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Abstract

The interest in Discrete Event Dynamic Systems (DEDS) has increased during the
last years, due to the lack of methods and tools that are capable of handling the
complexity of problems and tasks present in industry today. In this thesis we will
consider a framework based on relations over �nite domains. The framework is
used for modeling, analysis, and synthesis of DEDS.

Binary Decision Diagrams (BDDs) are used to represent relations, as well as
the operations for modeling, analysis and synthesis of DEDS. To utilized the struc-
ture of integers and arithmetic operation, Integer Decision Diagrams (IDDs) are
developed and implemented. Polynomials over �nite �elds are another type of
representation that is used for the relational framework. Here Gr�obner bases, and
Integrated Monomial Diagrams (IMDs) are the tools that are used. IDDs and IMDs
are both developed, by the author, to represent integer structures and arithmetic
operations e�ciently.

With tools for e�cient relational representation, it possible to improve scala-
bility of DEDS computations, as shown in this thesis by the modeling and analysis
of the landing gear controller of the Swedish �ghter aircraft JAS 39 Gripen. A
relational model, represented by a BDD, is automatically generated from a 1200
lines Pascal implementation, which contains 105 binary variables of which 26 are
state variables. Function speci�cations expressed with temporal algebra, are veri-
�ed using tools for dynamic analysis, which we also use to compute a polynomial
representing the set of all reachable states in the model. The landing gear controller
serves as a benchmark test of BDDs and IDDs. The IDDs reduced the computation
time by 50%.

To explore the ability and applicability of using a polynomial relational repre-
sentation when doing synthesis, we use a tank system containing actuators (pump
and valves) and sensors (the tank level and measurable disturbances). We propose
a synthesis method that uses actuator priority, weighting of states, and Gr�obner
bases to compute explicit control laws for the actuators, ful�lling the control ob-
jectives even if one of the actuators (the pump) is defective.

Modeling aspects are emphasized further, by comparing the polynomial ap-
proach which we have used, with Boolean expressions and established DEDS ap-
proaches in the community of automatic control like Ramadge-Wonham, Petri nets,
and COCOLOG. We discuss how to handle transformation between signals and
events for DEDS and how to modularize DEDS to gain complexity advantages.
Model description languages are discussed and desirable features are stated, using
the experiences achieved from the modeling of the tank system and the landing
gear controller.
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Preface

Structure of the Thesis

This thesis consists of three separate parts:

Part I Relational Representations

Part II Applications

Part III Modeling of DEDS - General Aspects

Parts II and III contain rewritten and reorganized material from the licentiate
theses: Gunnarsson [49] and Plantin [99]. Parts III contains material from Gun-
narsson [49].

How to Read this Document

The di�erent parts in the thesis can be read independently and in any order, but
to increase the bene�t we suggest that the material is approached as follows:

(i) Chapter 2 introduces the relational framework, on which the thesis rests.

(ii) Part I can be read separately, but is motivated by Chapter 2 and Part II.

(iii) Part II consists of two application studies, which use theory and tools pre-
sented in Part I.

(iv) Read Chapter 8 in Part II before Part III, since Chapter 8 is the description
of a �rst example of modeling and synthesizing the tank system which is used
in Part III, where the modeling aspects are discussed and compared to other
approaches within the �eld.

An outline of this thesis can be found in Section 1.2, and a description of the
contributions is given in Section 1.3.

vii



viii Preface

Published Papers

The work presented in this thesis is based on the following technical reports and
conference presentations.

[41] R. Germundsson, J. Gunnarsson, A. Jansson, P. Krus, M. Morin, S. Nadjm-
Tehrani, J. Plantin, M. Sethson, and J.-E. Str�omberg. Complex hybrid sys-
tems I: a study of available tools and speci�cation of planned work. Technical
Report LiTH-IDA-R-94-29, Link�oping University, June 1994.

[42] R. Germundsson, J. Gunnarsson, and J. Plantin. Symbolic algebraic discrete
systems - applied to the JAS 39 �ghter aircraft. Technical Report LiTH-ISY-
R-1718, Link�oping University, December 1994.

[50, 51] J. Gunnarsson. Algebraic methods for discrete event systems - a tutorial.
In Workshop on Discrete Event Systems. IEE, August 1996.

[52] J. Gunnarsson. Symbolic algebraic discrete systems - applied to the JAS
39 �ghter aircraft, part ii. Technical Report LiTH-ISY-R-1873, Link�oping
University, August 1996.

[53, 54] J. Gunnarsson and R. Germundsson. Dynamic veri�cation of a large
discrete system. In Proc. of 35th IEEE Conference on Decision and Control,
Kobe, Japan, December 1996. IEEE.

[55] J. Gunnarsson and J. Plantin. Control law synthesis for a discrete event
system. Technical Report LiTH-ISY-R-1651, Link�oping University, August
1994.

[56] J. Gunnarsson and J. Plantin. Automatic synthesis for simultaneous super-
vision and control { a �rst example. In American Control Conference, The
American Automatic Control Council, IEEE, June 1995.

[57, 58] J. Gunnarsson and J. Plantin. Synthesis of a discrete system using al-
gebraic methods. In Workshop on Discrete Event Systems. IEE, August
1996.

[59, 60] J. Gunnarsson, J. Plantin, and R. Germundsson. Veri�cation of a large
discrete system using algebraic methods. In Workshop on Discrete Event
Systems. IEE, August 1996.

Acknowledgments

The work that has resulted in this thesis could not be performed without the
support from several people.

First of all I would like to thank my supervisor, professor Lennart Ljung for the
opportunity to be a member of his group, and for all encouragement and guidance
he has given me. Lennart knows supervision and control, and to be his student is
certainly a privilege.



Preface ix

I would also like to thank a man with good taste in research subjects, Dr. Roger
Germundsson, for the inspiration, support and visions he has shared with me. His
research e�ort in the domain of DEDS made this thesis possible.

To my former research companion Jonas Plantin: Once again thank you. Your
contributions are very important to this thesis also. I hope we will stay in touch
in the future, both as friends and colleges.

I would like to thank Dr. Inge Klein, Magnus Larsson and Mats Jirstrand who
have provided a forum for discussions in the absence of Roger and Jonas.

To be a member of a group like the Automatic Control Group in Link�oping, has
given me memories I never will forget. The �ka1-room, junk-seminars, outrageous
discussions round the �ka, the oorball games and much more. Working in such
an inspiring and warm2 atmosphere makes this group special. Thank you all.

I would also like to thank Mats Jirstrand, Peter Lindskog, Jonas Plantin,
Magnus Larsson, Inger Klein and Ulla Salaneck for patiently proofreading the
manuscript, Ulf Nilsson, IDA, for an excellent introduction to structured opera-
tional semantics, Jan-Erik Str�omberg for being a bond graph guru, and G�oran
Backlund, Magnus Landberg and Ove �Akerlund at SAAB, who supplied me with
valuable information on the JAS landing gear system.

Thanks to Peter Lindskog and Anders Stenman for supporting me with the
LATEX and XEmacs tools.

This work was supported by the Swedish Research Council for Engineering
Sciences (TFR) and the Swedish National Board for Industrial and Technical De-
velopment (NUTEK), which is gratefully acknowledged.

I would like to thank all friends to me and my family, and especially the Ros�en
family3 for all support and help during this period of time.

Thanks to Lotta Bergmark and LTAB for the helping me out with the cover of
this thesis.

To my parents Gunnar and Kerstin: Thank you for your love and support.
Forgive me, that you have not heard from me as often as I wish. I hope to improve
on this matter.

To my brother and sisters with families: Thank you all for being the steady
state in life, and all fun and joy.

Finally, I give my greatest gratitude to my wife, Marit, and daughter, Emma,
for their love, support, patience and encouragement. This thesis is to you and
because of you. I love you so much.

One of these nights in
Link�oping, April 1997

Johan Gunnarson

1Fika is the co�ee break culture.
2True in all interpretations.
3Dentists should be humble. ;-)



x Contents

Acknowledgment for Acronyms

AMS-TEX, BibTEX, CMU BDD, Dell, euler, FBK, ftp, gcc, gdb, gnu, html, IBM,
IDA, islandDraw, ISY, JAS, HP, LATEX, LiTH, Mathematica, Mathlink, Netscape,
QDD, RRPE, Sun, SAS, SLiTEX, SMF, SMU, tcsh, TEX, TFR, unix, vm, Win95,
XEmacs, x�g.



Contents

1 Introduction 1

1.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Road Map for the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.3 Contributions of the Thesis : : : : : : : : : : : : : : : : : : : : : : : 3

2 A Relational Framework for DEDS 5

2.1 Relations and Sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.1.1 A Shortcut to Understanding : : : : : : : : : : : : : : : : : : 6

2.1.2 The Formal Route : : : : : : : : : : : : : : : : : : : : : : : : 6

2.1.3 Relational Operations : : : : : : : : : : : : : : : : : : : : : : 9

2.2 Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2.2.1 Relational Model : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.2.2 Deterministic/Nondeterministic DEDS : : : : : : : : : : : : : 15

2.2.3 Symmetric Models : : : : : : : : : : : : : : : : : : : : : : : : 16

2.2.4 Composition of Models : : : : : : : : : : : : : : : : : : : : : 18

2.2.5 Interconnecting Models : : : : : : : : : : : : : : : : : : : : : 21

2.2.6 Restricting Models : : : : : : : : : : : : : : : : : : : : : : : : 23

2.3 Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2.3.1 Static Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : 24

2.3.2 Dynamic Analysis : : : : : : : : : : : : : : : : : : : : : : : : 24

2.4 Synthesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2.4.1 The Forbidden State Problem : : : : : : : : : : : : : : : : : : 31

2.4.2 The Goal State Problem (Planning) : : : : : : : : : : : : : : 33

2.5 Summing Up : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

Appendix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

2A Generating Trajectories : : : : : : : : : : : : : : : : : : : : : : : : : 36

2A.1 Single Temporal Logic Operators : : : : : : : : : : : : : : : : 38

2A.2 Combined Temporal Logic Expressions : : : : : : : : : : : : : 40

xi



xii Contents

I Relational Representations 43

3 Relational Representations - an Introduction 45
3.1 Decision Diagrams : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46
3.2 Polynomials and Algebra : : : : : : : : : : : : : : : : : : : : : : : : 49
3.3 Polynomial Graph Representations : : : : : : : : : : : : : : : : : : : 50
3.4 Gr�obner Bases : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51
3.5 Road Map for Part I : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

4 Decision Diagrams 53
4.1 Function Graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54
4.2 Binary Decision Diagrams : : : : : : : : : : : : : : : : : : : : : : : : 58

4.2.1 Operations and Algorithms for BDDs : : : : : : : : : : : : : 60

5 Polynomial Representation 73
5.1 Basic Commutative Algebra : : : : : : : : : : : : : : : : : : : : : : : 73
5.2 The Quotient Polynomial Ring, Rq [Z] : : : : : : : : : : : : : : : : : 77
5.3 Representing Functions with Polynomials : : : : : : : : : : : : : : : 79
5.4 Representation of Logical Expressions : : : : : : : : : : : : : : : : : 80
5.5 Gr�obner Bases : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

5.5.1 Gr�obner Bases for General Polynomial Rings : : : : : : : : : 81
5.5.2 Gr�obner Bases in Rq [Z] : : : : : : : : : : : : : : : : : : : : : 83

5.6 Functional Dependence : : : : : : : : : : : : : : : : : : : : : : : : : : 83
5.7 Variable Domains : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85
5.8 Gr�obner Basis Tools : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

5.8.1 Logic operations : : : : : : : : : : : : : : : : : : : : : : : : : 88
5.8.2 Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

6 IDD & IMD 93
6.1 Integer Decision Diagrams : : : : : : : : : : : : : : : : : : : : : : : : 94

6.1.1 Operations and Algorithms : : : : : : : : : : : : : : : : : : : 97
6.1.2 Complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

6.2 Integrated Monomial Diagrams : : : : : : : : : : : : : : : : : : : : : 106
6.2.1 Reduced Recursive Polynomial Expression : : : : : : : : : : : 107
6.2.2 Integrated Monomial Diagrams : : : : : : : : : : : : : : : : : 110

6.3 Comparisons: Decision Diagrams vs. Polynomials : : : : : : : : : : : 114
6.3.1 Final Example : : : : : : : : : : : : : : : : : : : : : : : : : : 115

6.4 Summing Up : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117

II Applications 119

7 Veri�cation of Landing Gear Controller 121
7.1 The Landing Gear Process : : : : : : : : : : : : : : : : : : : : : : : : 121

7.1.1 Description of the System : : : : : : : : : : : : : : : : : : : : 122
7.1.2 The Signal Interface : : : : : : : : : : : : : : : : : : : : : : : 123

7.2 Software Tools : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125



Contents xiii

7.2.1 Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125

7.2.2 Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

7.3 Modeling Based on the Controller Implementation : : : : : : : : : : 126

7.3.1 Restrictions in the Modeling : : : : : : : : : : : : : : : : : : 127

7.3.2 Translating Pascal to Relations : : : : : : : : : : : : : : : : : 127

7.4 Analysis of the Landing Gear Controller : : : : : : : : : : : : : : : : 143

7.4.1 Computation of Reachable States : : : : : : : : : : : : : : : : 143

7.4.2 Static Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : 144

7.4.3 Dynamic Analysis on Closed Loop Landing Gear System : : 146

7.5 Performance Improvements using IDDs : : : : : : : : : : : : : : : : : 151

7.6 Conclusions and Future Work : : : : : : : : : : : : : : : : : : : : : : 156

7.6.1 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156

7.6.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : 157

8 Synthesis of a Tank System 159

8.1 Modeling the Water Tank : : : : : : : : : : : : : : : : : : : : : : : : 160

8.1.1 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 160

8.1.2 Deriving the Model : : : : : : : : : : : : : : : : : : : : : : : : 161

8.2 Controller Design : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163

8.2.1 Design Criteria : : : : : : : : : : : : : : : : : : : : : : : : : : 163

8.2.2 Computation of the Control Laws : : : : : : : : : : : : : : : 165

8.2.3 Analysis of the Design : : : : : : : : : : : : : : : : : : : : : : 169

8.3 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 172

8.3.1 The Design Method : : : : : : : : : : : : : : : : : : : : : : : 172

8.3.2 Computational Aspects : : : : : : : : : : : : : : : : : : : : : 173

III Modeling of DEDS - General Aspects 175

9 Approaches to Describing Discrete Event Dynamic Systems 177

9.1 The Automata Theoretic Approach : : : : : : : : : : : : : : : : : : : 177

9.2 The Petri Net Approach : : : : : : : : : : : : : : : : : : : : : : : : : 178

9.3 The COCOLOG Approach : : : : : : : : : : : : : : : : : : : : : : : 179

9.4 Simulation and Perturbation Analysis : : : : : : : : : : : : : : : : : 179

10 Aspects of Modeling using Algebraic Methods 181

10.1 Polynomial Representation of DEDS : : : : : : : : : : : : : : : : : : 181

10.2 Modeling Description Language : : : : : : : : : : : : : : : : : : : : : 185

10.2.1 An MDL Overview : : : : : : : : : : : : : : : : : : : : : : : : 185

10.2.2 Modeling of Physical DEDS : : : : : : : : : : : : : : : : : : : 186

10.3 Event and Signal Models : : : : : : : : : : : : : : : : : : : : : : : : : 192

10.3.1 Going from Signals to Events : : : : : : : : : : : : : : : : : : 193

10.3.2 Going from Events to Signals : : : : : : : : : : : : : : : : : : 194



xiv Contents

11 Comparative Reviews of the Tank Model 197
11.1 The Ramadge-Wonham Approach : : : : : : : : : : : : : : : : : : : 198

11.1.1 Introduction to the RW Theory : : : : : : : : : : : : : : : : : 198
11.1.2 The FA Model of the Tank System : : : : : : : : : : : : : : : 201
11.1.3 The Language Model and Control Objective of the Tank : : : 205
11.1.4 Summing Up : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

11.2 Petri Nets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 208
11.2.1 Introduction to Petri Nets : : : : : : : : : : : : : : : : : : : : 208
11.2.2 The Petri Net Model of the Tank : : : : : : : : : : : : : : : : 213
11.2.3 Petri Net Synthesis : : : : : : : : : : : : : : : : : : : : : : : : 218
11.2.4 Summing Up : : : : : : : : : : : : : : : : : : : : : : : : : : : 220

11.3 COCOLOG : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 221
11.3.1 Introduction to the COCOLOG Approach : : : : : : : : : : : 221
11.3.2 Modeling the Tank with COCOLOG : : : : : : : : : : : : : : 224
11.3.3 Summing up : : : : : : : : : : : : : : : : : : : : : : : : : : : 225

A Note on Notation 227

Bibliograhy 231

Subject Index 241



1

Introduction

1.1 Motivation

The following question gives a motivation for this thesis:

\Why not try to bring mathematical tech-
niques where they are not yet used, in or-
der to improve formal guarantees and to
reduce the size and combinatorial com-
plexity of the resulting code?"

Benveniste and �Astr�om [7]

The question above deals with the problem of developing control software sys-
tems in industry today. Control software is becoming more and more complex,
as the hardware improves and the demands for the systems increase. To enhance
the development of software systems, tools like data bases, knowledge bases, and
expert systems are used together with software development methods. This makes
it possible to use higher abstraction in the development process.

In the automatic control community the design of a system (controller) is based
on models and objectives from which the system is derived, rather than designed
using ordinary programming techniques. To make such derivations possible we
need a formal framework (mathematics) by which it is possible to represent models
of systems and control objectives. A powerful mathematical framework is the
foundation of control theory. The use of control theory for continuous systems is
well developed and widely used in applications. The control community is therefore
inspired to �nd mathematics that is usable for systems where software techniques
are used today.

1



2 Introduction

The class of systems considered here is discrete event dynamic systems (DEDS).
By a DEDS we mean a system with a discrete state space and with piecewise
constant trajectories that evolve in response to certain abrupt input events. The
research in the domain of DEDS is relatively new in the control community. Over
the years many approaches have been introduced that in some sense give methods
for modeling, analysis and synthesis for DEDS. Still, the most di�cult and perhaps
the most important feature to achieve in a DEDS framework, is the ability to reduce
the combinatorial complexity that always tends to be insurmountable.

1.2 Road Map for the Thesis

The theme of this thesis is representation and applications of DEDS where a re-
lational framework1, developed by Germundsson [40], is used. The framework is
based on symbolic and algebraic methods as well as tools that give e�cient com-
putations also for larger DEDS.

The components of system theory in the relational framework such as modeling,
analysis and synthesis will briey be described in Chapter 2, \A Relational Frame-
work for DEDS". There we will also introduce the idea of relations as a convenient
tool for DEDS, both for algorithms and for our own understanding. We let relations
be representations of �nite sets but also of DEDS behavior. In the latter case we
say that the relation is a model of DEDS that may be used for some analysis of the
system behavior or as an input to a synthesis method. All the methods included in
Chapter 2 will be de�ned and exempli�ed without concern for how these relations
are represented.

