∪ C̄(i,j)

3

)
,

(22)

where I(·) is the indicator function. Denote the true value of the sought probability with
p. The set of samples is binomially distributed, Bin(N, p), but for a large enough N ,
usually Np(1− p) > 20 is sufficient, the probability is approximated well by [10]

P̂mc

(
NMAC(0,T )

)
∼ N (p, σ2),

σ2 =
p(1− p)
N

.
(23)



160 Paper D Probabilistic Near Mid-Air Collision Avoidance

For a relative mean square error ε ≤ σ
p we can write needed number of samples according

to

N ≥ 1− p
ε2p

≈ 1
ε2p

, (24)

where the last approximation is valid for small p. Assume p = 0.01 and 3ε ≤ 0.1, i.e
a relative error smaller than 10% with probability 0.997. These values plugged into (24)
suggests that we must use N ≥ 90000. For many on-line applications this means a too
high computational load.

5 Approximate the safety zone with a disc

5.1 Constant velocity

Let us first consider the constant velocity case according to (6). An approximate near mid-
air collision, denoted by N̂MAC(0,T ), is given by considering the crossing of a circular
disc instead of a sphere. The disc can be seen as a cross-section of the sphere perpendic-
ular to line-of-sight as illustrated in Figure 4. Note that the location and radius of the disc
is a matter of choice. For example placing the disc at x = R, i.e. in front of the safety
sphere, and with radius R yields a conservative result for probability of NMAC(0,T ).
Below we place the disc at x = 0 primarily for notational convenience.

Figure 4: Approximating the crossing of the safety sphere with a cross-section.

Following the same principle as in [17] we define a stochastic time variable τ , repre-
senting time-to-go (ttg), according to

τ =
{ sx
−vx if sx> 0 ∩ vx< 0,
∞ otherwise,

(25)

Time-to-go is the ratio of distance and closing speed, and corresponds to time left before
the relative position crosses the yz−plane. The probability density function for τ is given
by Lemma 1.
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Lemma 1 (Probability density function for τ )
For sx and vx distributed according to[

sx
vx

]
∼ N

([
ŝx
v̂x

]
,

[
σ2
sx ρxσsxσvx

ρxσsxσvx σ2
vx

])
, (26)

the probability density function for τ as defined by (25) is given by

pτ (t) =

0∫
−∞

−vpsx,vx(−vt, v)dv

=
g0

g2
2

(
1− (2π)

1
2
g1

g2
e
g21
2g22 Φ

(
− g1

g2

))
,

(27)

where κ = ρxσsx/σvx and

g0 =
1

2πσsxσvx(1− ρ2
x)

1
2
e
− (κv̂x−ŝx)2

2σ2
sx(1−ρ2x)

− v̂2x
2σ2
vx ,

g1 =
(t+ κ)(κv̂x − ŝx)
σ2
sx(1− ρ2

x)
+

v̂x
σ2
vx

,

g2 =
(

(t+ κ)2

σ2
sx(1− ρ2

x)
+

1
σ2
vx

) 1
2

,

(28)

and Φ(·) corresponds to the standard normal distribution

Φ(x) =
1√
2π

x∫
−∞

e−
ξ2

2 dξ. (29)

Proof: See [11].

We also define a distance from line-of-sight, denoted by s⊥(t). This distance is a
function of time-to-go τ = t, according to

s⊥(t) =
√

(tvy)2 + (tvz)2 = t

∣∣∣∣[vyvz
]∣∣∣∣, (30)

and corresponds to the total displacement perpendicular to line-of-sight after τ = t sec-
onds. The interpretation of the event N̂MAC(0,T ) in terms of τ and s⊥(t) is that, given a
time-to-go 0 < τ = t < T , if s⊥(t) < R the event will occur. Since both τ and s⊥(t)
are stochastic we need to compute the probability of N̂MAC(0,T ). The probability for a
given ttg is provided by

P(s⊥(τ) < R|τ = t) = P(s⊥(t) < R). (31)

By weighting with the probability density for τ we have

P
(
N̂MAC(0,T )