The problem of �nding e�cient representations or implementations for the re-
lations, is the main concern of Part I, \Relational Representations" in this thesis.
There we will try to �nd representations for the relations on an algorithmic level,
in contrast to the conceptual and abstract way we use the relations in Chapter 2.
To make it more appealing, an overview of the di�erent representations in Part I is
given in Chapter 3. In Chapter 4, \Decision Diagrams", and in Chapter 5, \Polyno-
mial Representation", two di�erent approaches of representations in �nite domains
are described in more detail. At the end of Part I, Chapter 6 \IDD & IMD" our
results are presented concerning relational representations. Integer decision dia-
grams (IDD) and integrated monomial diagrams (IMD) are both representations
developed to increase computational performance for the methods of the relational
framework.

Part II is devoted to applications where the relational system theory in Chap-
ter 2 is used together with relational representations from part I. In Chapter 7 we
demonstrate how to perform dynamic analysis on a complex system of industrial
size. Here two variants of decision diagrams BDDs and IDDs from Chapter 4 are
used as representations of a system model and analysis results. The system model
is automatically generated by a compiler which translates a restricted part of the
computer programming language Pascal into a relational model representing the

1In this thesis we will also refer to this framework as the polynomial approach.



1.3 Contributions of the Thesis 3

system behavior. The dynamic veri�cation is performed on the closed loop system
by using temporal logic as the speci�cation language.

The common approach for a design problem in control is to derive (or synthesize)
a controller from a model (containing the information of the system behavior) and
the control objectives (specifying the desired behavior). How this can be done
within the polynomial approach is shown in Chapter 8, where the synthesis of a
control law for a tank system is performed by the use of polynomials over �nite
�elds and Gr�obner Bases as the computation tool.

Part III contains three separate chapters. The �rst gives a brief description
of the DEDS approaches of today. In the second chapter we discuss more general
aspects of modeling, using the polynomial approach. The last chapter contains a
comparison among the polynomial approach and three other DEDS approaches:
Ramadge and Wonham [104], Petri nets [98], and COCOLOG [20]. This compari-
son is performed by remodeling the tank system from Chapter 8.

1.3 Contributions of the Thesis

The main contributions of this thesis are as follows.

(i) The core of Chapter 5 is the theory of polynomials over �nite �elds, developed
by Germundsson [40]. The theoretic results regarding functional dependency
w.r.t to ideals have been developed by the author together with Plantin [99].
We have developed the technique of the �-polynomials to mix variables of
di�erent size. We found how to write �-polynomials directly on a Gr�obner
bases form. These tools are essential for the synthesis of the tank application
in Chapter 8.

(ii) Chapter 6 presents the development and the implementation of integer deci-
sion diagrams (IDDs), as well as complexity results. Performance measures
of the IDDs are presented in Section 7.5.

(iii) In Chapter 6, we have de�ned and presented the integrated monomial diagram
(IMD), which is an e�ective representation of polynomials over �nite �eld.

(iv) Chapter 7 contains the main application of this thesis, where 1200 lines of
Pascal code is automatically translated to a relational model. The chapter
de�nes the compiler for a complete but restricted set of Pascal. We show
that dynamic veri�cation of the closed loop behavior using temporal logic is
doable for complex problems.

(v) Chapter 8 presents a method for simultaneous supervision and control using
polynomials over �nite �eld, and Gr�obner bases.

(vi) Part III presents general aspects on modeling of DEDS. The tank model form
Chapter 8 is remodeled, using Ramadge-Wonham, Petri nets and COCOLOG.
A characterization of the perfect modeling language is made. Events vs.
signals is the topic for a discussion of di�erent modeling paradigms for DEDS.
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A Relational Framework for

DEDS

The main theme of this thesis is �nite domains and relations and how these are used
to build a system theory of untimed DEDS. In fact all methods and tools in our
mathematical framework as well as in our software are based on the principle that
everything is relations over �nite domains. Other frameworks of DEDS, such as
Ramadge-Wonham [104], Petri Nets [97] and COCOLOG [20] also have some set of
basic elements from which they build their frameworks. For Ramadge-Wonham we
have the automata theoretic approach dealing with events and formal languages.
For Petri Nets we have places and transitions as components to build a Petri Net
graph. The COCOLOG approach depends on a set of axioms from which theories
are derived. See Chapter 9 for an overview of DEDS frameworks.

There are more ways of describing DEDS, but here we will just note the fact
that for �nite DEDS all these frameworks may be interchanged with each other
with respect to the behavior of the DEDS they represent. This is true since all
�nite DEDS can be represented by each framework1. What is then the core of
DEDS which contains nothing but the necessary information of the behavior? In
this thesis we regard relations as this core.

This section describes the fundament of sets and relations and introduces some
notations. In Sections 2.2 to 2.4 we present the main ideas of a relational system
theory for DEDS. The format chosen for this theory is the one from Germundsson
[40]. Section 2A is devoted to propose methods to illustrate analysis results using
our theory.

We will use common set theory and relations as presented, e.g., in [48], even
though we use somewhat di�erent interpretation and notations for convenience.

1However, note that Petri Nets can also represent DEDS with in�nite state space.

5
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2.1 Relations and Sets

2.1.1 A Shortcut to Understanding

Example 2.4 presents the relations and the relational operations that we will use in
this thesis. Therefore we recommend to jump to that example for the understanding
of how the relational framework is used for DEDS, relational representations, and
applications.

The remainder of this section will give the formal de�nitions for relations, re-
lation sets, and relational operations.

2.1.2 The Formal Route

Only �nite domains will be considered in this thesis. Therefore we regard sets and
relations as �nite if nothing else is said.

For the sets S1; S2 we have the standard operations

union: S1 [ S2

intersection: S1 \ S2

complement: S1

set minus: S1 n S2

cross product: S1 � S2

Elements of sets will be denoted by [�], e.g.,

[3; 4] 2 f2; 3g� f1; 4g (2.1)

De�nition 2.1 Universe of Discourse
The universe of discourse (UoD), denoted Un, is the set

Un = S1 � � � � � Sn (2.2)

where Si, 1 � i � n, are �nite sets. �

The reason for de�ning the UoD is illustrated by the following example.

Example 2.1 Universe of Discourse
The complement S of the set S can be written as

S = Un n S (2.3)

If Un is not speci�ed we cannot decide the interpretation of S.

Which UoD we use in a given situation, is either explicitly stated or obvious
from the context.
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Subsets of Un are usually called relations, [48], but we will instead use the term
relation set, and use the term relation as an object representing a relation set.

If we regard a relation set as a piece of information, then the corresponding
relation is a language, structure or formula that we use to canonically write this
information down. By this we have that a relation is a unique representation of
relation sets.

De�nition 2.2 Relation Set
A relation set, denoted R, is a subset of the cross product of n �nite sets, i.e.,

R � Un (2.4)

is a relation set over the �nite sets Si; 1 � i � n.

Remark: A relation set can be de�ned over any �nite number of sets, i.e., for all
n � 1. �

De�nition 2.3 Relation
A relation R(x1; : : : ; xn); R : Un ! B is a representation of the relation set R � Un,
where xi is a variable (argument) which can have elements from the set Si as values
for all 1 � i � n.

If all variables xi have values, i.e., xi = si 2 Si 81 � i � n then

R(s1; : : : ; sn) =

8<
:true [s1; : : : ; sn] 2 R

false [s1; : : : ; sn] 62 R
(2.5)

where [s1; : : : ; sn] denotes an element in R, and B = ftrue; falseg.

Remark:

� By writing xi 2 Si we mean that the variable xi takes an element from Si as
value.

� Note that we often interprete relations as a canonical representations of rela-
tions sets, i.e., the relation has one-to-one correspondence with the relation
set. Therefore we say:

R(x1; : : : ; xn) � true, R � Un (2.6)

R(x1; : : : ; xn) � false, R � ; (2.7)

�

The reason for separating relations and relation sets are somewhat similar as
for separating syntax and semantics. The syntax is the relation and the semantics
is the relation set. As we will see in Part I we will use several di�erent syntaxes
for relations but the semantics (the relation sets) remains the same.
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We say that the relation is Boolean valued (denoted B ), i.e., the relation is true
for elements included in the corresponding relation set and false otherwise. From
this we have that operators similar to those in propositional logic are well de�ned
on relations. These operators will correspond to the set theoretic operators for the
relation sets. See De�nition 2.6.

Example 2.2 Relation and Relation Set
We have some piece of information which consists of the pairs

[red; apple]; [yellow; banana] (2.8)

If we put these pairs into a set we can regard this set as a relation set, which relates two
fruits with two colors.

The immediate representation of this relation set is of course to store these pairs into
a table or database.

If we let the variables f and c correspond to fruit and color respectively, then the
following logic formula

(f== apple)^(c== red) _ (f = banana)^(c== yellow) (2.9)

is the same relation as the table since it corresponds to the same relation set. (Details of
the logical operators in the formula above will be given the Section 2.1.3 below.)

If we encode (or label) fruits and colors by integers we can use polynomial equations
to represent the relation, see Chapter 5.

We will continue by de�ning projection and embedding of relation sets.

De�nition 2.4 Projection
For R � Un = S1 � � � � � Si � � � � � Sn, �Si : Un ! Si 1 � i � n is de�ned by

�Si(R) = f [si] j [s1; : : : ; sn] 2 R g (2.10)

and called the projection of R on Si, where the set elements [s1; : : : ; si; : : : ; sn] 2
Un and [si] 2 Si.

Remark: Projection on several �nite sets, denoted �Sn1�Sn2 (R) is de�ned in the
obvious way. �

De�nition 2.5 Embedding
For R � Un = S1 � � � � � Sn, �Sn+1 : Un ! Un � Sn+1 is de�ned by

�Sn+1(R) = R� Sn+1 (2.11)

and called the embedding of R in Un+1 ( or in Un � Sn+1).

Remark:

� Instead of appending Sn+1 to Un we can put the new set in any position of
Un, even though the index notation will be less clear.

� The de�nition above can easily be generalized to embedding of relation sets
in any number of sets, by using recursion.

�
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2.1.3 Relational Operations

To manipulate relation sets we use the ordinary set operations. But for relations we
will use logic operations for notational reasons. Logic operations and set operations
share the same axiomatic laws (see pages 52 and 109 in [48]) and can therefore be
used in a similar way but for di�erent domains.

We will use the notation X for the variables x1; : : : ; xn, i.e., by R(X) we mean
R(x1; : : : ; xn).

De�nition 2.6 Relational Operations
For the relational sets R1 and R2, and the corresponding relations R1(X) and
R2(X) we have:

Relation Relation set

R1(X) ^ R2(X) R1\R2

R1(X) _ R2(X) R1 [R2

:R1(X) R1

R1(X)! R2(X) Condition for R1 � R2

R1(X)$ R2(X) Condition for R1 = R2

�

We also will use the following rules for ! and $.

a! b = :a _ b (2.12)

a$ b = a^b _ :a^:b (2.13)

De�nition 2.7 Relational Quanti�er Operations
The quanti�er operations 9 and 8 are de�ned as

9xi: R(x1; : : : ; xn) =
_

xi2Si

R(x1; : : : ; xn) (2.14)

8xi: R(x1; : : : ; xn) =
^

xi2Si

R(x1; : : : ; xn) (2.15)

Remark: Note that we interpret 9 and 8 as operations mapping one relation to
another, i.e., 9 and 8 return relations. This di�ers from the interpretation used
in propositional logic [48] but is very common in other research areas such as
Quanti�er Elimination Theory, [4, 31, 91]. �

Working with relations, it is convienient to have a \solver" that gives the cor-
responding relation set of a relation. The problem of solving a relation is highly
dependent on how we represent the relations. This topic will be discussed further
in Part I of this thesis.

We de�ne a special function that gives one random solution of a relation, which
will be used in Section 2A.
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De�nition 2.8 Pick One Solution
Let the relation set R � S1 � S2 be represented by the relation R(x; y) where
x 2 S1 and y 2 S2.

We de�ne the function Pick(R(x; y); x) to return a randomly chosen element of
the relation set �S1(R) corresponding to the relation

9y: R(x; y) (2.16)

Remark: In other words; Pick(R(X; Y); X) returns one solution for the variables
X. �

Equations of �nite functions are also relations. We will introduce the in�x
operator �== � to denote the relation representing an equation.

De�nition 2.9 Equal Operator
The equal operator, used as

f(X)==g(X) (2.17)

returns the relation representing the equation f(X) = g(X), where f(X) and g(X)

are �nite functions. �

Example 2.3 Equal Operator
The equation set

a+ b = 1

c+ d = 2

is represented by the relation

(a+ b== 1)^(c + d== 2)

To conclude this section, where the notions of relations and relation sets have
been introduced, we will give an example that illustrates the operators and func-
tions for relations and relation sets.

Example 2.4 Relation and Operators
Let S1 = f0; 1; 2g and S2 = f3; 4g be �nite sets with integer elements. The UoD will be
the cross product of S1 and S2 containing six elements.

U2 = S1 � S2

= f[0; 3]; [0; 4]; [1; 3]; [1; 4]; [2; 3]; [2; 4]g
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Let R1 = f[0; 4]; [1; 3]g and R2 = f[1; 3]; [2; 3]g. The corresponding relations will be written
as

R1(x1; x2) = (x1== 0)^(x2== 4) _ (x1== 1)^(x2== 3) (2.18)

R2(x1; x2) = (x1== 1)^(x2== 3) _ (x1== 2)^(x2== 3) (2.19)

For the relation operations in De�nition 2.6 we get

R1(x1; x2) ^ R2(x1; x2) = (x1== 1)^(x2== 3) (2.20)

R1(x1; x2) _ R2(x1; x2) = (x1== 0)^(x2== 4) _

(x1== 1)^(x2== 3) _

(x1== 2)^(x2== 3)

(2.21)

corresponding to R1 \R2 = f[1; 3]g and R1 [R2 = f[0; 4]; [1; 3]; [2; 3]g .
The complement R1 = f[0; 3]; [1; 4]; [2; 3]; [2; 4]g corresponds to negating the corre-

sponding relation R1(x1; x2).

:R1(x1; x2) = :
�
(x1== 0)^(x2== 4) _ (x1== 1)^(x2== 3)

�
(2.22)

= (x1== 0)^(x2== 3) _ (x1== 1)^(x2== 4) _

(x1== 2)^(x2== 3) _ (x1== 2)^(x2== 4) (2.23)

Note that it is not obvious at this point how to algebraically derive expression (2.23)
from expression (2.22). In fact we have not yet decided the canonical form of relations.
Canonical forms and algebraic manipulations will be discussed further in Part I. For now
we just observe that (2.22) and (2.23) will have the same value (true or false) for the
same values of x1 and x2.

By construction we know that R1 6� R2 in this case. This can be checked by

R1(x1; x2)! R2(x1; x2) = :R1(x1; x2) _ R2(x1; x2)

= =All elements in the UoD U2 except [0; 4]=

= :
�
(x1== 0)^(x2== 4)

�
The result above is not identically true which means that R1 is not included in R2.

To test if R1 is equal to R2 we compute R1(x1; x2) $ R2(x1; x2) which in this case
will be equal to false.

The projection of R1 on S1 is

�S1(R1) = f[0]; [1]g (2.24)

which corresponds to the existential quanti�cation

9x2: R1(x1; x2) =
_

x22S2

R1(x1; x2) (2.25)

= (x1== 0) _ (x1== 1) (2.26)

which is a relation only in the variable x1.
The universal quanti�er would in this case be

8x2: R1(x1; x2) = false (2.27)
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since there is no single value of x1 for all values of x2 in the relation set R1.
From the projection (2.24) we make the embedding

�S2(R1) = f[0; 3]; [0; 4]; [1; 3]; [1; 4]g (2.28)

which is represented by the same relation from equation (2.26)

(x1== 0) _ (x1== 1) (2.29)

Finally, we use the solver function Pick on R1(x1; x2).

Pick(R1(x1; x2); x2) = [4] (2.30)

There are two possible solutions for x2, [3] and [4] where the last one was randomly chosen.

As equation (2.29) indicates the same relation may represent di�erent relation
sets depending on which UoD is considered. When counting the number of solutions
of a relation we usually decide the UoD from the variables that are included in the
relation. In the case of relation (2.29) we have a univariate relation with two
solutions. If we regard (2.29) as a result from an embedding into S2 then there are
four solutions to the relation.

2.2 Modeling

Ramadge-Wonham [104] has formulated a de�nition of DEDS in one sentence:

De�nition 2.10 DES (DEDS)

\A Discrete Event System (DES) is a dynamic system that evolves in
accordance with the abrupt occurrence, at possibly unknown irregular
intervals, of physical events."

�

To stress the dynamics of these systems even further they are often referred to
as Discrete Event Dynamic Systems (DEDS) which is the term we will use.

From the de�nition above we have that a DEDS takes events as inputs. The
dynamic of the DEDS depends on events to appear if any transition of the system
should take place.

In this thesis we take a slightly di�erent approach. We let the DEDS react on
signals, i.e., the inputs and outputs of a DEDS are values changing as time elapses.
The DEDS is measuring the values at the input at the time instants when the
system makes a transition. When the transitions occur and in what pace are not
determined by the environment of the system, but by the system on its own. This
approach is more natural if we, e.g., regard DEDS in which a computer is polling
some sensors and reacting on these measures in some way. The setups of control
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u y
x

Figure 2.1: Input, output and state variables of a DEDS.

systems are often made in this way, even though there are cases where the event
driven approach is more appropriate. The approaches can be translated to each
other. Chapter 10 contains further discussion on this subject from the modeling
perspective.

2.2.1 Relational Model

Modeling frameworks of a DEDS can vary in syntax and features. Common frame-
works for modeling DEDS are, e.g., �nite automata and Petri Nets, which have
properties that make them easy to use and to interprete due to their convenient
graphical appearances. See Part III.

Our purpose here is not to impose new modeling syntaxes or languages to
model DEDS. We will instead focus on the mathematics behind DEDS and how
to represent DEDS in a more mathematical way. The simple mathematical object
that we will use throughout this thesis is the relation.

De�nition 2.11 Elements of DEDS
Consider Figure 2.1. The input u 2 U is a received signal to the DEDS, and the

output y 2 Y is a produced signal from the DEDS, where U is the input domain
and Y the output domain.

The extra information that is necessary to compute the output y from the
present input u, is called the state, x 2 X, where X is the state domain or state
space. �

Perhaps the most important entity of dynamic systems is the state, which con-
tains the \memory" necessary for describing the system behavior.

To represent the dynamics of a system we need a transition function that de-
scribes how the dynamics evolves. The transition function maps the present state
x to the next state denoted by x+.

De�nition 2.12 Transition Function/Relation
The transition function f : X � U ! X, x+ = f(x; u) and the transition relation
Rf : X � U � X ! B , R(x; u; x+) each represent the dynamics of the DEDS, i.e.,
how the next state x+ depends on x and u. �

Consider the following example:
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Example 2.5 Flip Flop

x = 0 x = 1

The transition function f : B ! B of the toggling ip op in the �gure above is

x
+

= f(x) = :x (2.31)

We are now ready to introduce the object that will be used to represent (or
model) the DEDS in this thesis.

De�nition 2.13 Relational Model
The relational model, denoted

M(z; z+) (2.32)

is a relation representing a mapping from system variables z to the next system
variables z+.

Remark:

� We let z and z+ denote a set of variables as

z = fz1; z2; : : : ; zng (2.33)

z+ = fz+1 ; z
+
2 ; : : : ; z

+
ng (2.34)

if the variables are not partitioned in input, output and state variables.

Another example is

z = fx; u; yg (2.35)

z+ = fx+; u+; y+g (2.36)

where x, u and y in order denote the state, the input and the output.

� All variables in z and z+ do not have to be speci�ed by the relation in
M(z; z+). In that case they are free to take any value, i.e., the value of zi can
be any element in Si if zi is not speci�ed by M(z; z+). The relation set of
M(z; z+), where z and z+ each contains n variables, will be a subset of U2n.

�
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2.2.2 Deterministic/Nondeterministic DEDS

A deterministic system has only one possible behavior, given present state and
inputs. A nondeterministic system may take any of several possible trajectories
given present state and inputs. Compare with deterministic/nondeterministic �nite
automata (DFA/NFA) [68].

Deterministic DEDS with inputs and outputs can be modeled by an explicit
state space form such as

x+ = f(x; u)

y = g(x; u)
(2.37)

where f is the transition function and g is the output function.
An explicit state space form can be encapsulated into a relation model, by

reformulating (2.37) into two equations which are then combined by an^ -operator.

M(z; z+) = (x+== f(x; u))^(y==g(x; u)) (2.38)

where z = fx; y; ug.
To go the other way around, we start by a deterministic relational model

M(z; z+). We can then extract the equations in (2.37) if the transition function f

and the output function g are de�ned for all values of x and u. In this case we say
that f and g are non partial.

9y:M(z; z+) = (x+== f(x; u)) (2.39)

9x+:M(z; z+) = (y==g(x; u)) (2.40)

For nondeterministic systems there are no functions f and g as in (2.37) de-
scribing the behavior. Instead we use the relations

Rf(x
+; x; u) (2.41)

Rg(y; x; u) (2.42)

where Rf and Rg are transition and output relations, respectively. The encapsula-
tion into a relational model is immediate:

M(z; z+) = Rf(x
+; x; u)^Rg(y; x; u) (2.43)

where z = fx; u; yg.
The extraction of Rf and Rg fromM(z; z+) is similar as for deterministic relation

models, see (2.39) above.

Example 2.6 Deterministic/Nondeterministic DEDS
The toggling ip op system from Example 2.5 is a deterministic system which can be
encapsulated into the relational model

M(z; z
+
) = (x

+
==:x) = (x

+ $ :x) (2.44)

where z = fxg and we use the fact that x is Boolean in the last equality.
The relational model for the nondeterministic system
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x = 0 x = 1

where 0 = false and 1 = true can be derived as follows

M(z; z
+
) = (x

+
== true)^(x== false) _ (x

+
== false)^(x== true) _

(x
+
== true)^(x== true)

= (x
+ $ true)^(x$ false) _ (x

+ $ false)^(x$ true) _

(x
+ $ true)^(x$ true)

= x
+
^(:x) _ (:x

+
)^x _ x

+
^x

= x
+
^(:x) _ x

= x
+

_ x (2.45)

2.2.3 Symmetric Models

Relational models contain a relation representing a mapping between the system
variables z and the next system variables z+. In addition, relational models also
contain relations over variables from the same time instant. As an example we
have the output relation Rg(y; x; u) in (2.42) which relates the system variables x,
u and y to each other. These variables will always obey this relation for all time
instants, and therefore we might add the relation Rg(y

+; x+; u+) as well to the
relational model. We will then have the same \information" in the variables y, x
and u in two time instants.

Imposing this seemingly redundant information is desirable for some analysis
methods where it is convenient to have a symmetrical representation, see Sec-
tion 2.3.2.

For example, backward simulation is common in some analysis methods. In
this case we will not have all information about the variables in the present state.

Example 2.7 Backward System
Let M(z; z+) be the deterministic relational model

M(z; z
+
) = (x

+
== f(x; u))^(y==g(x; u)) (2.46)

The backward system Mb(z; z
+) is then obtained by reversing the order of z and z+:

Mb(z; z
+
) = M(z

+
; z) (2.47)

which results in the following relation

Mb(z; z
+
) = (x== f(x

+
; u

+
))^(y

+
==g(x

+
; u

+
)) (2.48)
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As we see from (2.48) there is no output relation at the present time instant. To add a
relation R(y), constraining the present output, to Mb(z; z

+) will not have an e�ect since
y is a free variable in Mb(z; z

+).

We will de�ne symmetric relational models which contain the same information
on system variables in both the present and the next time instant. A symmetric
relational model M(z; z+) has the same projection on z as on z+, with respect to
the relation set of M(z; z+).

De�nition 2.14 Symmetric Relational Model
For a relational model M(z; z+), let

R(z) = 9z+: M(z; z+) (2.49)

and

R+(z+) = 9z: M(z; z+): (2.50)

The relational model M(z; z+) is symmetric i� R(z) = R+(z). �

To make a non symmetric model M(z; z+) symmetric we do the following

Ms(z; z
+) = M(z; z+)^R(z+)^R+(z) (2.51)

whereMs is the symmetric version ofM, and R and R+ according to De�nition 2.14
above.

There must be transitions going to and from each state in a symmetric relational
model, since all states must be included in the intersection of the domains for z
and z+.

To compose a symmetric model from an explicit state space form we add the
output equation in both the present and the next instant:

M(z; z+) = (x+== f(x; u))^(y==g(x; u))^(y+==g(x+; u+))

(2.52)

This works only if f and g are non partial, see (2.39). If this is not ful�lled we can
write the transition and output relations as

(x+== f(x; u))^Pf(x; u) (2.53)

and

(y==g(x; u))^Pg(x; u) (2.54)

where Pf and Pg are constraints for x and u represented by relations.
The symmetric relational model will then be

M(z; z+) = (x+== f(x; u))^(y==g(x; u))^(y+==g(x+; u+))^

Pf(x; u)^Pg(x; u)^Pf(x
+; u+)^Pg(x

+; u+) (2.55)
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M1(z1; z
+
1 )

M2(z2; z
+
2 )

Figure 2.2: Two DEDS.

2.2.4 Composition of Models

When combining models to a single model we form a product of the models.
Consider the two DEDS M1(z1; z

+
1 ) and M2(z2; z

+
2 ) in Figure 2.2. We want to

combine these models into one model M(z; z+). This can be done in three di�erent
ways which di�er in the ordering of the transitions of the systems: synchronously,
asynchronously and interleaved

Before we present these three products we will specify how to combine the sys-
tem variables. If M(z; z+) is the total model including M1(z1; z

+
1 ) and M2(z2; z

+
2 )

then z = z1 [ z2 and z+ = z+1 [ z
+
2 .

Synchronous Product

Synchronous composition means that the transitions (or evaluations) ofM1(z1; z
+
1 )

and M2(z2; z
+
2 ) are synchronous.

De�nition 2.15 Synchronous Product
The synchronous product (k) of M1(z1; z

+
1 ) and M2(z2; z

+
2 ) is

M1(z1; z
+
1 ) kM2(z2; z

+
2 ) = M1(z1; z

+
1 )^M2(z2; z

+
2 ) (2.56)

�

This is the most common composition performed in this thesis and will often
be used without any remarks.

Example 2.8 Synchronous Product
Let the relational models M1(z1; z

+
1 ) and M2(z2; z

+
2 ) represent the �nite automata

in Figure 2.3. We regard the labels of the automata as inputs and let each symbol
be represented by a Boolean variable. State variables for M1 and M2 are x1 and x2,
respectively.

The relational models for M1 and M2 are

M1(z; z
+
) = (x==A)^(x

+
==B)^a _

(x==B)^(x
+
==A)^b (2.57)
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A B

a

b

M1(z1; z
+
1 )

C D

E

a

c

d
e

M2(z2; z
+
2 )

Figure 2.3: Two �nite automata where A,B,C,D,E are states and the tran-
sition conditions a,b,c,d,e are inputs. Note that the input a is common for
both automata.

and

M2(z; z
+
) = (x==C)^(x

+
==D)^a _

(x==D)^(x
+
==C)^c _

(x==D)^(x
+
==E)^d _

(x==E)^(x
+
==C)^e (2.58)

The synchronous composition is represented by the automaton

[A;C] [B;D]

a

b^c

[A;E]

[B;C][A;D][B;E]

b^d

a^e

b^a

a^c

a^d

b^e

The synchronous composition forces both M1 and M2 to have synchronous transitions.
This will in turn impose constraints on the inputs of the two systems. As indicated on
the transition labels we have constraints on pairs of inputs. One input from M1 and one
from M2 must be true simultaneously.

Asynchronous (Parallel) Product

Asynchronous or parallel composition means that the transitions ofM1(z1; z
+
1 ) and

M2(z2; z
+
2 ) are asynchronous. This means that one system can have a transition

while the other system rests, but simultaneous transitions are allowed also.
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A �rst suggestion to such a composition might be

M1(z1; z
+
1 ) _ M2(z2; z

+
2 ) (2.59)

where only one of the relational models must be true simultaneously. However
(2.59) will not work as asynchronous composition. If, for example, M1 is true

then the variables z2 and z+2 are free, which means that any values of z2 and z+2
are valid in the model.

Instead, asynchronous composition is de�ned as follows.

De�nition 2.16 Asynchronous Product
The asynchronous product (kA) of M1(z1; z

+
1 ) and M2(z2; z

+
2 ) is

M1(z1; z
+
1 ) kA M2(z2; z

+
2 ) = M1(z1; z

+
1 )^M2(z2; z

+
2 ) _ (2.60)

M1(z1; z
+
1 )^(z2== z+2 ) _ (2.61)

M2(z2; z
+
2 )^(z1== z+1 ) (2.62)

Remark: Equation (2.60) is the relation for simultaneous transition. Equation
(2.61) for transitions only in M1, and (2.62) for transitions only in M2. �

Example 2.9 Asynchronous Product
The asynchronous composition of M1 and M2 from Example 2.8 is illustrated by the
automaton

[A;C] [B;D]

a

[A;E]

[B;C][A;D][B;E]

a

a

b^d

b^c

d

b
c

where only transitions going from [A;C] and [B;D] are shown for clarity.

The resulting model is non deterministic which is natural since we have two systems
connected but with unknown transition order.

Interleaved Product

Interleaved composition means that a transition occurs either in M1(z1; z
+
1 ) or

M2(z2; z
+
2 ) and not simultaneously.
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De�nition 2.17 Interleaved Product
The interleaved product (kI) of M1(z1; z

+
1 ) and M2(z2; z

+
2 ) is

M1(z1; z
+
1 ) kI M2(z2; z

+
2 ) = M1(z1; z

+
1 )^(z2== z+2 ) _ (2.63)

M2(z2; z
+
2 )^(z1== z+1 ) (2.64)

�

Example 2.10 Interleaved Product
The interleaved composition of M1 and M2 from Example 2.8 is illustrated by the
automaton

[A;C] [B;D] [A;E]

[B;C][A;D][B;E]

a

a

d

b
c

where only transitions going from [A;C] and [B;D] are shown for clarity.
The resulting model is non deterministic which natural since we have two systems

connected but with unknown transition order. The interleaved model has the transitions
of the asynchronous model except those changing state in both M1 and M2.

Our interpretation of the three composition methods synchronous, asynchronous
and interleaved, is similar but not the same as the corresponding terms in the the-
ory based on Ramadge-Wonham. For this event based framework, [33, 63], the in-
terpretation of di�erent synchronizations only concerns mutual events, i.e., events
that are shared between the systems. This means that the the systemM1 can have
transitions independently of M2 for events that are not mutual to events of M2

regardless of the type of composition used. Only mutual event can be synchronous,
asynchronous or interleaved for a system composition in an event based framework.

2.2.5 Interconnecting Models

Suppose we have two systems M1 and M2 where the output y1 of M1 and the
input u2 ofM2 are connected, we compose an interconnected model by performing
a product on M1 and M2 and then adding the constraint y1 = u2.

For the systems in Figure 2.4 we get the interconnected systemM(z; z+), where
z = z1 [ z2 as

M(z; z+) = (M1(z1; z
+
1 ) kM2(z2; z

+
2 ))^(y1==u2) (2.65)

By adding such a connection relation for all variables involved in the intercon-
nection, we get the model for the total system. In the case of systems connected
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y1
M1(z1; z

+
1 )

u2
M2(z2; z

+
2 )

Figure 2.4: Two DEDS connected in series where y1 2 z1 and u2 2 z2.

into a loop, this method still works but in some cases we connect loops in a di�erent
way.

Example 2.11 Loop Connection
Assume that the systems M1 and M2 contain the explicit state space forms

x
+
1 = f1(x1; u1)

y1 = g1(x1; u1)
(2.66)

and

x
+
2 = f2(x2; u2)

y2 = g2(x2; u2)
(2.67)

respectively. Assume that these systems are connected synchronously into a loop:

M(z; z
+
) = (M1(z1; z

+
1 ) kM2(z2; z

+
2 ))^(y1==u2)^(y2==u1) (2.68)

Then the relation M(z; z+) will contain the expression

(y1==g1(x1; u1))^(y2==g2(x2; u2))^(y1==u2)^(y2==u1) (2.69)

By some substitution and elimination of output variables we get the relation

u2==g1(x1; g2(x2; u2)) (2.70)

Thus, we get an algebraic loop which imposes a new relation on the connected variables.

From the example above we see that a loop connection may create new restric-
tions in terms of new relations. This relation might be empty (� false) which
will directly falsify the closed system M(z; z+). The reason for this is of course
a consequence of the fact that these two systems cannot be connected in a loop
this way. But in a more pragmatic perspective, when a controller and a plant is
interconnected, we might have this situation even though we have done everything
\right".

The problem can be solved by adding a delay somewhere in the loop. This
approach is reasonable for practical applications, where transitions and information
transportation take some amount of time.

For the systems in Example 2.11 above, we replace the last connection relation
y2 = u1 by y2 = u+1 , i.e., the present y2 will be the next u1. By this we have a
relation between u1 and u

+
1 , i.e., the input variable u1 has become a state variable.
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Example 2.12 Delayed Loop Connection
The systems from Example 2.11 are connected into a loop using a delay:

M(z; z
+
) = (M1(z1; z

+
1 ) kM2(z2; z

+
2 ))^(y1==u2)^(y2==u

+
1 ) (2.71)

Some of the relations in M(z; z+) are

(y1==g1(x1; u1))^(y2==g2(x2; u2))^(y1==u2)^(y2==u
+
1 ) (2.72)

By some substitution and elimination similar to the previous example we get

u
+
1 ==g2(x1; g1(x1; u1)) (2.73)

which shows that we have a mapping between u1 and u
+
1 . Therefore the number of states

has increased because of the loop.

2.2.6 Restricting Models

It is often useful to be able to constrain the behavior of a systemM(z; z+) in certain
ways. A common operation performed on models is to restrict the system, which
means that a relation corresponding so some constraint is added symmetrically to
a relational model.

We make the following de�nition.

De�nition 2.18 Restriction of Models
LetM(z; z+) be a relational model and R(z) a relation representing some property.
We de�ne the function Restrict(M(z; z+); R(z)) to return a relational model with
restricted behavior as follows

Restrict(M(z; z+); R(z)) = R(z) ^ M(z; z+) ^ R(z+) (2.74)

�

To restrict a relational model such that the system cannot reach forbidden states
is common for synthesis methods for DEDS, see Section 2.4.

2.3 Analysis

Having a model of the DEDS behavior we can make di�erent types of analysis. We
will divide the analysis into static and dynamic analysis. By static analysis we mean
analysis performed on the model in one single iteration, and by dynamic analysis
we mean analysis performed on a systems dynamical behavior in any number of
steps.
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2.3.1 Static Analysis

Static analysis can be used to test if certain relations are included in the model or
not. Normally, the model does not only contain dynamic relations, but also rela-
tions between the system variables in the model, e.g., the static analysis performed
on the landing gear application in Section 7.4.2 veri�es if two di�erent outputs can
be given simultaneously.

We will present an example of what we mean by static analysis.

Example 2.13 Static Analysis
Let M(z; z+) be a relational model and Q(z; z+) a relation corresponding to a property
or constraint on the variables z and z+. Then Q(z; z+) holds for the model M(z; z+) if

M(z; z
+
)! Q(z; z

+
) = true (2.75)

but Q(z; z+) cannot hold if

M(z; z
+
)^Q(z; z

+
) = false: (2.76)

A variant of (2.75) is to test if the modelM(z; z+) and a speci�cation S(z; z+) together
will make the condition Q(z; z+) hold. This is true if

(M(z; z
+
)^S(z; z

+
))! Q(z; z

+
) = true (2.77)

Suppose we consider the special case where Q(x) represents a subset of the state space
and x � z. Then the model M(z; z+) is de�ned for all states in this set if

Q(x)! 9z
+
; (z n x): M(z; z

+
) = true (2.78)

where we eliminate all but the state variables by an existential quanti�cation before we
test the implication.

We can also detect the existence of dead locks in a system by using static analysis.
Let M(x; u; x+) be a model with state variable x and input variable u. The system M

does not contain any dead lock states i�

8u:
�
9x

+
: M(x; u; x

+
)!M(x; u; x)

�
= false: (2.79)

If the quanti�cation above is not false then we have as a result a relation R(x) which
represents the dead lock states.

2.3.2 Dynamic Analysis

By dynamic analysis we mean analysis which takes any number of iterations of the
model into account. One of the most important dynamic analyses is the computa-
tion of the set including all reachable states from a given initial state. In dynamic
analysis the initial state is important information which might a�ect the behavior
of the model drastically. We can for instance verify that two outputs cannot ever
be given simultaneously for a given initial state by using dynamic analysis, even
though the static analysis has indicated that possibility.
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Dynamic (or multiple step) analysis gives more information about the behav-
ior of the system than static analysis. Dynamic analysis answers questions over
arbitrarily many time steps. The results from dynamic analysis may be a simple
true or false or a set of states, e.g., the set of states that are reachable in zero or
arbitrarily many steps from some initial state.

Reachable States

Given a model M(z; z+) we can compute the set of states Rk(z) reachable in k

steps or less from some initial set of states I(z) as:

R0(z) = I(z)

Rk+1(z) = Rk(z) _ (9~z: (Rk(~z)^M(~z; z))) (2.80)

In each iteration we compute a relation representing all states that are reachable
from the states represented by Rk(z). This set is added by union (relation operation
_ ) to Rk(z).

Since we are dealing with �nite state systems this iteration will eventually reach
a �xed point, i.e., Rd(z) = Rd+1(z) for some �nite d. The number of steps d is
the depth of the system which in most engineering applications is far below its
maximal possible depth which is 2n for an n variable binary system. The depth of
the model from the case study of a Landing Gear System (LGS) in Section 7.4.1 is
5, which is far less than the maximal, which is 226.

Alternative methods such as testing or simulation are infeasible for complex
systems, e.g., in the LGS we have in the order of 10 000 reachable states out of 226

potentially reachable states.

Example 2.14 Reachable States
Reconsider the simple system from Example 2.8, i.e.,

C D

E

where the inputs are omitted. The relational model is

M(x; x
+
) = (x==C)^(x

+
==D) _

(x==D)^(x
+
==C) _

(x==D)^(x
+
==E) _

(x==E)^(x
+
==C): (2.81)
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We can now compute the set of reachable states from state C, using (2.80) iteratively

R0(x) = I(x) = (x==C)

R1(x) = (x==C) _ (x==D)

R2(x) = (x==C) _ (x==D) _ (x==E)

R3(x) = (x==C) _ (x==D) _ (x==E):

Hence we reach a �xed point in k = 2 steps, i.e., we can reach any reachable state in two
steps.