)
=

T∫
0

P
(
s⊥(t) < R

)
pτ (t)dt. (32)
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The above holds when sx, vx are independent of s⊥(t). In the general case a dependency
makes it difficult to express the probability of NMAC in terms of pτ (t). This is seen from
the block diagonalization of the covariance matrix P ,

P =
[

I 0
CTP−1

sx I

] [
Psx 0
0 Pvz − CTP−1

sx C

] [
I 0

CTP−1
sx I

]T
, (33)

which results in

s⊥(t) =
∣∣∣∣ [tvytvz

]
− CTP−1

sx

[
tsx
tvx

] ∣∣∣∣
=
∣∣∣∣ [tvytvz

]
− CTP−1

sx

[
t2vx
tvx

] ∣∣∣∣, (34)

where the last step corresponds to a change of variable from sx to t = −sx/vx. As can
be seen in (34) the dependency on vx remains.

However, we can split pτ (t) into M partitions, where each partition m = 1, . . . ,M ,
corresponds to a subset of closing speeds am < vx < bm. Now, for each partition, we
compute the conditional mean of vx given τ = t and am < vx < bm. The partitioned
pdf, p(m)

τ (t), and the conditional mean, ν̂(m)
x (t), are given by Corollary 1.

Corollary 1 (Expressions for p(m)
τ (t) and ν̂(m)

x (t))
With the same assumptions as in Lemma 1 we have

p(m)
τ (t) =

bm∫
am

−vpsx,vx(−vt, v)dv

=
g0

g2
2

e
g21
2g22

(
e−

1
2 (g2bm− g1g2 )2 − e−

1
2 (g2am− g1g2 )2

−
√

2π
g1

g2

(
Φ
(
g2bm −

g1

g2

)
− Φ

(
g2am −

g1

g2

)))
,

(35)

and the conditional expected value of vx given τ = t and am < vx < bm is

ν̂(m)
x (t) =

∫ bm
am
−v2psx,vx(−vt, v)dv∫ bm

am
−vpsx,vx(−vt, v)dv

=
g0

g3
2p

(m)
τ (t)

e
g21
2g22

·
(

(g2bm +
g1

g2
)e−

1
2 (g2bm− g1g2 )2 − (g2am +

g1

g2
)e−

1
2 (g2am− g1g2 )2

−
√

2π
(
1 +

g2
1

g2
2

)(
Φ
(
g2bm −

g1

g2

)
− Φ

(
g2am −

g1

g2

)))
.

(36)

Proof: Straightforward calculations using the same technique as for pτ (t).

The probability P(N̂MAC(0,T )) is now given by applying Taylor expansion around
ν̂

(m)
x (t) for each partition, see Theorem 1.
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Theorem 1 (N̂MAC(0,T ) for a straight path)
For s(t) =

[
sx(t) sy(t) sz(t)

]T
with assumptions (2), (5) and (6) the probability of a

down-crossing within T sec of a circular disc with x−axis as its normal and radius R is
given by

P(N̂MAC(0,T )) =
T∫

0

M∑
m=1

P
(
s

(m)
⊥ (t) < R

)
p(m)
τ (t)dt+ PM

(37)

where

s
(m)
⊥ (t) =

∣∣∣∣ [tvytvz
]
− CTP−1

sx

[
t2ν̂

(m)
x (t)

tν̂
(m)
x (t)

] ∣∣∣∣. (38)

The rest term is upper bounded by

PM ≤
T∫

0

M∑
m=1

bm∫
am

∣∣∣∣∂2P
(
s⊥(t) < R

)
∂v2

x

∣∣∣∣
vx=µ(m)(t)

· − v(v − µ(m)(t))2psx,vx(−vt, v)dvdt

(39)

where am < µ(m)(t) < bm, a1 = −∞ and bM = 0.
Proof: See Appendix A.1.

Remark 1. We can always apply Taylor expansion around a more accessible point com-
pared to ν̂(m)

x . For example, in the case we use M = 1 a reasonable choice is v̂x, the
unconditional expected value of vx. The advantage using v̂x instead of ν̂(m)

x is that the
computational load is decreased. On the other hand, using v̂x in general makes the rest
term PM larger because the first order term in the Taylor expansion is no longer elimi-
nated.