In this example we could not have found out that E is a reachable state just by static
analysis of M(x; x+) and the initial state information. In some cases this is important
since some undesirable action might be performed by the controller if it ever reaches state
E.

There are a multitude of other types of dynamic analysis that are possible and
many of them are related to the idea of states being reachable either backward or
forward in time.

We will de�ne four generic reachable state operators which will be denoted by
a more complete notation where M(z; z+) is the relational model and I(z) is the
initial state set. For clarity, the arguments z and z+ are not always given for the
model and the initial state set.

De�nition 2.19 Reachable States Operators
We de�ne +k [M; I](z), -k [M; I](z), �+k [M; I](z) and �-k [M; I](z) as follows:

Forward: Computes the set of forward reachable states +k [M; I](z) from the set
I(z) in exactly k steps:

+0 [M; I](z) = I(z)

+k+1[M; I](z) = 9~z: (+k [M; I](~z)^M(~z; z)) (2.82)

Backward: Computes the set of backward reachable states -k [M; I](z) from the
set I(z) in exactly k steps:

-0 [M; I](z) = I(z)

-k+1[M; I](z) = 9~z: (-k [M; I](~z)^M(z; ~z)) (2.83)

Accumulated Forward: Computes the set of forward reachable states �+k [M; I](z)

from the state set I(z) in k or less steps. This is exactly the same formulation
as in (2.80):

�+0 [M; I](z) = I(z)

�+k+1[M; I](z) = �+k [M; I](z) _ (9~z: (�+k [M; I](~z)^M(~z; z)))
(2.84)
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Accumulated Backward: Computes the set of backward reachable states
�-k [M; I](z) from the state set I(z) in k or less steps:

�-0 [M; I](z) = I(z)

�-k+1[M; I](z) = �-k [M; I](z) _ (9~z: (�-k [M; I](~z)^M(z; ~z)))
(2.85)

Remark: To compute the set of reachable states in any number of steps, �+
1
[M; I](z)

we perform a �xed point computation, i.e.,

�+
1
[M; I](z) = lim

k!1
�+k [M; I](z) (2.86)

�-
1
[M; I](z) is computed similarly but for backward reachable states. �

Veri�cation by Temporal Logic

Dynamic analysis of a system requires not only a model of the system, but also
a speci�cation of the desired behavior or statements describing error trajectories
that the dynamic analysis is supposed to falsify. These statements, or speci�cations,
are often not written formally. Instead, natural languages are used to document
information of the speci�cation.

In our framework we have used temporal logic to formally represent a speci�-
cation given in a natural language. Temporal logic allows us to impose temporal
conditions on the behavior, which means that we can have words like: always,
never, in future and after in our behavioral speci�cations. We will also use tem-
poral logic in the modeling of the landing gear process (in Chapter 7), where we
build a discrete model of a continuous system. By using temporal logic for model-
ing we gain more expressiveness in the modeling process which in this case clearly
reduces the complexity of the problem. Section 7.4.3 will show this and also give
some insights into the dynamic analysis performed in the application of the landing
gear system in Chapter 7. In Table 2.1 some of the most common temporal logic
constructs are given.

Our interpretation of temporal logic is an extension of the speci�cation language
computation tree logic (CTL) [25], which has been adapted for the relational
framework over �nite domains in [40].

To verify if a relational model M(z; z+) ful�lls a speci�cation represented by a
temporal logic expression f(z) we compute the set of states from which the temporal
logic statement becomes true. If this set is the complete state space, then we know
that the temporal logic expression will hold unconditionally.

De�nition 2.20 Implementation of Temporal Logic Veri�cation
Assume that we have a relational model M(z; z+) and a temporal logic expression
f with the temporal logic operators from Table 2.1. The veri�cation, denoted
Verify(M; f)(z), will return a relation in the system variables z and is performed as
follows:
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Temporal
Language

Natural Language

P(z) P(z) holds in the initial state, z.

EX[P(z)] P(z) can hold in the next time step.

EU[P1(z); P2(z)]
P1(z) will hold for �nitely many steps and then
P2(z) can hold in the next step.

EF[P(z)] P(z) can hold at some future time.

EG[P(z)]
P(z) can hold at all future times, i.e., from this
point and onwards.

AX[P(z)] P(z) must hold in the next time step.

AU[P1(z); P2(z)]
P1(z) will hold for �nitely many steps and then
P2(z) must hold.

AF[P(z)] P(z) must hold at some future time.

AG[P(z)]
P(z) must hold at all future times, i.e., from this
point and onwards.

Table 2.1: Temporal logic operators. The term can hold should be inter-
pret: there must exist at least one trajectory such that it holds.

Atomic expressions: Let f be an atomic expression. Here we mean atomic in
the context of temporal logic expressions, i.e., relational expressions without
temporal logic operators.

Verify(M; f) = f

Combined expressions:

Verify(M;:f) = :Verify(M; f)

Verify(M; f^g) = Verify(M; f) ^ Verify(M;g)

Verify(M; f _ g) = Verify(M; f) _ Verify(M;g)

Verify(M; f! g) = Verify(M; f)! Verify(M;g)

Verify(M; f$ g) = Verify(M; f)$ Verify(M;g)

Next state expressions:

Verify(M;EX[f]) = 9~z:
�
M(z; ~z)^Verify(M; f)(~z)

�
Verify(M;AX[f]) = 8~z:

�
M(z; ~z)! Verify(M; f)(~z)

�

where a! b = :a _ b.
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Future state expressions: Future state expressions use a �xed point computa-
tion denoted by limk!1.

Verify(M;EU[f; g]) = lim
k!1

Verify(M;EULk[f; g])

Verify(M;AU[f; g]) = lim
k!1

Verify(M;AULk[f; g])

Verify(M;EF[f]) = Verify(M;EU[true; f])

Verify(M;EG[f]) = Verify(M;:AU[true;:f])

Verify(M;AF[f]) = Verify(M;AU[true; f])

Verify(M;AG[f]) = Verify(M;:EU[true;:f])

where

EULk+1[f; g] := g _ f^EX[EULk[f; g]]

EUL0[f; g] := g:

and

AULk+1[f; g] := g _ f^AX[AULk[f; g]]

AUL0[f; g] := g:

�

Example 2.15 Temporal Logic Veri�cation
Consider the process from Example 2.14. We wish to verify the speci�cation:

\We should always be able to reach the safe state D as the next state."

In terms of temporal logics this becomes:

EX[x==D]

The actual veri�cation is then performing the computations:

Verify(M(x; x
+
); EX[x==D]) =

= 9x
+
:
�
M(x; x

+
)^(x

+
==D)

�
= (x==C)

As expected this returns the state C, since this is the only state from which we can reach
D in one step. Now, suppose that we have the model and an initial state speci�ed, then
the above temporal logic formula would be veri�ed i� the returned set of states was a
superset of the reachable states, i.e., we could reach D from every reachable state. In
the case above this is clearly not the case, since the set of reachable states is fC;D;Eg.
Generally this extra level of reasoning is of course built into our veri�er.

The veri�cation of temporal logic expressions requires the same type of �xed
point computations as was used in the reachability analysis above. For more details
regarding temporal algebra (or temporal logic), see [25].
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To conclude this section we will present an example which shows how to check
if a system is nonblocking [104].

Example 2.16 Nonblocking
Let m(z) be a relation for the marked states which can be regarded as �nal states after
that some task is completed. A nonblocking system M(z; z+) is then a system where
the marked state set m(z) is always reachable. This property can be expressed by using
temporal logic.

A system M(z; z+) with marked states m(z) is nonblocking i�

Verify(M(z; z
+
);EF[m(z)]) = true (2.87)

2.4 Synthesis

By synthesis we mean to synthesize a controller, denoted C(z; z+), which is a
relational model, such that C(z; z+) synchronously composed with the open loop
model M(z; z+) gives the closed loop model G(z; z+) as

G(z; z+) = M(z; z+)^C(z; z+) (2.88)

Depending on the construction of C(z; z+) the expression (2.88) holds for controllers
mapping the output of the open loop model to the input, but also for other types of
interconnections of controllers and systems, e.g., a controller performing pre�ltering
on the inputs.

This section will describe the relational framework solutions of two generic
synthesis problems of DEDS: the forbidden state problem and the opposite goal state
problem. The latter is also known as planning in the context arti�cial intelligence.
See Allen et al. [3] and Shapiro [105] for an overview.

Synthesizing a controller C(z; z+) in our relational framework returns a rela-
tional model including the complete feedback controller, i.e., the controller contains
control information for all states of the system. Feedback control is in arti�cial in-
telligence known as reactive planning. See Lyons and Hendriks [85] for an overview.

Approaches like feedback control and reactive planning are in contrast with
planning methods which produce a single trajectory which solves the problem if
initial and �nal states are speci�cally given. These methods are e�cient for a
restricted class of problems. Even though the relational framework is less e�cient
in some cases the result covers all trajectories and the computation does not have
to be repeated for every new initial state.

The performance of methods for complete controller and methods for partial
plans is highly dependent on the structure of the problem and the purpose of the
synthesis task. Further research and realistic test cases are needed to be able to
produce guidelines in this matter.
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2.4.1 The Forbidden State Problem

The forbidden state problem is the problem of �nding a controller that guarantees
that the forbidden states are avoided by the closed loop system.

De�nition 2.21 Forbidden State Problem
Let M(x; u; x+) be a relational model, I(x) the set of initial states and Sf(x) a set
of forbidden states.

The problem of �nding a relational model C(x; u) such that the reachable states
of the closed loop system

G(x; u; x+) = M(x; u; x+)^C(x; u) (2.89)

do not intersect with Sf(x), provided that

I(x)^Sf(x) = false; (2.90)

is called the forbidden state problem. �

Germundsson [40] has formulated the solution in the relational framework with
the following algorithm.

Algorithm 2.1 Forbidden State Problem

Input: A model M(x; u; x+) and forbidden states Sf(x).

Output: A controller C(x; u).

Let SAk(x) denote the set of allowed states in k steps and Ck(x; u) the controller
for the states in SAk(x).

Initialization:

SA0(x) = :Sf(x) (2.91)

C0(x; u) = 9x+:
�
M(x; u; x+)^SA0(x)

�
(2.92)

Main loop: In each iteration we remove transitions from the allowed to the un-
allowed states.

Ck+1(x; u) = Ck(x; u)^

:9x+:
�
SAk(x)^M(x; u; x+)^:SAk(x

+)
�

(2.93)

SAk+1(x) = 9u: Ck+1(x; u) (2.94)

Exit condition: When the set of allowed states does not decrease any more.

SAk+1(x) = SAk(x) (2.95)

�
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Example 2.17 Forbidden State Problem
Reconsider the process from Example 2.14:

C D

E

a

c

d
e

where we have the model

M(x; u; x
+
) = (x==C)^(x

+
==D)^a _

(x==D)^(x
+
==C)^c _

(x==D)^(x
+
==E)^d _

(x==E)^(x
+
==C)^e (2.96)

where u = fa; c; d; eg.
Let I(x) = (x==C) be the initial state and Sf(x) = (x==E) the forbidden state.
The iterations of Algorithm 2.1 will then be

SA0(x) = :(x==E) = (x==C) _ (x==D) (2.97)

C0(x; u) = (x==C)^a _ (x==D)^c _ (x==D)^d (2.98)

C1(x; u) = C0(x; u)^:
�
(x==D)^d

�
= (x==C)^a _ (x==D)^c

(2.99)

SA1(x) = (x==C) _ (x==D) (2.100)

We have SA0(x) = SA1(x) which means we have reached the �xed point. The controller
is

C(x; u) = C1(x; u) (2.101)

The resulting controller removes transitions d and e from the process which will guarantee
that the forbidden state E will never be reached.

Extensions and Variations

The forbidden state problem can be extended to other but similar types of problems.
One simple extension is to divide the inputs u of the system into controllable

inputs uc and uncontrollable inputs uu. The uncontrollable inputs are those dis-
turbances of the system that cannot be prevented by a controller. Algorithm 2.1
is modi�ed so that the resulting controller will guarantee avoidance of forbidden
states independently of the uncontrollable inputs. The controllable state space for
the closed loop system will of course be smaller compared to the case when all
inputs are controllable. See [40] for further details.
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In addition to the modi�cations for controllable and uncontrollable inputs we
may also replace the forbidden state space Sf(x) by a speci�cation modelMs(x; u; x

+)

which speci�es both the allowed state space and allowed transitions. This is the
problem setup of the classical Ramadge-Wonham approach [104], which in the
relational framework is close to the forbidden state problem.

In the Ramadge-Wonham approach the problem of unobservable events is con-
sidered. In this problem class we let the model have an output mapping which
speci�es how the outputs from the system react upon inputs and states. This
means that the state of the open loop system is not observable in general. The
problem is to �nd a controller that only observes the system outputs but still guar-
antees that the closed loop behavior remains inside the behavior of the speci�cation
model. To make the problem non trivial we want the controller to be as permissive
as possible, i.e., the closed loop behavior should be restricted as little as possible.

The solution to this problem in the relational framework is obtained by Ger-
mundsson [40] by reformulating the problem into an output tracking problem, where
we �nd the smallest2 system which behavior mimics the outputs from another sys-
tem. The output tracking problem can in turn be reformulated into the forbidden
state problem above.

The conclusion of this section is that the forbidden state problem can be used
in several other types of problem setups, e.g, the Ramadge-Wonham approach. In
Chapter 11 we make a comparison of how to apply the Ramadge-Wonham approach
for the tank system application in Chapter 8.

2.4.2 The Goal State Problem (Planning)

The goal state problem is the problem of �nding a controller that ensures that the
closed loop system reaches a set of goal states. The di�erence between this problem
setup and the forbidden state problem is that we want to reach a set of states in a
minimal number of steps. Moreover we want the controller to work for all possible
initial states of the system.

De�nition 2.22 Goal State Problem
Let M(x; u; x+) be a relational model and let Sg(x) represent the set of goal
states. The goal state problem is to �nd a controller C(x; u) such that the closed
loop system

G(z; z+) = M(x; u; x+)^C(x; u) (2.102)

will always reach the state set Sg(x) in a minimal number of steps.

Remark: Note that the initial state is not speci�ed. �

Germundsson [40] has formulated the solution in the relational framework by
the following algorithm.

2In the number of states.
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Algorithm 2.2 Goal State Problem

Syntax: Planner(M(x; u; x+); Sg(x))

Input: A model M(x; u; x+) and goal states Sg(x).

Output: A controller C(x; u).

Let SUk(x) denote the set of states from which the goal is backward reachable in
exactly k steps, Ck(x; u) the set of controllers that move the system to the goal in
k steps, and let SAk(x) contain all states backward, reachable from the goal states
in k steps or less.

Initialization:

SA0(x) = Sg(x) (2.103)

SU0(x) = Sg(x) (2.104)

C0(x; u) = false (2.105)

Main loop: The key idea is to add the transitions going from the states SUk(x)

to SUk+1(x) to the set of controllers Ck(x; u), which gives Ck+1(x; u):

SUk+1(x) = 9x+; u:
�
M(x; u; x+)^SUk(x

+)^:SAk(x)
�

Ck+1(x; u) = Ck(x; u) _ 9x+:
�
SUk+1(x)^M(x; u; x+)^SUk(x

+)
�

SAk+1(x) = SAk(x) _ SUk+1(x)

Exit condition:

SAk+1(x) = SAk(x) (2.106)

�

Example 2.18 Goal State Problem
Consider the system from Example 2.17. Let Sg(x) = (x==E) be the goal state. The
iterations of Algorithm 2.2 will then be

SU0(x) = (x==E) (2.107)

C0(x; u) = false (2.108)

SA0(x) = (x==E) (2.109)

SU1(x) = (x==D) (2.110)

C1(x; u) = (x==D)^d (2.111)

SA1(x) = (x==E) _ (x==D) (2.112)

SU2(x) = (x==C) (2.113)

C2(x; u) = (x==D)^d _ (x==C)^a (2.114)

SA2(x) = (x==E) _ (x==D) _ (x==C) (2.115)

SU3(x) = false (2.116)

C3(x; u) = (x==D)^d _ (x==C)^a (2.117)

SA3(x) = (x==E) _ (x==D) _ (x==C) (2.118)
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We have SA2(x) = SA3(x) which means we have reached the �xed point. (As we see from
above we may also use SUk(x) = false as exit condition.) The controller is

C(x; u) = C2(x; u) (2.119)

As expected we get a controller including the transitions a and d.

Note that the controller may be non deterministic if there exist more than one
trajectory from a state to the goal with equal minimal length. The number of
iterations of Algorithm 2.2 is equal to the longest possible path not passing a state
more than once. If the system has n state variables each taking q di�erent values
the maximum number of iterations is qn.

The most common theoretic area for planning is the research area of arti�cial
intelligence. Sequential Action Structures (SAS) [74] is an alternative notation for
�nite state machines that are used to model systems like manufacturing plants. A
planning algorithm is developed which returns a plan of actions taking the system
from an initial state to the �nal state in polynomial time, provided that the sys-
tem ful�lls some explicit conditions. The cutback of having an e�cient planning
algorithm is that these methods only work for a restricted class of systems.

2.5 Summing Up

This chapter has introduced the entities Relations and Relation sets that we use
as mathematical objects in �nite domains.

DEDS are modeled by relational models which are models interacting with
signals instead of events. The modeled system is assumed to be autonomous, i.e.,
the transitions of the system are not controlled by its environment.

Relational models can be composed as three di�erent products: synchronous,
asynchronous and interleaved. Interconnection of models is performed by restrict-
ing a model composition by relations representing the connected signals. For feed-
back interconnection a delay is added to avoid algebraic loops. The delay imposed
an extra state variable to the system.

Analysis performed on relational models is divided into static and dynamic
analysis where the latter is more powerful but not that common in commercial
tools today. Dynamic analysis means di�erent types of �xed point iterations, such
as computing the reachable states. The speci�cation language temporal logic can be
used to specify veri�cation tasks. The veri�cation of temporal logic is also a �xed
point iteration, which returns the states for which the temporal logic expression
holds.
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Appendix

2A Generating Trajectories

This appendix contains preliminary results of how to �nd counter examples that
exemplify the results from the dynamic veri�cation.

In Section 2.3 we described the temporal logic language which could be used to
specify veri�cation tasks. The result from this analysis can either be the constants
true or false or a relation R(z) representing a set for which the temporal logic
formula holds. From an engineering point of view the relation R(z) is not a well
formed answer in general. The relation R(z) represents a state space area from
where there exists trajectories ful�lling the criteria in the temporal logic veri�ca-
tion. If one of these trajectories can be generated as a result of the veri�cation
process we will have a more convenient tool for the user.

There are several ways to generate trajectories. There are tools available that
produces counter examples in som way, e.g., SMV [26]. Here we will present how
to incorporate the planning algorithm from Section 2.4.2 in this process.

De�nition 2A.1 Trajectory
Let M(z; z+) be a relational model, then a trajectory of M(z; z+), denoted

�z(0); z(1); : : : ; z(n)� (2A.1)

is a sequence of system variable instances corresponding to the dynamics ofM(z; z+),
i.e.,

M(z(k); z(k + 1)) = true 0 � k < n (2A.2)

Remark:

� The length of a trajectory may be in�nite even though the system is a �nite
DEDS. In�nite trajectories are denoted

�z(0); z(1); : : :� (2A.3)

� For a model M(z; z+) with initial relation I(z) we have

�+
1
[M; I](z(k)) = true 8 k � 0 (2A.4)

i.e., a trajectory must be inside the set of reachable states.

� We use the convention to denote the instance of initial state by z(0) and that
I(z(0)) = true must hold.

� Trajectories correspond to strings of events in the domain of �nite automata
theory.

�
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We will now try to make a formal de�nition of the problem of generating tra-
jectories that illustrate the result from a temporal logic veri�cation.

First we will de�ne what we mean by the inner most atomic expression in a
temporal logic expression.

De�nition 2A.2 Inner Most Atomic Expression
Let TL(f) be a function returning true i� expression f contains temporal logic
operators at any level. Then the inner most atomic expression, denoted IMAE(f),
is de�ned recursively as

IMAE(f) = f if TL(f) = true (2A.5)

IMAE(EX[f]) = IMAE(f) (2A.6)

IMAE(AX[f]) = IMAE(f) (2A.7)

IMAE(EG[f]) = IMAE(f) (2A.8)

IMAE(AG[f]) = IMAE(f) (2A.9)

IMAE(EU[f; g]) = IMAE(g) (2A.10)

IMAE(AU[f; g]) = IMAE(g) (2A.11)

Remark: When f is composed of Boolean operators like f = g1 _ g2 the IMAE-
function must chose either g1 or g2. Di�erent strategies can be chosen. One way
is to choose the subexpression which has the greatest depth of nested temporal
operators to stress that the result should be the inner most expression. Another
suggestion is to let the user decide which branch to choose. �

De�nition 2A.3 Illustrating Trajectory
From a temporal logic veri�cation process

R(z) = Verify(M; f) (2A.12)

where M is a model, R(z) is a resulting relation, Verify is the veri�cation and f is
a temporal logic expression. The illustrating trajectory is any trajectory

�z(0); : : : ; z(n)� (2A.13)

starting from any point in the veri�cation result (R(z(0)) = true) and where z(n)
satis�es the inner most atomic expression in f, i.e.,

IMAE(f)(z(n)) = true: (2A.14)

�

Before we describe how to generate the illustrating trajectories for general tem-
poral expressions we will study each temporal operator separately.
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2A.1 Single Temporal Logic Operators

Next State Operators

The next state temporal logic operators EX[f] and AX[f] will have illustrating tra-
jectories of length 2 as

�z(0); z(1)� (2A.15)

where z(0) and z(1) are chosen as

z(0) = Pick(R(z); z)

z(1) = Pick((z== z(0))^M(z; z+)^f(z+); z+) (2A.16)

We use (2A.15) for illustrating both EX[f] and AX[f].

Finite Future Operators

The �nite future temporal logic operators EF[f], AF[f], EU[f; g] and AU[f; g] have
an important property.

Lemma 2A.1 Invariance of Illustrating Trajectory
Let R(z) = Verify(M; f), where f is one of EF, AF, EU, AU, EG or AG. As-
sume that �z(0); z(1); : : : ; z(n)� is an illustrating trajectory for the veri�cation
Verify(M; f), then z(k) 2 R(z), 0 � k � n. �

Proof We will make the proof for EF and AF. The operators EU, AU, (and EG,
AG)1 are proved similarly.

EF: Consider the veri�cation R(z) = Verify(M;EF[f]). Let z(k) 62 R(z) for some
k < n from where there exists a trajectory �z(k); : : : ; z(n)�, where z(n) 2 f(z).
This means that z(k) 2 EF[f(z)] ) z(k) 2 R(z) ) contradiction.

AF: Consider the veri�cation R(z) = Verify(M;AF[f]). Let z(k) 62 R(z) for some
k < n from where all trajectories �z(k); : : : ; z(n)� will reach f, i.e., z(n) 2 f(z).
This means that z(k) 2 AF[f(z)] ) z(k) 2 R(z) ) contradiction. �

Lemma 2A.1 states that the veri�cation result R(z) must hold for every step
along an illustrating trajectory.

The procedure of generating an illustrating trajectory starts with computing a
goal state controller with the intersection of R(z) and f as the goal state set. Note
that f(z) � R(z) will not hold in general.

The plan is computed based on the model restricted by R(z) to ful�ll Lemma 2A.1,
using Algorithm 2.2.

C(z) = Planner(Restrict(M;R(z)); R(z)^f(z)) (2A.17)

Then we pick a trajectory with the iteration

z(0) = Pick(R(z); z)

z(k + 1) = Pick((z== z(k))^C(z)^M(z; z+); z+) (2A.18)

until f(z(k + 1)) = true.

1The lemma holds for these temporal operators also.
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In�nite Future Operators

Until now we have generated illustrating trajectories for temporal operators repre-
senting conditions which will be true in a �nite number of iterations.

For the operations EG and AG we have a di�erent situation. These operators
represent conditions that hold forever. The problem is how to illustrate such a
condition.

One suggestion is to �nd a trajectory within R(z) which forms a loop, i.e.,
z(0) = z(n). A loop is perhaps the ultimate way of illustrating a property that will
hold forever.

To improve the search for a loop we need a good starting point of the trajectory.
This point will be taken from a relation representing all loops and intermediate
paths between the loops.

De�nition 2A.4 Upper Approximation of Loops
The upper approximation of loops, denoted ULoops[M](z), is a relation which con-
tains all states belonging to a loop or an intermediate path between two loops of
the system M. �

The following lemma shows how ULoops[M](z) is computed.

Lemma 2A.2 Upper Approximation of Loops
For a system M(z; z+), the upper approximation of loops (ULoops[M](z)) is com-
puted as

ULoops[M](z) = +
1
[M; true](z)^-

1
[M; true](z) (2A.19)

where

+
1
[M; I](z) = lim

k!1
+k [M; I](z) (2A.20)

-
1
[M; I](z) = lim

k!1
-k [M; I](z) (2A.21)

contains loops and intermediate paths between these loops and nothing more. �

Proof +
1
[M; true](z) contains all states that are reachable from all states by

in�nitely long paths. Since the state space is �nite the only way to have in�nite
paths is by a loop. Therefore +

1
[M; true](z) will contain all loops and states

forward reachable from these loops. All states not forward reachable from a loop
are excluded.

Similar reasoning gives that -
1
[M; I](z) contains all loops and states backward

reachable from these loops.
The intersection of these sets will contain all loops and states that are both

forward and backward reachable from or within a loop. �

Example 2A.1 Upper Approximation of Loops
The following �gure illustrates an example where we have two paths forming a loop and
a path connecting these loops.
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Only the bold transitions are included in ULoops[M](z).

The procedure for �nding a loop starts by picking a starting point of the re-
stricted model

z(0) = Pick(ULoops(M 0(z; z+)); z) (2A.22)

where M 0(z; z+) = Restrict(M(z; z+); R(z)) and R(z) is the veri�cation result.
Then we �nd a loop forward from z(0) by a variant of the reachable state

computation performed on the restricted model:

M 00(z; z+) = Restrict(M 0(z; z+);ULoops(M 0(z; z+))):

(2A.23)

Let k > 0 be the minimal number of steps such that P(z), computed as

P(z) = �+k-1[M
00; (z== z(0))](z) ^ +k [M

00; (z== z(0))](z)

(2A.24)

is not false. Then let

z(k) = Pick(P(z); z) (2A.25)

and compute the two plans

C1(z) = Planner(M 00(z; z+); (z== z(k))) (2A.26)

which we use to generate a trajectory for the loop and

C2(z) = Planner(M 0(z; z+); (z== z(k))) (2A.27)

which we use to guide the system from any point in R(z) to z(k).

2A.2 Combined Temporal Logic Expressions

In the previous sections we suggested how to generate illustrating trajectories for
atomic temporal expressions. These methods can be used iteratively when we have
temporal logic expressions which consist of nested temporal expressions.

The basic idea to solve the problem for combined expressions is to let the
veri�cation process Verify(M; f) store the intermediate results from the veri�cation
of each temporal logic operator.
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Example 2A.2 Intermediate Veri�cation Results
Veri�cation of the temporal expression

f(z) = EX[EU[g1;EG[g2]| {z }
R1(z)

]

| {z }
R2(z)

]

| {z }
R3(z)

(2A.28)

would generate three intermediate results R1(z), R2(z) and R3(z) representing the state
space of each temporal subexpression.

From the stored intermediate results we can generate an illustrating trajectory
starting from the outermost result and continuing until it ends where the inner
most atomic expression holds. Each part of the trajectory is computed by the
procedure for the temporal operator representing that part.

Example 2A.3 Concatenation of Illustrating Trajectories
The illustrating trajectory for the temporal expression (2A.28) is generated in three steps.
The �rst step starts in R3(z) and ends in R2(z). By using the procedure of (2A.16) for
the operator EX we get the trajectory

�z(0); z(1)� (2A.29)

where z(0) 2 R3(z) and z(1) 2 R2(z).
The next step continues from z(1) to a point in R1(z). By using the procedure of

(2A.18) for the operator EU we get the trajectory

�z(1); : : : ; z(k)� (2A.30)

where z(k) 2 R3(z).
The last step continues from z(k) to a point in g2(z) which is the inner most atomic

expression. Operator for this step is EG which means that the last step of the illustrating
trajectory will end with a loop. We use the procedure (2A.22)-(2A.27) to generate such
a loop

�z(k); : : : ; z(l); : : : ; z(l)� (2A.31)

The �nal illustrating trajectory will be the concatenation.

�z(0); z(1); : : : ; z(k); : : : ; z(l); : : : ; z(l)� (2A.32)

The methods presented in this appendix are suggested in order to present ver-
i�cation results in a more user friendly way. The complexity of these methods
has not been discussed here. The performance depends on the representations we
choose for the relations. Moreover, the methods presented above can, most likely,
be optimized and integrated. For example, if we instead of letting the veri�cation
process return a state space relation, we could produce one illustrating trajectory
directly. Further research in this area is needed.
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Part I

Relational Representations
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3

Relational Representations

- an Introduction

Until now we have used relational models like M(z; z+) to represent behaviors of
systems. In these we have only been interested in the relations between the system
variables z and z+. We have also used logic operations such as ^; _ and : on these
relations to build a system theory for DEDS. Having a relational description of a
system we know, from Chapter 2, the operations which must be implemented to get
the tools of the relational system theory to work. But we have not yet presented
how to implement these relations and operations. We will deal with this problem
by �rst studying how to represent relations, and then �nd out how to implement
the operations we need.

Already at this point, we will give some examples that show the main ideas
of the di�erent types of representations for relations and functions that we will
present in this part of the thesis.

Functions and relations are in this part of the thesis almost the same. The
representations that will be presented are representations of functions which are
a mapping between two �nite domains. Relations are here regarded as a special
function mapping some �nite domain to the Boolean domain, B .

Since we only consider �nite DEDS, and therefore only need to represent rela-
tions and functions in �nite domains, the most intuitive and simple way to write
down a function is to use a table.

45
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Example 3.1 A Finite Function
Let a function f(x; u), where f : Z2

5! Z5, be represented (and de�ned) by the table

f(x; u)
u

0 1 2 3 4

x

0

1

2

3

4

1 3 1 0 0

2 1 1 1 0

3 4 1 2 0

4 2 1 3 0

0 0 1 4 0

For each value of x and u we can look up the value of f(x; u) directly from the table.

Tables like the one above can represent, e.g., a 5-state deterministic �nite automaton
with the transition relation x+== f(x; u).

The table representation is rather straight-forward to implement in a computer
but since relations and functions often get complex, for cases where a DEDS frame-
work will be interesting to use, we must �nd something more intelligent. The table
representation will not be elaborated any more in terms of representing relations,
even though one can think of relational databases as tools especially designed for
large tables of data. Nevertheless, tables are good to have as a less abstract mind
map of relations.

3.1 Decision Diagrams

Instead of using a at table we can use a tree representation where the variables
in a relation is ordered and each vertex corresponds to one variable. Each vertex
branches to vertices of variables with lower order until the terminals representing
constant values at the bottom of the tree are reached. What we get is a DAG
(Directed Acyclic Graph) with one root vertex.

Example 3.2 Integer Decision Diagram
The function f(x; u) in Example 3.1 can be represented by the tree
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0 1 2 3 4

0
1

2 34
0

1
2

3

4

0
1

2

3

4

u

x

The tree has three horizontal levels of vertices where the top level has one vertex (root)
corresponding to the variable u. The next level has three vertices corresponding to the
variable x and at the bottom level we have 5 vertices corresponding to constant values.
We denote the variable order in this tree as u > x. Each vertex (except the constant
vertices) has 5 branches since in this case x; u 2 Z5. To look up the value for f(1; 0)
we start at the top vertex going downward following the branch labeled (square) 0 (for
u = 0), then from the middle x-vertex we follow the branch labeled 1 (for x = 1) to the
constant vertex 2, i.e., f(1; 0) = 2.

The left-most x-vertex corresponds to the function x, and is therefore not connected
to the constants for clarity in the �gure. For this vertex we get f(x; 3) = x.

The branch passing \behind" the left-most x-vertex connects the top vertex to the
constant vertex for 0. This means that f(x; 4) = 0.

The tree representation shown in the example above is what we call the integer
decision diagram (IDD) for the function f(x; u) with variable order u > x. We
have developed IDDs and implemented a software package in C with interface to
the computer algebra system Mathematica. In Chapter 4 we de�ne and develop
algorithms for the IDD structure.

Compared to the table in Example 3.1 we have a more compact representation
of f(x; u) even though the di�erence is not dramatic in this case. The size of the
table is 52 = 25, whereas the IDD-tree in Example 3.2 above can be represented
by the number of branches 5�4 = 20. The di�erence in size is more obvious in the
next example, where we use an IDD to represent a relation rather than a function.

Example 3.3 An IDD Representation of a Relation
Let us represent the equation

a
2
+ b

2
== c

2 (3.1)

where a; b; c 2 Z6 and a; b; c > 0. The relation can be written as

(a
2
+ b

2
== c

2
)^(a > 0)^(b > 0)^(c > 0) (3.2)
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and translated to the IDD with variable order c > b > a as

0 1

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

45

c

b

a

Since the IDD above represents a relation we will only have two constant vertices 0 and 1
representing false and true, respectively. Values of a; b; c ful�lling the relation in (3.2)
will have a path from the top vertex down to the true-vertex. In this case, though, we
have a complement marker1 above the top vertex (the ring) which says that the solutions
to the relation in (3.2) are those values of the variables having a path to the 0-vertex.

In this case we have two solutions f[a; b; c] : [3; 4; 5]; [4; 3; 5]g which in this case are
better known as the Egyptian triangle relation.

From the example above we see that a relation for which a complete table
representation would have been of size 63 = 216 can be represented by 4 vertices
with total size of 6 � 4 = 24. The key to success is that IDD-vertices are shared
by many branches. In fact, the IDDs shown so far are reduced, i.e., they cannot be
smaller by altering some branches but still represent the same function or relation
with the same variable ordering. The size of the IDDs depends heavily on which
variable order we chose. Moreover, the IDD is a canonical representation of a
function or a relation, which is a feature that we will �nd very useful. As operations
on IDDs we can use both logical operators for relations and arithmetic operators
for integer functions.

For the special case of Boolean relations where all variables are Boolean we
can use Binary Decision Diagrams (BDD) [15]. BDDs are the \original" decision

1Complement markers will be further explained in Chapter 4.
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diagrams from which the IDD is developed. We will therefore in Chapter 4 start
by presenting BDDs and then in Chapter 6 extend to IDDs.

3.2 Polynomials and Algebra

The representation of �nite functions and relations can also be done using mathe-
matical objects from commutative algebra, i.e., polynomials and polynomial opera-
tions. This is in contrast with the approaches of using decision diagrams which can
be thought of as compact representations of the values2 of function and relations.
Instead, the algebraic approach tries to �nd e�cient representations for polynomial
formulas.

The idea of representing functions by polynomials, is best introduced by an
example.

Example 3.4 Polynomial Representation
Again we use the function from Example 3.1 which was de�ned by the table

f(x; u)
u

0 1 2 3 4

x

0

1

2

3

4

1 3 1 0 0

2 1 1 1 0

3 4 1 2 0

4 2 1 3 0

0 0 1 4 0

This function is represented algebraically by the polynomial

f(x; u) = 1 + 4u + 3u
2
+ x+ 3u

2
x+ 4u

3
x: (3.3)

To be convinced that the polynomial in (3.3) really is a representation of the table
above, evaluate the polynomial modulo 5 for all values of x and u.

As opposed to the decision diagrams we see that the polynomial representation
does not store the values of the function, but instead a polynomial from which the
values of the function can be computed. The polynomial representation is suited
for some operations and relations, whereas the decision diagram representation is
better for other. For instance an addition of two functions f1+f2 is easily performed
in the polynomial case; just add the terms together. However, to �nd solutions to
the equation f = 0 is much simpler if we represent f by a decision diagram. This
will be further discussed in Section 6.3.

Two important issues of the polynomial representation are worth stressing:

2Values of the corresponding tables.
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� First, the size of a polynomial representation varies depending on the rep-
resented function from small up to as many terms as there are slots in the
corresponding table. As with decision diagrams the key to success is that the
represented function has some structure that can easily be captured by poly-
nomials, and that common subexpressions can be reused as often as possible
in correspondence with the reuse of vertices in decision diagrams.

� Secondly, to have a canonical form for the polynomial representation is as
important as for the decision diagrams.

In Chapter 5 we give an introduction to commutative algebra and the polyno-
mial representation of relations and functions.

3.3 Polynomial Graph Representations

To meet the demand of a canonical form and the ability to reuse subexpressions we
can use a polynomial form which in turn can be represented by a directed acyclic
graph. The following example will introduce this idea.

Example 3.5 Reduced Recursive Polynomial Expression
The reduced recursive form of the polynomial in (3.3) is represented by the DAG

0 1 3 4

1 u

u2
u3

1

x

1

x

1 x

u

x

Each vertex in the tree above represents a polynomial in its corresponding variable. This
means that the top vertex represents the polynomial

c0 � 1+ c1u+ c2u
2
+ c3u

3 (3.4)

where the coe�cients fc0; : : : ; c3g are polynomials (in x) corresponding to each subgraph
the top vertex labeled with the corresponding power of u. Analogously, we get the poly-
nomials for the x-vertices (listed from left to right):

1 � 1+ 1 � x; 0 � 1 + 4 � x; 3 � 1+ 3 � x (3.5)
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The coe�cients for top vertex polynomial are therefore:

c0 = 1 + x; c1 = 4; c2 = 3 + 3x; c3 = 4x (3.6)

The complete polynomial for the tree above is:

(1+ x)1 + (4)u+ (3+ 3x)u
2
+ (4x)u

3
= (3.7)

1+ 4u + 3u
2
+ x + 3u

2
x + 4u

3
x (3.8)

which apparently is the same polynomial as f(x; u) from Equation (3.3) above.

The example above illustrates the reduced recursive polynomial expression
(RRPE), introduced by Germundsson [40], where coe�cients of polynomials are
recursively represented as DAGs. For a given variable ordering (in this case x < u)
the RRPE is a canonical form of the function f(x; u).

3.4 Gr�obner Bases

Another way of representing a relation using polynomials, is to use polynomial
equations. By computing aGr�obner basis, [30], we can generate a set of polynomials
that represents a relation in a canonical way.