5.2 Piecewise constant velocity

The extension of the result for a straight path to the case with a piecewise straight path
given by (15) is as follows. An important observation is that if it is unlikely that v(j)

x

changes sign, i.e.

P
(
sign(v(j)

x ) = sign(v(0)
x )
)
≈ 1, (40)

then N̂MAC(Tj ,Tj+1) for different j’s are mutually exclusive. With this assumption we
can write

P(NMAC(0,T )) =
J−1∑
j=0

P(NMAC(Tj ,Tj+1)), (41)
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and we can concentrate on each segment Tj < t < Tj+1 with constant velocity v(j).
The principle for computing P

(
N̂MAC(Tj ,Tj+1)

)
is the same as for P

(
N̂MAC(0,T )

)
. The

difference is that we use the initial values v(j) and s(j) from (15b) and (18) respectively
instead of v(0) and s(0). Define a stochastic time variable τ (j) according to

τ (j) =

{
s(j)x
−v(j)x

if s(j)
x > 0 ∩ v

(j)
x < 0,

∞ otherwise,
(42)

We also define a distance from line-of-sight, denoted by s(j)
⊥ (t), according to

s
(j)
⊥ (t) =

√
(tv(j)

y + s
(j)
y )2 + (tv(j)

z + s
(j)
z )2, (43)

and corresponds to the total displacement perpendicular to line-of-sight after τ (j) = t

seconds starting from s(j). Note that s(j)
y and s(j)

z are known and deterministic based on
(2) and (18). The probability of NMAC for a piecewise straight path is given by Corollary
2.

Corollary 2 (N̂MAC(0,T ) for a piecewise straight path)

For s(j)(t) =
[
s

(j)
x (t) s

(j)
y (t) s

(j)
z (t)

]T
with assumptions (2), (5) and (15) the prob-

ability of a down-crossing within T sec of a circular disc with x−axis as its normal and
radius R is given by

P(N̂MAC(0,T )) =

J−1∑
j=0

Tj+1∫
Tj

M∑
m=1

P
(
s

(j,m)
⊥ (t) < R

)
p

(m)

τ(j)(t)dt+ P(j)
M

(44)

where

s
(j,m)
⊥ (t) =

∣∣∣∣
[
tv

(j)
y + s

(j)
y

tv
(j)
z + s

(j)
z

]
− CTP−1

sx

[
t2ν̂

(j,m)
x (t)

tν̂
(j,m)
x (t)

] ∣∣∣∣. (45)

The rest term is upper bounded by

P(j)
M ≤

T∫
0

M∑
m=1

bm∫
am

∣∣∣∣∂2P
(
s⊥(t) < R

)
∂v2

x

∣∣∣∣
vx=µ(m)(t))

· − v(v − µ(m)(t))2psx,vx(−vt, v)dvdt

(46)

where am < µ(j,m)(t) < bm, a1 = −∞ and bM = 0.
Proof: See Appendix A.1 with s(j), v(j) instead of s(0), v(0) .
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6 Implementation of the disc approximation

6.1 Computing P
(
s
(j,m)
⊥ (t) < R

)
For notational convenience we ignore index j and study the probability P

(
s⊥(t) < R

)
,

keeping in mind that s⊥(t) is actually s(j,m)
⊥ (t) as given in (45). Let us define a new

random variable representing orthogonal displacement per time unit according to

v⊥(t) =
s⊥(t)
t

=
∣∣∣∣ [νy(t)
νz(t)

] ∣∣∣∣, (47)

where we have using (45)[
νy(t)
νz(t)

]
=
[
vy + ŝy

t

vz + ŝz
t

]
− CTP−1

sx

[
tν̂x(t)
ν̂x(t)

]
. (48)

The covariance matrix for νy and νz is from (33) given by Pyz − CTP−1
sv C. We assume

that νy and νz are uncorrelated, i.e. the matrix Pyz − CTP−1
sv C is diagonal. This is no

restriction since correlation is handled by applying a change of variables[
ν′y
ν′z

]
= U

[
νy
νz

]
, (49)

where U is a unitary matrix given by

Pyz − CTP−1
sv C = UDUT = U

[
d2
y 0
0 d2

z

]
UT . (50)

The sought probability can now be written according to

P(v⊥ <
R

t
) = P

(
v2
⊥ <

R2

t2
)

=

P
(
d2
y

ν2
y(t)
d2
y

+ d2
z

ν2
z (t)
d2
z

<
R2

t2
)
.

(51)

Under the assumption that νy and νz are normally distributed and uncorrelated, we know
that ν2

y(t)/d2
y and ν2

z (t)/d2
z are two independent non-central χ2−distributed variables

with one degree of freedom,

ν2
y(t)
d2
y

∼ χ2
1(λy),

ν2
z (t)
d2
z

∼ χ2
1(λz), (52)

where the non-centrality parameters λy and λz are given by

λy =
ν̂2
y(t)
d2
y

, λz =
ν̂2
z (t)
d2
z

. (53)

The probability P(v2
⊥ < R2

t2 ) in (51) is not available in closed form. A simple way
to compute (51) is to approximate it with a central χ2 [12, 18]. The problem with this
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method is that it is difficult to estimate the approximation error. A better approximation
to (51), in the sense that it is possible to control the approximation error, is to use the fact
that the characteristic function of the distribution in (51) is available in closed form [22],
i.e.

φv2⊥(ξ) = E
[
eiξv

2
⊥
]

=
e

iσ2
yλyξ

1−2iσ2
yξ√

1− 2iσ2
yξ

e
iσ2
zλzξ

1−2iσ2
zξ√

1− 2iσ2
zξ
. (54)

Then use the inverse to the characteristic function to compute the distribution according
to

P(v2
⊥ <

R2

t2
) =

2
π

∞∫
0

Re
(
φv2⊥

(
ξ
)) sin ξR

2

t2

ξ
dξ. (55)

The probability in (55) is computed using [1]

P(v2
⊥ <

R2

t2
) =

∆R2

t2

2π
+

2
π

L∑
l=1

Re
(
φv2⊥(∆l)

)
sin ∆lR

2

t2

l
+ ID + IT .

(56)

ID is the discretization error and is controlled by ∆, and IT is the truncation error and is
controlled by ∆L. See Algorithm 1 for details on the realization.

Algorithm 1 (P(v2
⊥ <

R2

t2 ) as a characteristic function).

1. Compute ∆:

v̂2
⊥ = σ2

y(1 + λy) + σ2
z(1 + λz),

σv2⊥ =
(
2σ4

y(1 + 2λy) + 2σ4
z(1 + 2λz)

) 1
2 ,

∆ =
π

v̂2
⊥ + 6σv2⊥

2. Choose L such that:

Re
(
φv2⊥

(
∆L
)) 2

πL
< 1 · 10−5

3. Compute P̂L(v2
⊥ <

R2

t2 ):

P̂L(v2
⊥ <

R2

t2
)

=
∆R2

t2

2π
+

2
π

L∑
l=1

Re
(
φv2⊥(∆l)

)
sin ∆lR

2

t2

l
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Example 1: P(v2
⊥ <

R2

t2 )
Consider the case with C = 0, ŝy = ŝz = 0 and[

v̂y
v̂z

]
=
[
10
0

]
, Pyz =

[
22 0
0 12

]
. (57)

This is a typical result of angle-only tracking where the velocity orthogonal to line-of-
sight is estimated accurately. The result of computing P(v2

⊥ <
R2

t2 ) with R = 150 using
Algorithm 1 is given by Figure 5. We see that using no more than 15 − 20 terms (= L)
gives equivalent accuracy compared to using the Monte Carlo solution,

P̂mc(v2
⊥ <

R2

t2
)

=
1
M

M∑
i=1

I

(
(v(i)
y )2 + (v(i)

z )2 <
R2

t2

)
,

(58)

with M = 1000000.