Example 3.6 Gr�obner Bases
Let us reconsider Example 3.3, where we had the equation

a
2
+ b

2
= c

2 (3.9)

We want to canonically represent, using equations of polynomials, the solutions of this
equation for nonzero values of the variables. For reasons that will become clear later, the
variables have to be de�ned over a �nite �eld, in this case F7 , which essentially means that
the variables take the values f0; : : : ; 6g and that all arithmetic operations on the variables
are modulo 7.

The Equation (3.9) and the nonzero criteria for the variables, can be translated into
a set of polynomial equations as

c
2
- b

2
- a

2
= 0

c
6
- 1 = 0

b
6
- 1 = 0

a
6
- 1 = 0

(3.10)

The left-hand side of these equations can be rewritten into a canonical set of polynomials,
using the Gr�obner basis GB7 with variable ordering c > b > a.

GB7

0
BB@

8>>><
>>>:

c2 - b2 - a2

c6 - 1

b6 - 1

a6 - 1

9>>>=
>>>;

1
CCA =

8><
>:

c2 - 2c2

b2 - a2

a6 - 1

9>=
>; (3.11)
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The resulting set of polynomials is a canonical form for the solution set, i.e., Gr�obner
bases have one-to-one correspondence with solution sets.

Finding a solution to a set of equations can often be simpler when having the Gr�obner
basis as the one above. The last equation gives the solutions for the variable a which can
be substituted into the other equations in the set. Compare with Gaussian elimination.

From the Gr�obner basis we have the solutions f[a; b; c] : [3; 4; 5]; [4; 3; 5]g as expected
but [2; 5; 1] is also a solution, which might come as a surprise to us. In fact there are 24
solutions to this set of equations. The reason is that the polynomials in (3.10) belong to
the polynomial ring R7[a; b; c], where all operations are modulo 7. Therefore we have in
Equation (3.9) more solutions compared to what we had in Example 3.3. In Chapter 5
we give insight in this matter more thoroughly.

3.5 Road Map for Part I

As an introduction to decision diagrams we will describe function graphs and espe-
cially the binary decision diagrams (BDDs) in Chapter 4. This chapter serves as an
introduction to decision diagrams, operations and algorithms that make decision
diagram structures good for developing e�cient tools for relational representations.
Using Chapter 4 we will, in Chapter 6, present integer decision diagrams (IDDs)
which are an extension to BDDs which we have developed and which is one of the
contributions of this thesis.

To get familiar with the polynomial approach and the Gr�obner basis tool, we
need to go through some theory of commutative algebra in Chapter 5. This will help
us formally present the integrated monomial diagrams (IMD) in Chapter 6, which
we have developed as a reduced canonical graph representation of polynomials.

The main contributions of this part of the thesis is collected in Chapter 6.
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Decision Diagrams

Binary Decision Diagrams (BDD) were introduced by Akers [2]. Then Bryant [15]
introduced operations and algorithms that utilize the ordering of the variables in
BDDs. Bryant showed that an \interesting" subset of Boolean functions could
be represented by function graphs in size polynomial to the number of variables.
After that many di�erent diagrams similar to BDDs have emerged. See [17] for an
overview of this research area.

The material in this chapter is based on the article by Bryant [15] in which
Boolean functions are represented by Boolean function graphs, i.e., directed acyclic
graphs where each vertex has only two children (or subgraphs). Bryant proved that
by reducing the function graphs we get a canonical form which, in most interesting
cases1, represents Boolean functions e�ciently. E�cient algorithms for Boolean
operators were developed by Brace et al. [11]. This concept of representation and
computation of Boolean expressions, was called Binary Decision Diagram (BDD).
The term ordered binary decision diagram (OBDD) is also frequently used even
though BDD and OBDD stand for the same thing nowadays.

There has been a successful use of BDDs in applications [16] which in turn
has led to a massive research activity on how to improve the concept of decision
diagrams to a wider range of applications. The �rst impression of this research
is that it has led to an \alphabet soup"2 of acronyms [17]. The following is only
a partial list: OBDD, FBDD, FDD, OKFDD, EVBDD, MTBDD, BMD, *BMD,
ZBDD, ABDD, HDD, TDD, and OPDD. The most important objective for these
di�erent types of decision diagrams is to derive constructions that will reduce the
complexity of verifying hardware implementing arithmetic (integer) functions.

1Not all of the interesting cases, though.
2To which we will contribute with the acronyms IDD and IMD.

53
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To extend the Boolean representation to general �nite functions has been an
important task. Srinivasan et al. [107] have developed the multi-valued decision di-
agram (MDD) for representing integer functions and relations. These MDDs serve
as a a layer above the BDDs. Therefore the MDDs provide a mapping to BDDs,
i.e., the BDDs are still used as the underlying representation of these relations.

In this chapter we will review the fundamental results of reduced function graphs
which is the structure from which the BDDs and all other decision diagrams are
built. We will call this class of function graph implementations for decision dia-
grams.

In Chapter 6 we present our results of how to represent �nite functions by using
integer decision diagrams (IDDs). We will also use the structure of the function
graph to represent polynomials, in Chapter 6, suggesting a representation which we
call integrated monomial diagrams (IMD). In contrast with the variants of decision
diagrams developed so far, the IDDs and IMDs do not depend on any Boolean
structures to represent functions and relations of �nite but non Boolean domains.

4.1 Function Graphs

We will now formally de�ne what type of graph we use for a decision diagram.
This type of graph will be denoted function graph.

De�nition 4.1 Function Graph

i) A function graph is a rooted, directed graph with vertex set V containing two
types of vertices, nonterminal and terminal. A nonterminal vertex v has as
attributes an argument index index(v) 2 f1; : : : ; ng and children child(v; i) 2 V,
0 � i < range(v), where n; range(v) 2 Z+. A terminal vertex v has as attribute
a value value(v) 2 0; : : : ;M- 1, where M 2 Z+.

ii) For any nonterminal vertex v, if child(v; i) is also nonterminal, then index(v) <
index(child(v; i)).

iii) The range range(v) of a vertex v is equal for all vertices having the same index.

Remark: Note that the restriction on indexes makes the function graphs acyclic
since any path from the root vertex to one of the terminal vertices must have
strictly increasing index values. �

Most of the graphs depicted in this chapter are function graphs. Nevertheless,
we will present a simple example to clarify how these depicted graphs are related
to De�nition 4.1.

Example 4.1 Function Graph
We give a simple function graph.
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0 1

1
0

0

1

0 1

2

3

1

2

3

4

T

The vertical axis to the left shows the indexes for the vertices. We denote a vertex by
vi;j where i is the index and j is the order in the picture starting from left with j = 1.
The edge labels (squares) in the picture identi�es each child of a vertex, such that the
center of the label is positioned exactly on the edge. If there are more than one label on
the same line3, then there are several edges (upon each other) connecting the same pair
of vertices. The terminals are placed at the bottom of the graph, and indicated by a T

on the vertical axis. The values of the terminals are written inside the vertices.

We have the following for the function graph above:

index(v1;1) = 1 the root

child(v1;1; 0) = v4;1

child(v1;1; 1) = v2;1

child(v1;1; 2) = vT;2

child(v1;1; 3) = vT;2

child(v2;1; 0) = v4;1

child(v2;1; 1) = vT;2

child(v4;1; 0) = vT;1

child(v4;1; 1) = vT;2

value(vT;1) = 0

value(vT;2) = 1

range(v1;1) = 4

range(v2;1) = 2

range(v4;1) = 2

(4.1)

3Line illustrating an edge in graph �gures.
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T is not an index but is used as one for notational reasons. Note that there are no vertices
with index 3 for this function graph. The indexes often correspond to one variable of the
function which is represented by the function graph.

Having de�ned the structure of function graphs we will de�ne the correspon-
dence between function graphs and functions.

De�nition 4.2 Function Graph to Function Connection
A function graph G having a root vertex v denotes a function fv de�ned recursively
as

1. If v is a terminal vertex, then fv = value(v).

2. If v is a nonterminal vertex with index(v) = i, then fv is the function

fv(xi; xi+1; : : : ; xn) = fchild(v;xi)(xi+1; : : : ; xn) (4.2)

where the function variable xi 2 f0; 1; : : : ; range(v) - 1g and 1 � i � n.

Remark: Here we assume that the maximum index of vertices in G is n. �

The de�nition above de�nes fv as an evaluation following one path from the
root vertex down to a terminal vertex. In this general form we have no symbolic
representation of the �nal fv for the complete graph G. Symbolic representations
will be formulated later on in Section 4.2, where expressions from Boolean algebra
are used as a symbolic representation, and then in Chapter 5 where polynomials
over �nite �elds are used in the same way.

To be able to form function graphs with canonical properties we have to formu-
late some de�nitions before we can state the theorem of canonical function graphs.

De�nition 4.3 Isomorphic Function Graphs
The function graphs G and G 0 are isomorphic if there exists a one-to-one function
� from vertices of G onto the vertices of G 0 such that for any vertex v if �(v) = v 0,
then either both v and v 0 are terminal vertices with

value(v) = value(v 0) (4.3)

or both v and v 0 are nonterminal vertices with

index(v) = index(v 0) (4.4)

and

�(child(v; i)) = child(v 0; i) 0 � i < range(v): (4.5)

Remark: Note that range(v) = range(v 0). �

The mapping � is in fact quite constrained since a root vertex must be mapped
to another root, and the order of the children must be preserved. The only freedom
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of the mapping is that a graph G can be either a tree where all vertices have only
one parent, or vertices can be connected more than once to several parents if that
is possible according to the rules in De�nition 4.1.

De�nition 4.4 Subgraph
For any vertex v in a function graph G, the subgraph rooted by v is de�ned as the
graph consisting of v and all of its descendants. �

The following lemma is rather immediate.

Lemma 4.1 Isomorphic Subgraphs
If G is isomorphic to G 0 by the mapping �, then for any vertex v in G, the subgraph
rooted by v is isomorphic to the subgraph rooted by �(v). �

The following de�nition gives us the reduced function graph, which is what we
will use for the decision diagrams as well as for the graph representations for the
polynomials.

De�nition 4.5 Reduced Function Graph
A function graph G is reduced if it contains no vertex v with

child(v; 0) = child(v; 1) = � � � = child(v; range(v) - 1); (4.6)

nor does it contain distinct vertices v and v 0 such that the subgraphs rooted by v
and v 0 are isomorphic. �

Lemma 4.2 Reduced Subgraphs
For every vertex v in a reduced function graph, the subgraph rooted by v is itself
a reduced function graph. �

We are now ready for the main message of this section. The following theorem
shows that a reduced function graph is a canonical form for the corresponding
function.

Theorem 4.1 Reduced Function Graph is a Canonical Form
For any function f over a �nite domain, there exists a unique (up to isomor-
phism) reduced function graph denoting f, and any other function graph denoting
f contains more vertices. �

Proof The theorem is proved by Bryant [15] for the Boolean case only, but the
outline of that proof can easily be used in this case as well, which has been done
by Srinivasan et al. [107]. �
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4.2 Binary Decision Diagrams

For the case of Boolean functions and variables we use a special form of the reduced
function graph called binary decision diagram (BDD) [15]. In this section, we
will take a closer look at the BDD structure and algorithms for operations, as a
preparation for the IDDs in Chapter 6. The material presented in this section can
be found in [15] and in the implemented code of the BDD-CMU package [11].

The basic idea used in binary decision diagrams is to rewrite Boolean expressions
in a recursive form and reuse common subexpressions. In the case of Boolean
expressions this leads to highly e�cient computations in most cases.

Suppose we have a Boolean expression f(x1; : : : ; xn). We can then rewrite it
using Shannon's expansion formula (see e.g. [34]):

f(x1; : : : ; xn) =((:x1)^f(0; x2; : : : ; xn))

_ (x1^f(1; x2; : : : ; xn)):
(4.7)

If we continue with this recursively for each of the functions f(0; x2; : : : ; xn) and
f(1; x2; : : : ; xn) w.r.t. x2 and then x3, etc., we obtain

f(x1; : : : ; xn) = :x1^(� � � ((:xn^�)| {z }
gn-1
0;:::;0

(xn)

_ (xn^�)| {z }
gn-1
0;::: ;1

(xn)

))

| {z }
g1
0
(x2;::: ;xn)

_

x1^(� � � ((:xn^)| {z }
gn-1
1;:::;0

(xn)

_ (xn^�)| {z }
gn-1
1;::: ;1

(xn)

))

| {z }
g1
1
(x2;::: ;xn)

(4.8)

where �;�; ; � 2 f0; 1g. Compare with De�nition 4.2.
We see that we obtain several subexpressions with progressively fewer vari-

ables. In fact, all expressions gij above are Boolean expressions in the variables
fxi+1; : : : ; xng. In case some of these expressions are equal we should not have to
repeat this part more than once, but instead substitute a reference to this common
subexpression.

This is achieved by constructing a reduced function graph G for the function f,
where each nonterminal vertex v with index(v) = i corresponds to the variable xi
and the functions corresponding to the subgraphs of v are each equal to one of the
subexpressions gij(xi+1; : : : ; xn).

The recursive Boolean expression from above can be visualized as a binary tree,
where each vertex corresponds to the _ operator, and where the gij expressions in
principle are subtrees. This is the basis for the name BDD. From Theorem 4.1 we
know that a BDD is a canonical representation of a Boolean function for a given
variable ordering.

According to De�nition 4.1 we have for BDDs that range(v) = 2 for all vertices
and there are only two terminals, i.e., M = 2.

The number of remaining vertices (or equivalently the number of di�erent
subexpressions) after reduction, is a measure of the complexity of the given ex-
pression. This will be referred to as the number of vertices further on in this
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thesis. By changing the order in which we expand w.r.t. the variables we usually
get large di�erences in the number of vertices. The ordering is called variable or-
dering and plays a signi�cant role in lowering the representational complexity of
the landing gear system in Section 7.3.

Example 4.2 Unreduced vs. Reduced BDD
The Boolean function f = x1^x2 _ :x4 is represented by the following ordered but
unreduced binary tree if we use the variable ordering x1 < x2 < x3 < x4.

1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0

1 0 1 0

1
0 1 0 1 0 1

0

1

0

1 0 1 0 1 0 1 0 1 0 1 0 1 0

x1

x2

x3

x4

T

After reduction we get the BDD

1 0

1
0

1 0

0 1

x1

x2

x3

x4

T

The fact that we have Boolean expressions in this case makes it possible to
reformulate De�nition 4.2 to BDDs which is essentially the reverted Shannon ex-
pansion.
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De�nition 4.6 BDD to Function Connection
A BDD G having root vertex v denotes a function fv de�ned recursively as

1. If v is a terminal vertex, then fv = value(v) 2 f0; 1g.

2. If v is a nonterminal vertex with index(v) = i, then fv is the function

fv(xi; xi+1; : : : ; xn) = :xi^flow(v)(xi+1; : : : ; xn) _ xi^fhigh(v)(xi+1; : : : ; xn)

(4.9)

where low(v) = child(v; 0) and high(v) = child(v; 1).

Remark: Here we assume that the maximum index of vertices in G is n. �

4.2.1 Operations and Algorithms for BDDs

Having de�ned the structure for representing Boolean functions and relations we
now need to specify how to implement operations on this structure.

The ITE-operator

The most common Boolean operators ^; _ and : are enough to realize all binary
Boolean functions. In fact, the NAND-operator (:(f ^ g)) is also enough if we
really want to reduce the set of operators to a minimum. In the case of BDDs we
will go the opposite way by choosing an operator with more expressive power and
which mimics the BDD structure closely.

If we associate a BDD vertex v with the tuple (v; F; G) where v is the corre-
sponding variable and F and G are functions corresponding to the two subgraphs
of the vertex v, then the function Z corresponding to the vertex v can be written
as

Z = v ^ F _ :v ^G (4.10)

using Shannon's expansion (or De�nition 4.6). This special form can be generalized
to the three input function ite, If-Then-Else:

ite(F;G;H) = F^G _ :F^H (4.11)

which is the function we choose as the foundation from which all binary Boolean
operators can be formulated.

Example 4.3 The ITE-operator
All (16 in this case, [11]) binary Boolean operators can be parameterized using the ite-
formula, [11].
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Four of these are:

AND(F;G) = ite(F;G; 0)

OR(F;G) = ite(F; 1; G)

NAND(F;G) = ite(F;:G; 1)

XOR(F;G) = ite(F;:G;G)

By implementing the ite-operator we compute all Boolean operators in one
iteration. Otherwise, only having the ^; _ ;: operators we would need 5 iterations
to compute an XOR-operation. The reason for this is that the ite-operator e�ectively
exploits the function graph structure of the BDD.

Recursive Formulation of ITE

The BDD Z = ite(F;G;H) where F;G, and H are BDDs can be computed recursively
using a depth-�rst recursion.

Lemma 4.3 ITE Recursion
Assume that the top variable of F;G;H is x, i.e., x has the lowest index of all
variables in F;G;H, then

ite(F;G;H) = ite(x; ite(Fx; Gx; Hx); ite(F:x; G:x; H:x)) (4.12)

where Fx and F:x denotes

Fx = Fhigh(x) (4.13)

F:x = Flow(x) (4.14)

and similarly for G and H. �

Proof ([11])

Z = ite(x; Zx; Z:x)

= x^Zx _ :x^Z:x

= x^(F^G _ :F^H)x _ :x^(F^G _ :F^H):x

= x^(Fx^Gx _ :Fx^Hx) _ :x^(F:x^G:x _ :F:x^H:x)

= x^ite(Fx; Gx; Hx) _ :x^ite(F:x; G:x; H:x)

= ite(x; ite(Fx; Gx; Hx); ite(F:x; G:x; H:x))

�

If one or more of F, G, and H are independent of x we will have, e.g., Gx =

G:x = G.
This recursion stops when all three arguments to the ite-operator are terminals.

In fact, by using some simpli�cation rules the recursion will normally stop much
earlier. See the section describing the simpli�cation rules below.
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Unique Table

All vertices in a BDD are stored in the unique table. This table stores all BDD
vertices and maintains an index that uniquely maps the triple (F;G;H) to a cor-
responding BDD vertex if there exist one. If not, a new vertex is created and put
into the table. In this way the table ensures that there is no duplicate vertices
corresponding to the same pair of subtrees. By using hashing we get a constant
look up time in the unique table. The hash function is denoted key(F;G;H) and is
also used for cache table described later in this section.

The fact that the recursion of the ite-operator performs a depth-�rst computa-
tion means that the resulting BDD is created from the bottom and upwards while
the unique table ensures that no duplicate vertices are created. Instead vertices are
re-referenced if possible which guarantees that the resulting BDD will be reduced
and canonical with respect to the variable order given.

Before we present the ite algorithm we will present some ways of increasing the
performance of the algorithm.

Simpli�cation

Simpli�cation of the expression ite(F;G;H) is used for those cases when we can
immediately compute the result to a terminal or to F,G, or H. This will improve
the performance in the recursion (4.12).

The simpli�cation is done in two steps. First the rules

ite(F; F;H) �! ite(F; 1;H)

ite(F;:F;H) �! ite(F; 0;H)

ite(F;G; F) �! ite(F;G; 0)

ite(F;G;:F) �! ite(F;G; 1)

(4.15)

are applied, and then the following rules are applied for the terminal cases :

ite(1;G;H) �! G

ite(0;G;H) �! H

ite(F;G;G) �! G

ite(F; 1; 0) �! F

ite(F; 0; 1) �! :F

(4.16)

Complement Edges

To reduce the size of the BDD we can use the same BDD for representing both f

and its complement :f. This method has been developed by Akers [2], Karplus [73]
and Madre [86], and implemented by Brace et al. [11].