Figure 5: The upper plot shows estimated P(v2
⊥ < R2

t2 ), the lower left shows the
difference compared to Monte Carlo solution (solid line) including the 3 − σ levels
for the Monte Carlo solution (dotted lines), and the lower right shows the number of
terms used in Algorithm 1.
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6.2 Computing P(N̂MAC(0,T ))

A sound and simple numerical approximation for computing a one-dimensional integral
is given by Simpson’s rule [2]

P(NMAC(Tj ,Tj+1)) =

Tj+1∫
Tj

f(t)dt

=
∆t
3

(
f(t0) + 2

K/2−1∑
k=1

f(t2k) + 4
K/2∑
k=1

f(t2k−1) + f(tK)
)

+RK ,

(59)

where ∆t = (Tj+1 − Tj)/K, tk = k∆t+ Tj and

f(t) =
M∑
m=1

P
(
s

(j,m)
⊥ (t) < R

)
pτ(j,m)(t). (60)

From [2] we know that the approximation error is bounded by

RK <
∆t5

90

K/2−1∑
k=0

max
t2k<t<t2k+2

∣∣∂4f

∂t4
∣∣. (61)

The implementation of Corollary 2 is given by Algorithm 2.

Algorithm 2 (Implementation of Corollary 2).

1. Set j = 0.

2. For each tk = k∆tj + Tj and m = 1, . . . ,Mj compute

pτ(j,m)(tk), ν̂(j,m)
x (tk), (62)

given by Corollary 1.

3. For each tk = k∆tj + Tj and m = 1, . . . ,Mj compute

P
(
s

(j,m)
⊥ (tk) < R

)
(63)

using Algorithm 1.

4. Compute the probability for segment j

P̂simp(C(Tj ,Tj+1)) =
∆tj

3

(
f(Tj) + f(Tj+1)

+ 2

Kj
2 −1∑
k=1

f(t2k) + 4

Kj
2∑

k=1

f(t2k−1)
)
,

(64)
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where

f(t) =
M∑
m=1

P
(
s

(j,m)
⊥ (t) < R

)
pτ(j,m)(t). (65)

5. Set j = j + 1 and iterate from step 2 until j = J .

6. Compute the total probability of conflict

P̂simp(C(0,T )) =
J−1∑
j=0

P̂simp(C(Tj ,Tj+1)). (66)

7 Simulation results

Using the notation from Figure 6 we let α and ψ deteremine the direction of the intruders
and own speeds, vint and vown respectively, relative to line-of-sight. The corresponding
relative velocity is then given by

vx = −vown cosψ − vint cosα,

vy = vown sinψ − vint sinα.
(67)

-

6

X

Y

@
@
@I

�
�
�
��3

ψα cc
sx(0)

vown = 50vint = 75

Figure 6: Collision geometry in absolute coordinates.

Note that the variables above should be regarded as true quantities. Moreover, we let
smin define the distance when the relative position is at point of closest approach. For a
straight trajectory, the relation between smin, initial distance sx(0) and relative velocity
is given by

smin

sx(0)
= − vy√

v2
x + v2

y

. (68)

Inserting (67) into (68) yields an expression for ψ according to

ψ = arcsin
(
vint

vown
sin
(
α+ arcsin

smin

sx(0)
))

+

arcsin
smin

sx(0)
.

(69)
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Here we place the circular disc with R = 150 m at x = 22.5 instead of x = 0 to
approximate the crossing of the sphere better when performing an avoidance maneuver,
see Figure 7. The value x = 22.5 corresponds to the x−coordinate where a straight path
starting from sx(0) = 1000 is tangent to the circle.

There are two simulated scenarios with avoidance maneuvers performed with a 60−deg
turn in the horizontal plane. The first is given by Table 1 and Figure 7 and corresponds to
the case with α = 0 deg. The second is given by Table 1 and Figure 8 and corresponds to
α = 25 deg. The estimated state vector and corresponding covariance matrix given in Ta-
ble 1 are the result from a tracking filter using simulated angle-only sensor measurements.
Both simulations assume a reaction time set to 3 sec, and reflects the time from initiation
of the avoidance maneuver until the turn actually begins. All turns are performed with
10 deg/sec, meaning that the turning time is 6 seconds. The trajectories numbered 2 and
3 correspond to the situation two and four seconds later respectively during which the
constant velocity according to the initial conditions applies.

We evaluate two methods by comparing to the truth given by the Monte Carlo method
according to (22) using N = 1000000. The two methods are

• Algorithm 2 using M = 3 with a1 = −∞, a2 = v̂
(j)
x − σvx and a2 = v̂

(j)
x + σvx,

Taylor expansion around ν̂(j,m)
x and ∆t = 0.1.

• Algorithm 2 using M = 1, Taylor expansion around v̂(j)
x and ∆t = 0.1.

As can be deduced from Tables 2 and 3, all relative errors are < 10% for the method with
M = 3. Recall the requirement that we seek a method capable of computing probability
of NMAC with a relative accuracy at least 10% for probabilities larger than 0.01. The
relative error for the method with M = 1 is much worse for scenario II. The worst case,
ignoring II.1 which has a too small probability, occurs for II.2 which yields a relative error
of approximately 75%. If the requirement is to avoid NMAC with a probability of at least
0.01, the first scenario achieves the objective if initiating an avoidance maneuver while
ŝx(0) > 1351. In the second scenario we must initiate the turn while ŝx(0) > 1399.

8 Conclusions

This paper presents a novel solution to the probability of NMAC for a three-dimensional
predicted relative trajectory. A NMAC occurs if the distance between two aircraft be-
comes less than a threshold, which is determined by the radius of a safety sphere. The
method does not rely on sampling techniques, but uses theory for level-crossings. By
appropriate approximations, crossing of a circular disc instead of a sphere and Taylor ex-
pansion to deal with correlation, we derive an expression for the probability of NMAC.
By using the proposed expression it is possible to decrease the computational load by at
least three orders of magnitude compared to the Monte Carlo solution.
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Table 1: Parameters for the simulations.

α ŝx(0) v̂x(0) v̂y(0)
I.1 0 1600 -124 7.8
I.2 0 1351 -124 9.2
I.3 0 1103 -124 11.3
II.1 25 1600 -100 6.3
II.2 25 1399 -100 7.2
II.3 25 1198 -101 8.5

x̂(0) =
[
ŝx(0) v̂x(0) v̂y(0) 0

]T
P (0) =


( ŝx(0)

7 )2 0.55 ŝx(0)v̂(0)x
7·8 0.99 ŝx(0)2

7 0.90 ŝx(0)
7

0.55 ŝx(0)v̂(0)x
7·8 ( v̂

(0)
x

8 )2 0.59 v̂x(0)2
8 0.53 v̂x(0)

8

0.99 ŝx(0)2
7 0.59 v̂x(0)2

8 22 0.89 · 2
0.90 ŝx(0)

7 0.53 v̂x(0)
8 0.89 · 2 12



Table 2: Relative error for scenario I when using Algorithm 2 with M = 3, ν̂(j,m)
x

and M = 1, v̂(j)
x .

smin P̂mc

(
NMAC(0,30)

)
A.2(3, ν̂(j,m)

x ) A.2(1, v̂(j)
x )

I.1 100 0.91 2% −2%
454 0.0008 −9% −6%

I.2 100 0.93 1% −2%
357 0.0060 −10% −2%

I.3 100 0.95 1% −2%
259 0.045 −2% 9%

A Appendix

A.1 Proof of Theorem 1

Using the joint probability density for sx, vx, vy, vz ,

psx,vx,vy,vz (s, v, y, z) = p(s, v, y, z)

=
1

(2π)2 detP 1/2
e

1
2 (x−x̂)TP−1(x−x̂)

=
1

(2π)2 detP 1/2
e

1
2 |x−x̂|P−1 ,

(70)
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Figure 7: The upper plot shows the relative trajectory and the lower plot shows
the absolute trajectories of the intruder (dash-dotted line) and own vehicle (solid
line for the straight paths and dashed for the paths with the 60−deg turn). Points
of closest approach are marked with circles and squares for the intruder and own
vehicle respectively. Starting points are marked with stars. Simulation parameters
are taken from Table 1, I.1 - I.3.

we have

P(N̂MAC(0,T )) =
0∫

−∞

−vT∫
0

∫ ∫
(ty)2+(tz)2<R2

p(s, v, y, z) dydzdsdv,
(71)

where t = −s/v. Block diagonalize P according to

P =
[
I 0
K I

] [
Psv 0
0 P ′yz

] [
I 0
K I

]T
,

P−1 =
[
I 0
−K I

]T [
P−1
sv 0
0 (P ′yz)