Having complement edges we have a mark for each edge in the BDD specifying
if the corresponding function of the edge should be complemented or not.
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Example 4.4 Complement Edges
For the Boolean function f = x1x2 + :x4 from Example 4.2 we get the following BDD

1 0

01

0
1

1

0

x1

x2

x3

x4

T

where the circles, attached to the vertex corresponding to the function x4, illustrates the
complement edges.

To preserve the canonical form we take a look at the following four equalities:

ite(F;G;H) = ite(:F;:G;:H)

ite(:F;G;H) = ite(F;:G;:H)

ite(F;G;:H) = ite(:F;:G;H)

ite(:F;G;:H) = ite(F;:G;H)

(4.17)

By choosing the expressions at the left-hand side of the equalities above as the only
allowed assignments of the complement edges in BDDs, we preserve the canonical
form. The left-hand side of the expressions have the \high" subgraph (G) uncom-
plemented. The BDD in Example 4.4 follows this rule.

Note that this means that the computation of operations and tests like :F and
F = :G can be performed in constant time4. Good performance of these operations
is important for the e�ciency of the transformation rules presented earlier in this
section.

Caching

Using a cache table we can increase the performance of the recursive computation
in Equation (4.12) even further. The cache table maps5 ite-expressions represented

4In the case of the CMU BDD package [11] the :-operation will toggle the least signi�cant bit
of a pointer, and the =-test will compare the equality of two pointers.

5By using the hash function key(F;G;H) that maps F;G;H to a scalar.
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by the tuple (F;G;H) to the result Z, provided that the ite-expressions has been
computed before. By this the recursion will not need to evaluate subgraphs already
computed, which means that the algorithm only needs to visit every combination
of vertices once in a computation.

To further improve the hit rate of the look up operations in the cache table
we can perform some transformations of the expression ite(F;G;H) to reduce the
number of di�erent combinations of F, G, and H having the same result. The
basic idea is to transform the tuple (F;G;H) to (F 0; G 0; H 0) such that index(F 0) �
index(G 0) � index(H 0) holds whenever possible.

If index(F) > index(G) and index(F) > index(H), then we use the following rules
for changing the order of the arguments for the ite-operator.

ite(F; 0;H) �! ite(:H; 0;:F)

ite(F; 1;H) �! ite(H; 1; F)

ite(F;G; 1) �! ite(:G;:F; 1)

ite(F;G; 0) �! ite(G; F; 0)

ite(F;G;:G) �! ite(G; F;:F)

(4.18)

The �nal transformation before looking up in the cache table is to move the com-
plement edges according to the left-hand side in (4.17).

The ITE-Algorithm

We are now ready to formulate the ITE-algorithm.

Algorithm 4.1 Recursive ITE-Algorithm

Syntax: ite apply(F;G;H).

Input: BDD references F, G, H.

Output: A BDD reference to the resulting BDD, Z.

1. Simplify and check for terminal cases according to (4.15) and (4.16).

2. Sort the arguments F, G, H with top variable �rst according to (4.18).

3. Transform the complement edges of F, G, H to standard form according to
(4.17). If F is complemented set the ag c = true and remove the complement
edge from F.

4. Look up in cache table for a precomputed result Z. If found then if c = true

return :Z, else return Z.
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5. Let t be the top index: t = min(index(F); index(G); index(H))

flF; hFg :=

8<
:flow(F); high(F)g if index(F) = t

fF; Fg otherwise

flG; hGg :=

8<
:flow(G); high(G)g if index(G) = t

fG;Gg otherwise

flH; hHg :=

8<
:flow(H); high(H)g if index(H) = t

fH;Hg otherwise

6. Start the recursion

Zlow := ite apply(lF ; lG ; lH )

Zhigh := ite apply(hF ; hG ; hH )

7. Look up an entry in the unique table that corresponds to a vertex with index
t and subgraphs Zlow and Zhigh. If found, set Z to this vertex. If not found a
new vertex Z is created and stored in the unique table.

8. Store an entry in the cache table for vertex Z and the tuple (F;G;H) as its
key.

9. If c = true return :Z else return Z.

�

Restriction

To restrict a function means in this case to set one of the arguments (or variables)
to a speci�c value. If we have the BDD F with top variable x we can easily compute
the BDD corresponding to Fjx=0 or Fjx=1 by taking the subgraphs low(F) or high(F),
respectively. Unfortunately it is not that easy if the variable is not the top variable.
In this case we have to build the resulting BDD to preserve the canonical form.

Example 4.5 Restriction of BDD
Let us again consider the BDD from Example 4.4.



66 Decision Diagrams

1 0

01

0
1

1

0

x1

x2

x3

x4

T

If we let x4 = false, then we can exclude the edge going from the vertex corresponding
to x4 to the terminal 1. The resulting graph is then:
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T

The graph above seems to have both 0 and 1 as terminals but since the vertex corre-
sponding to x4 is connected upwards by complement edges we have, in fact, that all paths
from the top vertex down to a terminal will have the value 1. This means that the graph
above represents nothing but the constant 1 for which the canonical form is the terminal
vertex 1.

The basic idea of computing Fjx=b is to use depth-�rst recursion on the BDD
until we reach a vertex v, where at least one of the children, say child(v; i), corre-
sponds to the variable x. This edge is then changed in such a way that it refers
directly to the \grand child" of v corresponding to x = b, i.e.,

vi := child(child(v; i); b) (4.19)
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After this is done for all children of v, we look up in the unique table to ensure the
canonical form. The result is stored in a temporary cache table with key equal to
v. Later when the recursion reaches vertex v again, we look up in the hash table
to prevents the result of this vertex to be recomputed.

The restrict algorithm can be implemented as follows.

Algorithm 4.2 Restrict

Syntax: restrict(F; x; b).

Inputs: F is a BDD, x is a variable of F, b is a constant 0 or 1.

Output: Returns a BDD Z corresponding to Fjx=b.

1. Check for terminal cases

(a) F is constant ) return F

(b) index(F) > index(x)) return F

2. If top vertex of F is visited, denoted as mark(F) = true, then look up the
precomputed result Z from the hash table and return it.

3. If index(F) < index(x) then

(a) Make the recursive calls

lF := restrict(low(F); x; b)

hF := restrict(high(F); x; b)

(b) Find or create a vertex Z in the unique table having index index(F) and
lF and hF as subgraphs.

(c) Mark the top vertex of F as visited (mark(F) := true) and store Z in
the temporary hash table with the top vertex as a key.

(d) Return Z.

4. If index(F) = index(x) then

(a) Set Z = child(F; b).

(b) Mark the top vertex of F as visited (mark(F) := true) and store Z in
the temporary hash table with the top vertex as a key.

(c) Return Z.

�
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Compose

The compose operation substitutes a variable x in a function f1 with a function f2,
i.e., we get f1jx=f2 .

This operation is implemented with inspiration from the equation

f1jx=f2 = f2^f1jx=1 _ (:f2)^f1jx=0 (4.20)

which can be reformulated as

f1jx=f2 = ite(f2; f1jx=1; f1jx=0) (4.21)

This shows that to compute f1jx=f2 we �rst compute two restrict operations
of f1 and then we do an ite-operation. Since the implementation of the compose-
operation turns out to be trivial the presentation of the algorithm will be omitted.

Quanti�ers

The quanti�ers 9 and 8 are essential in the veri�cation process where variables
in relations are eliminated to project a solution set to fewer variables. See, e.g.,
Section 2.3.

Both types of quanti�ers use the same implementation, which is a generalization
of the restrict-operation previously described. The operation quantify(F; X; e) will
return the BDDs corresponding to

9X: F if e = 0

8X: F if e = 1

where F is the BDD and X is a list of variables that will be quanti�ed from F. Here
we will assume that X is included in the variable set of F.

The basic idea behind the algorithm is to sort the list X with least index �rst and
the highest index last, and then make a depth-�rst recursion where the subgraphs
of vertices, corresponding to a variable in X, are composed using the _ - or ^-
operators for 9 and 8, respectively.

Algorithm 4.3 Quanti�cation

Syntax: quantify(F; X; e).

Inputs: F is a BDD and X is a sorted list of variables. e is a Boolean ag indicating
whether 9 or 8 is to be performed.

Output: Return a BDD Z where the variables in X have been excluded.

1. If F is a constant, then return F.

2. If F has been visited before, then return the BDD Z stored in the temporary
hash table.

3. Drop variables in X with index less than index(F). By this we have that the
�rst variable in X will have the index closest to index(F).
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4. Make two recursive calls

lF = quantify step(low(F); X; e)

hF = quantify step(high(F); X; e)

5. If index(F) is strictly less than the �rst variable in X then �nd or create a vertex
Z in the unique table having index index(F) and lF and hF as subgraphs.

6. If index(F) is equal to the index of the �rst variable in X then call ite apply
to compute

Z = lF _ hF if e = 0

Z = lF ^ hF if e = 1

7. Mark the top vertex of F as visited and store Z in the temporary hash table.

8. Return Z.

The marking of visited vertices is made analogously as in Algorithm 4.2. �

Solutions

The structure of the BDD turns out to be very suitable for the problem of �nding
solutions, i.e., having a Boolean function f(x1; : : : ; xn) we want to �nd values
�1; : : : ; �n such that f(�1; : : : ; �n) = 1. The reason for this is presented by the
following lemma.

Lemma 4.4 Existence of Solutions in BDD Subgraphs
Every nonterminal vertex in a reduced function graph has a terminal vertex with
value 1 as a descendant. �

This can be easily proved by considering a vertex in a reduced function graph
with all its descendants equal to 0, which must be the zero terminal itself.

Therefore we can �nd a solution to a function represented by a BDD, by �nding
a path from the root vertex to the terminal 1. Starting from above we can follow
any edge from the root that is not connected to the zero terminal and repeat this
procedure for the next vertex and so on until we reach the terminal 1. For cases
where the solution path does not pass vertices for some variables in the BDD we
may chose solution values for these variables freely. Having n variables in the
function we will �nd a solution in at most n number of steps.

This is illustrated by an example.

Example 4.6 Finding Solutions in a BDD
Let us again consider the BDD from Example 4.4 which represents the Boolean function
f = x1^x2 _ :x4.
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Starting from the top vertex corresponding to x1 following (for example) the edge for
x1 = 0 we pass a complement marking and must therefore choose x4 = 0 to reach the
terminal vertex 1. This path corresponds to the solution

[x1; x4] = [0; 0] (4.22)

but since the set of variables also, by de�nition, includes x2 and x3 the \real" solution
set for this path is

[x1; x2; x3; x4] = f[0; 0; 0; 0]; [0; 0; 1; 0]; [0; 1; 0; 0]; [0; 1; 1; 0]g (4.23)

The number of steps to �nd a solution is in this case 2. The longest path takes 3 steps
which is equal to the number of variables included in this BDD.

The example above illustrates one possible implementation of the Pick-function
in De�nition 2.8.

To compute the set of all solutions we make depth-�rst recursion where each
completed path from the root down to the terminal one is printed out as a result.

We can also compute the number of solutions by traversing the BDD using
depth-�rst recursion where each vertex v is given the number of solutions �v for
the subgraph of v according to the formulas

�v = value(v) if v is terminal

�v = �low(v) � 2
index(low(v))-index(v)-1 + �high(v) � 2

index(high(v))-index(v)-1

The number of solutions of a BDD F is then �top(F).

Complexity

The worst case complexity of computing ite(F;G;H) is limited by the number of
combinations of vertices, i.e., O(jFj jGj jHj) where j � j denotes the number of vertices.
This is true provided that every vertex combination is evaluated only once, by the
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construction of the cache table and that look-ups in the unique table and cache
table take constant time. In practice [11], the typical performance is closer to the
size of the resulting BDD. Moreover, the most commonly used6 Boolean operations
like AND, OR and NOT are computed by an ite-operator where at least one of the
arguments is a terminal which gives better performance.

The complexity of the restrict operation is O(jFj log jFj) according to [15] for
a BDD F. In that case the restrict operation is implemented in two steps. The
�rst step is a recursive function that alters the edges connected to vertices corre-
sponding to the restricted variable, which gives an unreduced function graph. This
step has the complexity O(jFj). The second step reduces the function graph by a
nonrecursive procedure which uses sorting which has the complexity O(jFj log jFj).

The recursive Algorithm 4.2 only visits the vertices for the level of the restricted
variable and above, and only once for each vertex. The worst case complexity for
this algorithm, assuming a constant look up time in tables, is therefore O(jFj).

The compose operation performs two restrict operations and then an ite-operation
resulting in the worst case complexity of O(jF1 j

2jF2j).
For the quanti�cation operator we will only present a rough upper limit of the

worst case complexity. If we quantify all variables in the BDD F, then we have
to compute an ite-operation once in each one of the jFj vertices. The ite-operation
only used for ^ and _ operations has complexity O(jFj2), which for the complete
quanti�er operation gives O(jFj3). Better estimates of performance can probably
be found, though.

As a last comment on the complexity issues, it might be worth mentioning that
all BDD operations presented in this section have at least polynomial complexity
in terms of number of vertices in the BDD. Therefore the size of the BDD trees is
a more critical parameter to keep as low as possible if BDDs should be usable in
practice. By experience the author and others [16, 89] have found many cases where
BDDs is a tractable structure for representing Boolean functions. The choice of a
good variable ordering is a very important task since the BDD size is very much
dependent on variable orderings.

However, there are functions where the number of vertices for the correspond-
ing BDD will grow exponentially regardless of variable order, see [15]. One such
function is multiplication of integers represented by words of Boolean bits.

6At least in the perspective of this thesis.
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5

Polynomial Representation

In the previous chapter we presented decision diagrams to represent relations and
functions over �nite domains. The only algebra we have come across so far is the
Boolean algebra with Boolean variables and operators like ^, _ and :.

In this chapter we will present a polynomial framework that gives us an algebra
for general relations and functions over �nite domains, provided that some criteria
are ful�lled.

We will give an introduction to the polynomial representation, starting with a
brief review of concepts from commutative algebra. For a more thorough introduc-
tion to commutative algebra, see [30].

After the introduction we will present the special set of commutative algebra
result for �nite domains. These results are developed by Germundsson [40]. Similar
results can also be found in Le Borgne et al. [80].

A computational tool for manipulating sets of polynomial equations, Gr�obner
bases, is presented as well as an interpretation of how to map logic operations into
the polynomial framework.

See also [40] and [35, 36, 37, 38, 39] for more details on the polynomial repre-
sentation.

5.1 Basic Commutative Algebra

In this section we introduce some basic concepts from commutative algebra that
will be needed for the introduction of the polynomial representation. We begin by
de�ning abelian group, commutative ring, and �eld.

73
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De�nition 5.1 Abelian Group
An abelian group G is a set of objects and a composition map (denoted by �)
satisfying the following properties:

(i) Closure. For every a; b 2 G, c = a � b is in G.

(ii) Associativity. For every a; b; c 2 G,

a � (b � c) = (a � b) � c:

(iii) Commutativity. For every a; b 2 G,

a � b = b � a:

(iv) Identity. There is an identity element e 2 G that satis�es

a � e = e � a = a

for every a 2 G.

(v) Inverse. If a 2 G, then there is some element ~a 2 G such that

a � ~a = ~a � a = e:

�

Example 5.1 Abelian Group
An example of a �nite abelian group is the set f0; 1; : : : ; 9g under addition modulo 10.
The identity element is 0.

From the abelian group we can construct a commutative ring by imposing
additional structure.
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De�nition 5.2 Commutative Ring
A commutative ring R is a set of objects obeying two composition maps, addition
and multiplication, and satisfying the following properties:

(i) R is an abelian group under addition.

(ii) Closure. For any a; b 2 R, the product ab is in R.

(iii) Multiplicative identity. There is an identity element e 2 R that satis�es

ae = ea = a

for all a in R.

(iv) Commutativity. For every a; b in R

ab = ba:

(v) Associativity. For every a; b; c in R

a(bc) = (ab)c:

(vi) Distributivity. For every a; b; c in R

a(b+ c) = ab+ ac:

�

Example 5.2 Commutative Ring
An example of a commutative ring is the set of all polynomials in x with real-valued
coe�cients under polynomial addition and multiplication. The multiplicative identity is
the zero-degree polynomial, p(x) = 1.

From the commutative ring we can now de�ne a �eld.

De�nition 5.3 Field
A �eld k is a commutative ring where every element except 0 has a multiplicative
inverse, i.e.,

8a 2 Rnf0g; 9~a 2 R such that a � ~a = e: (5.1)

�

We say that a �eld is �nite if the number of elements in the set is �nite. A �nite �eld
is denoted Fq , where q is the number of elements in the set. An example of a �nite
�eld is the set f0; 1g under modulo-two addition and modulo-two multiplication.
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The following theorem states when it is possible to construct a �nite �eld. For
a more detailed investigation of this, see, e.g., [88].

Theorem 5.1 Finite Field
If q = pm where p is a prime and m 2 Z+, then there exists a �eld Fq with q

elements. �

We proceed by introducing the concepts of a polynomial ring and an ideal.

De�nition 5.4 Polynomial Ring
A polynomial ring (denoted k[Z] or k[z1; : : : ; zn]) is the set of all polynomials in
the variables z1; z2; : : : ; zn 2 Z with coe�cients from a �eld k. �

If the coe�cients are from a �nite �eld Fq we will use the notation Fq [Z] for the
polynomial ring.

We can now de�ne an ideal.

De�nition 5.5 Ideal
A subset I � k[z1; : : : ; zn] is an ideal if it satis�es:

(i) 0 2 I.

(ii) If f; g 2 I, then f+ g 2 I.

(iii) If f 2 I and h 2 k[z1; : : : ; zn], then hf 2 I.

�

Since ideals are a special subset of polynomial rings we will from now on use the
notation

I E k[z1; : : : ; zn] (5.2)

for an ideal I belonging to a polynomial ring k[z1; : : : ; zn].
The following lemma states that an ideal can be generated from a set of poly-

nomials.

Lemma 5.1 Generating Polynomials ([30])
Let f1; : : : ; fs be polynomials in k[z1; : : : ; zn] and set

hf1; : : : ; fsi =

�
sX

i=1

hifi j h1; : : : ; hs 2 k[z1; : : : ; zn]

�
: (5.3)

Then hf1; : : : ; fsi is an ideal in k[z1; : : : ; zn]. �

We will call hf1; : : : ; fsi the ideal generated by f1; : : : ; fs, and call f1; : : : ; fs gen-
erators of the ideal. In this thesis we will only consider �nitely generated ideals,
i.e., s is �nite.
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The variety of the ideal, V(I), denotes the set of common zeros for all polyno-
mials in I, i.e.,

V(I) = fz 2 kn : f(z) = 0 for all f 2 Ig: (5.4)

This set is the same as all common zeros of the generator polynomials f1; f2; : : : ; fs.
Ideals correspond to varieties as relations correspond to relation sets, according

to the informal de�nitions in Chapter 2.

Example 5.3

Let I = hz21 - 1; 5z2; (z1 - 1)(z1 + 2)i E F7 [z1; z2]. The variety V(I) is the set

V(I) = f(z1; z2) : (1; 0)g: (5.5)

All relations in a model of a DEDS can be represented by polynomials in Fq [Z].
This is a consequence of the fact that Fq [Z] is functionally complete, see [39]. One
relation can, however, be represented by an in�nite number of polynomials in Fq [Z].
A one-to-one correspondence between relations and polynomials is desirable and
this leads us to the introduction of a quotient polynomial ring in the next section.