−1

] [
I 0
−K I

]
,

(72)
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Figure 8: The upper plot shows the relative trajectory and the lower plot shows
the absolute trajectories of the intruder (dash-dotted line) and own vehicle (solid
line for the straight paths and dashed for the paths with the 60−deg turn). Points
of closest approach are marked with circles and squares for the intruder and own
vehicle respectively. Starting points are marked with stars. Simulation parameters
are taken from Table 1, II.1 - II.3.

where P ′yz = Pyz − CTP−1
sv C and K = CTP−1

sv . The inner double integral over y, z is,
using the block diagonalized covariance matrix, given by

F (s, v) =
∫ ∫

(ty)2+(tz)2<R2

psy,vy|sx,vx(y, z|s, v)dydz

=
∫ ∫

(ty)2+(tz)2<R2

p(y, z|s, v)dydz,
(73)

where

p(y, z|s, v) =
1

2π det(P ′yz)1/2
e

− 1
2

∣∣∣∣y − v̂yz − v̂z

−K
s− ŝx
v − v̂x


∣∣∣∣
(P ′yz)−1

. (74)
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Table 3: Relative error for scenario II when using Algorithm 2 with M = 3, ν̂(j,m)
x

and M = 1, v̂(j)
x .

smin P̂mc

(
NMAC(0,30)

)
A.2(3, ν̂(j,m)

x ) A.2(1, v̂(j)
x )

II.1 100 0.87 2% −1%
358 0.0028 2% 103%

II.2 100 0.90 2% −2%
312 0.0089 −6% 75%

II.3 100 0.92 2% −2%
266 0.025 −7% 49%

The probability of N̂MAC(0,T ) is given by

P(N̂MAC(0,T ))

=

0∫
−∞

−vT∫
0

F (s, v)psx,vx(s, v)dsdv.
(75)

Change variable from s to t = −s/v which yields

P(N̂MAC(0,T ))

=

0∫
−∞

T∫
0

−vF (−vt, v)psx,vx(−vt, v)dtdv

=

T∫
0

0∫
−∞

−vF (−vt, v)psx,vx(−vt, v)dvdt.

(76)

Consider partition the inner integral over v in M intervals, i.e.

0∫
−∞

−vF (−vt, v)psx,vx(−vt, v)dv

=
M∑
m=1

bm∫
am

−vF (−vt, v)psx,vx(−vt, v)dvdt,

(77)

where a1 = −∞ and bM = 0. For each partition, Taylor expansion of F (−vt, v) around
ν̂

(m)
x (t) yields

F (−vt, v) =
∞∑
r=0

1
r!
∂rF (−vt, v)

∂vr

∣∣∣∣
v=ν̂

(m)
x (t)

(
v − ν̂(m)

x (t)
)r
. (78)
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Inserting into (77) yields

0∫
−∞

−vF (−vt, v)psx,vx(−vt, v)dv

=
M∑
m=1

∞∑
r=0

1
r!
∂rF (−vt, v)

∂vr

∣∣∣∣
v=ν̂

(m)
x (t)

·
bm∫
am

−v
(
v − ν̂(m)

x (t)
)r
psx,vx(−vt, v)dvdt,

(79)

Choose ν̂(m)
x (t) such that

bm∫
am

−v
(
v − ν̂(m)

x (t)
)
psx,vx(−vt, v)dv = 0, (80)

which means that the first order terms corresponding to r = 1 in (79) are eliminated. The
result is

P(N̂MAC(0,T ))

=

T∫
0

M∑
m=1

F
(
− ν̂(m)

x (t)t, ν̂(m)
x (t)

)

·
bm∫
am

−vpsx,vx(−vt, v)dvdt+ PM

=

T∫
0

M∑
m=1

F
(
− ν̂(m)

x (t)t, ν̂(m)
x (t)

)
p(m)
τ (t)dt+ PM ,

(81)

where

PM ≤
T∫

0

M∑
m=1

bm∫
am

1
2
∂2F (−vt, v)

∂v2

∣∣∣∣
v=µ(m)(t)

· −v
(
v − µ(m)(t)

)2
psx,vx(−vt, v)dvdt

(82)

for am < µ(m)(t) < bm.
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