5.2 The Quotient Polynomial Ring, Rq [Z]

Before de�ning the quotient polynomial ring we need some introductory de�nitions.

De�nition 5.6 Congruent Modulus ([30])
Let I E k[z1; : : : ; zn] be an ideal, and let f; g 2 k[z1; : : : ; zn]. We say that f and
g are congruent modulo I, written

f � g mod I:

if f- g 2 I. �

It can be proved (see [30]) that if the polynomials f; g 2 k[Z] are such that
f � g mod I for the ideal I E k[Z], then f and g de�ne the same function on
the elements of the variety V(I) of the ideal I.

Example 5.4 Congruent Modulus
Let I = hz3 - zi E F3 [z], f(z) = z4 and g(z) = z2, then

f(z) � g(z) mod I: (5.6)

The variety of the ideal is

V(I) = fz : 0; 1; 2g: (5.7)
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We can now check that f(z) = g(z) for all z 2 V(I). The identity holds trivially for
z 2 f0; 1g. The value f(2) can be computed as

f(2) = 2
4 mod 3 = 16 mod 3 = 1: (5.8)

In the same way we get g(2) = 1.

It can also be shown that the congruence de�nes an equivalence relation, which
means that the ring can be partitioned into a collection of disjoint subsets called
equivalence classes. These equivalence classes are used to de�ne the quotient.

De�nition 5.7 Quotient ([30])
The quotient of k[z1; : : : ; zn] modulo I, written

k[z1; : : : ; zn]=I

is the set of equivalence classes for congruence modulo I

k[z1; : : : ; zn]=I = fh j h = [f]I; f; h 2 k[z1; : : : ; zn]g (5.9)

where the equivalence class [f]I is

[f]I = fg 2 k[z1; : : : ; zn] j g � f mod Ig: (5.10)

�

From this we proceed to de�ne the main object of the polynomial approach to
our relational framework for DEDS, the quotient polynomial ring [40].

De�nition 5.8 Quotient Polynomial Ring ([40])
The quotient polynomial ring Rq [Z] is de�ned as

Rq [Z] = Fq [Z]=hz
q
1 - z1; : : : ; z

q
n - zni: (5.11)

�

We note that Rq [Z] contains partitions of all polynomials in Fq [Z]. The poly-
nomials are partitioned into equivalence classes by the ideal

hzq1 - z1; : : : ; z
q
n - zni: (5.12)

It is shown in [40] that we can represent any relation between the variables Z (where
Z = fz1; : : : ; zng and zi 2 Fq ) uniquely with a polynomial in Rq [Z], i.e., there is
a one-to-one correspondence between the relations and the equivalence classes in
Rq [Z]. Each equivalence class of polynomials in Rq [Z] can be represented by one
of its members in all operations on relations. For every equivalence class there is a
unique polynomial with degree less than q. Therefore the polynomial representing
an equivalence class in Rq [Z] can be chosen such that the degree and the \length"
of the polynomial has an upper limit. This gives some complexity advantages.

Polynomials in Rq [Z] will be one of the \languages" we use to represent rela-
tional models of DEDS.
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5.3 Representing Functions with Polynomials

To illustrate how to represent a function with polynomials, the theorem of func-
tional completeness from [39] will be presented.

If a polynomial ring is functionally complete, then there exists a corresponding
polynomial in that ring for all functions over the domain.

Theorem 5.2 Functional Completeness
The polynomial ring Fq [z1; : : : ; zn] is functionally complete.

�

Proof Let f(z1; : : : ; zn) : Fnq ! Fq be any function. The corresponding polyno-
mial fp(Z) 2 Rq [Z] is computed as

fp(Z) =
X
�2Fnq

L�(Z)f(�) (5.13)

where L�(Z) = L�1(z1) � � � L�n(zn) 2 Rq [Z] and

L�i(zi) =

Q
�2Fqnf�ig

(zi - �)Q
�2Fqnf�ig

(�i - �)
=

�
1 ; zi = �i

0 ; zi 6= �i
(5.14)

is the Lagrange interpolating polynomial, see, e.g., [108]. We then have f(�) = fp(�)

for all � 2 F
n
q . �

Example 5.5 Polynomial Representation of Functions over Finite Domains
Let the function J(x) be de�ned by the table (q = 7):

x 0 1 2 3 4 5 6

J(x) 3 2 1 0 1 2 3

In this case we can write (5.13) as

Jp(x) =
X
�2F7

L�(x)J(�) (5.15)

where J(�) is given by the table above and L�(x) is given by (5.14). The polynomial

L0(x) =
(x- 1)(x- 2)(x - 3)(x - 4)(x- 5)(x- 6)

(0- 1)(0- 2)(0 - 3)(0 - 4)(0- 5)(0- 6)
= 1+ 6x

6 (5.16)

evaluates to 1 only for x = 0. Computing L1(x); : : : ; L6(x) analogously, we get the result-
ing polynomial

Jp(x) = 3 + 3x + 6x
2
+ x

3
+ 2x

4
+ 6x

5
+ 2x

6 (5.17)

where Jp(x) 2 R7 [x]. Since q = 7, the degree of Jp(x) cannot be higher than 6. To compute
the values of Jp(x), just substitute x with its value and reduce the result modulo 7.
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5.4 Representation of Logical Expressions

In the previous section we showed how to represent a function f : Fnq ! Fq as a
polynomial in Rq [Z]. It is often useful to be able to represent logical expressions
and conditions in the formalism, i.e., to consider functions b : Fnq ! ftrue; falseg.
This could be done by interpreting the values of the polynomial b(Z) as

b(Z) = 0) true

b(Z) 6= 0) false
(5.18)

If a(Z); b(Z) 2 Rq [Z] represent two logical expressions, the result of AND-, OR-
and NOT-operations can be computed by algebraically manipulating the polyno-
mials a and b as

a(Z)^b(Z) = 1 - (1 - a(Z)q-1)(1 - b(Z)q-1) (5.19)

a(Z) _ b(Z) = a(Z)b(Z) (5.20)

:a(Z) = 1 - a(Z)q-1 (5.21)

where the NOT-operation maps zero on one. This gives a natural extension of the
logical operations to ideals in Rq[Z]. See [37] for further details.

For convenience we will sometimes use the logical operations !;$;9 and 8,
which can be expressed using the logical operations de�ned above. See Chapter 2.

We will now show the close connection between F2 [Z] and Boolean algebra, by
an example.

Example 5.6 Boolean Algebra Connection to F2 [Z]
The Boolean expression x1^x2 is the same as the polynomial

1- (1- x1)(1- x2) = x1 + x2 - x1x2 2 F2 [x1; x2]: (5.22)

For x1 _ x2 we get the polynomial x1x2 2 F2 [x1; x2]. Remember that 0 = true here.

The following example demonstrates a feature of the :-operation.

Example 5.7 Double Negations
Given the polynomial a(x), let b(x) be de�ned as

b(x) =

8<
:1 a(x) 6= 0

0 a(x) = 0
(5.23)

The polynomial b(x) can be generated as

b(x) = ::a(x) (5.24)

since the expression for NOT in (5.21) maps all zeros to ones.
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For simplicity and clarity it is sometimes convenient to express polynomials as
logical expressions. We can, e.g., express that a polynomial p 2 R3 [Z] by

p(Z) = z1^z2: (5.25)

Using the logical operation in (5.19), we interpret this as

p(Z) = z21 + z22 - z21z
2
2: (5.26)

5.5 Gr�obner Bases

For each ideal in a polynomial ring there are many possible sets of polynomials
that generate the ideal. To be able to decide if two ideals are equal, we need a
standard for choosing generators of an ideal. Gr�obner bases1 form one standard
representation for ideals, i.e., they provide a canonical form representing ideals.
The Gr�obner bases are in a sense a nonlinear generalization of Gaussian elimination.

5.5.1 Gr�obner Bases for General Polynomial Rings

Gr�obner bases can be regarded as the \simplest" representation of an ideal w.r.t.
some term ordering.

A monomial2 term ordering gives an order to all monomials in the polynomial
ring, and a way to de�ne the degree, deg(f(Z)), of a polynomial f(Z). For example
by lexicographic order y > x we mean a term ordering where, e.g.,

deg(y2x) > deg(yx5) > deg(yx4) > deg(x9): (5.27)

The leading term, lt(f(Z)), is the term in f(Z) with highest degree. The degree of
a polynomial f(Z) is

deg(f(Z)) = deg(lt(f(Z))): (5.28)

The Gr�obner basis of an ideal can be regarded as the set of generators which
has the lowest possible degree w.r.t. a given term ordering.

Given a polynomial p and a polynomial set F, the remainder polynomial r is
computed as

r = p-
X
f2F

�ff (5.29)

where �f are chosen to give r the lowest possible degree. Note that deg(r) < deg(f)
for all polynomials f 2 F. We say that p reduces to r w.r.t. F and denote this

p �!
F

r: (5.30)

1Only a brief introduction is given in this thesis. Further details about Gr�obner bases for
ideals in a general polynomial ring k[Z] can be found in [30], and for Rq[Z] in [40].

2A monomial is a term without coe�cient.
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If p �!
F

p we say that p is reduced w.r.t. F. If F is autoreduced then all polynomials

in F are reduced w.r.t. F.
S(p1; p2) denotes the S-polynomial of p1 and p2, and is computed as

S(p1; p2) = h1p1 - h2p2 (5.31)

where h1 and h2 are terms of lowest degree such that lt(h1p1) = lt(h2p2).
The polynomial set G = fg1; : : : ; gng is a Gr�obner basis for the ideal I if and

only if G � I, hGi = I, and

S(gi; gj) 2 I 8 i 6= j (5.32)

i.e., S(gi; gj) �!
G

0. To avoid further details we can use this result as a de�nition

of a Gr�obner basis.
A polynomial p is a member of an ideal I if and only if

p �!
G

0 (5.33)

where G is a Gr�obner basis of I.
To compute a Gr�obner basis we can use Buchberger's algorithm (see [30]):

Algorithm 5.1 Buchberger's Algorithm

Syntax: GB(F;O).

Inputs: F = ff1; f2; : : : ; fng is a set of generators for the ideal I = hFi, and O is a
variable ordering.

Output: A Gr�obner basis G = hg1; g2; : : : ; gmi.

1. Take the generators of I as candidates for a Gr�obner basis. Denote this set
G.

2. If all s-polynomials S(gi; gj) �!
G

0, i 6= j according to O, then G is a

Gr�obner basis.

3. Otherwise add to G the remainder r computed as

S(gi; gj) �!
G

r 6= 0

4. Make G autoreduced and go to 2.

�

An autoreduced Gr�obner basis G for an ideal is unique. If two ideals have the
same autoreduced Gr�obner basis w.r.t. to the same term ordering, then the ideals
are equal.

When there is no need to explicitly specify the term ordering we use the notation
GB(ff1; f2; : : : ; fng) for clarity.
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5.5.2 Gr�obner Bases in Rq [Z]

Gr�obner bases are used and de�ned in Rq [Z] in analogy with the general polynomial
ring k[Z], except that in every arithmetic operation on the polynomials in Rq [Z],

� degrees higher than or equal to q are reduced as zq ! z.

� coe�cients only take values in Fq .

The ring Rq [Z] is a quotient ring. Therefore the term ordering is not well
de�ned since the relation deg(fg) = deg(f) + deg(g) is not always ful�lled.

Example 5.8 Term Ordering in Rq [Z]
Let f = y4; g = y3 2 R7[y]. Then fg = y and therefore deg(fg) 6= 7.

To deal with this problem formally, the Gr�obner basis for an ideal I is computed in
the free (not quotient) polynomial ring Fq [Z] with the relations z

q
1 -z1; : : : ; z

q
n-zn

(see De�nition 5.8) included in the set of generators for the ideal I.

De�nition 5.9 Gr�obner Basis in Rq [Z]
The Gr�obner basis of the ideal I = hf1; f2; : : : ; fni E Rq [Z] for some given term

ordering is denoted

GBq(ff1; f2; : : : ; fng): (5.34)

�

As explained above the set fzq1 - z1; : : : ; z
q
n - zng is added to the generator poly-

nomials to give a true Gr�obner basis. This makes a signi�cant di�erence when
computing a Gr�obner basis of an ideal de�ned by a single polynomial3.

5.6 Functional Dependence

When computing a Gr�obner basis we get a set of polynomials relating the variables
to each other. When we use this for control design we are particularly interested
in whether a variable can be computed as a function of the other variables in the
system description.

Example 5.9 Functional Dependence
Let the ideals I1; I2 E R3 [y; x1; x2] have the varieties

V(I1) = f(y; x1; x2) : (1; 2; 3); (2; 3; 1); (1; 3; 0)g

V(I2) = f(y; x1; x2) : (1; 2; 3); (2; 3; 1); (1; 3; 1)g
(5.35)

3All ideals in Rq[Z] can be generated by a single polynomial, i.e., Rq[Z] is a principal polyno-
mial ring. See [39].
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respectively. Then for each value of (x1; x2) 2 V(I1)we have a unique value of y. Therefore
y can be written as a function of x1; x2. This is not true for I2 since V(I2) have two
di�erent values of y for the same value of (x1; x2).

In this section, we present our results that show that if a variable can be com-
puted as a function, then there exists a polynomial in the ideal representing this
function. Moreover, we can compute this polynomial using a Gr�obner basis com-
putation. These properties are both necessary and su�cient. Similar results have
been presented by Le Borgne et al. in [79] in the case of R3 [Z], but without proof.

We will �rst make a formal de�nition of functional dependence.

De�nition 5.10 Functional Dependence
Given an ideal I E Rq [y; x1; : : : ; xn] and the variety V(I), which is a set of elements
of the form (y; x1; : : : ; xn) 2 F

n+1
q , we say that the variable y is functionally

dependent w.r.t. I, if for each value of the variables x1; : : : ; xn in V(I) there exists
only one value of y. �

Lemma 5.2 Polynomials Representing Functional Dependence
Given an ideal I E Rq [y1; : : : ; yn; x1; : : : ; xm] there exist polynomials
p1; : : : ; pn 2 Rq [x1; : : : ; xm] such that

fy1 - p1; : : : ; yn - png � I (5.36)

i� y1; : : : ; yn are functionally dependent w.r.t. I. �

Proof The values of the functionally dependent variables y1; : : : ; yn in V(I) are
given as a function f : Fmq ! F

n
q , which can be represented by polynomials, using

(5.13), as

y1 = p1; : : : ; yn = pn: (5.37)

Since (5.37) gives no constraints on x1; : : : ; xn we have

V(hy1 - p1; : : : ; yn - pni) � V(I),
hy1 - p1; : : : ; yn - pni � I,
fy1 - p1; : : : ; yn - png � I:

(5.38)

�

Theorem 5.3 Gr�obner Basis and Functional Dependence
Let the ideal I = hf1; : : : ; fli E Rq [y1; : : : ; yn; x1; : : : ; xm]. The variables y1; : : : ; yn
are functionally dependent w.r.t I i� the autoreduced Gr�obner basis G of I with
lex-ordering y > x has the form

G = fy1 - h1; : : : ; yn - hn; v1; v2; : : : g (5.39)

where the polynomials hi; vj 2 Rq [x1; : : : ; xm]. �
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Proof If the Gr�obner basis G has the form (5.39) the claim follows directly from
De�nition 5.10.

Conversely, if y1; : : : ; yn are functionally dependent w.r.t. I, then by Lemma
5.2 we have

fy1 - p1; : : : ; yn - png � I (5.40)

for some pi. LetA = fy1-p1; : : : ; yn-pn; f1; : : : ; flg. Then hAi = I = hf1; : : : ; fli,
and we can �nd a Gr�obner basis for I by applying Buchberger's algorithm on A.
After making A autoreduced we have

A = fy1 - ~p1; : : : ; yn - ~pn; ~f1; : : : g (5.41)

where ~pi; ~fj 2 Rq [x1; : : : ; xm]. For all s-polynomials computed from A we have

S(ai; aj) �!
A

r 2 Rq [x1; : : : ; xm]: (5.42)

Therefore no new polynomials containing the variable yi can be included in the
generator set produced by the algorithm. Knowing that an autoreduced Gr�obner
basis is unique and G = GBq(ff1; : : : ; flg) = GBq(A), G has the form stated in
Equation (5.39). �

5.7 Variable Domains

Consider a polynomial p(Z) 2 Rq [Z] where a variable zi 2 Z will not take values
outside the interval f0; : : : ; ri - 1g, where ri < q. We say that for some values of
zi there are \don't cares". This will help us to simplify4 the polynomial p(Z) by
�nding the simplest polynomial preserving the values of p(Z) for all values of zi
that are not \don't care". Compare with the notion of variable range, range(x),
used for decision diagrams in Chapter 4.

Let us compute a polynomial that is true only for those values of zi that are
not \don't care". We make the following de�nition.

De�nition 5.11 Lambda Polynomial
Let �riq (zi) 2 Fq [Z], zi 2 Z, ri < q be a polynomial such that

�riq (zi) =

�
true ; zi = 0; : : : ; ri - 1

false ; zi = ri; : : : ; q- 1
(5.43)

�

As mentioned in Section 5.4 true is interpreted as 0, whereas false is interpreted
as 6= 0.

How to use �pq(zi) for simplifying p(Z) is shown by an example.

4Here simplify means to reduce the degree of the polynomial and to reduce the number of
monomials.
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Example 5.10 Simpli�cation using Lambda Polynomials
Let the variables u; d 2 F3 be such that the variable u takes values only from f0; 1g. This
means that u = 2 is a \don't care" value.

Let a polynomial represent the function given below.

d u f(d; u)

0 0 0

0 1 0

1 0 0

1 1 1

2 0 1

2 1 1

One corresponding polynomial, f(d; u) 2 R3 [d; u], is

f(d; u) = d+ 2d
2
+ 2d

2
u + 2du

2
: (5.44)

Since u is constrained to f0; 1g we have from (5.43)

�
2
3(u) = u

2
- u (5.45)

and the function f(d; u) can be simpli�ed as

f(d; u) �!
GB�

d+ 2d
2
+ 2d

2
u + 2du (5.46)

where GB� = GB3(f�
2
3(u)g) = fu2 - ug

In order to collect all �-polynomials corresponding to variables containing a
"don't care" value we make the following de�nition.

De�nition 5.12 Lambda Polynomial Set
Let �q denote the set containing all �riq (zi) corresponding to zi 2 f0; : : : ; ri - 1g

where ri < q. �

We can now state the main simpli�cation rule:
To compute the simpli�ed polynomial of p(Z), do the following

reduce p(Z) w.r.t. GBq(f�qg): (5.47)

A polynomial de�ned as in De�nition 5.12 can also be used to eliminate false
solutions outside the valid domain. Given some relation p(Z) � Rq [Z] and a set
of �-polynomials �q, we regard the ideal hp(Z); �qi in order to obtain the correct
set of solutions to p(Z) = 0.

Example 5.11 Eliminate False Solutions
Consider the function from Example 5.10. By solving the equation

d+ 2d
2
+ 2d

2
u + 2du

2
= 0 (5.48)
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we obtain the following set of solutions:

f(d; u) : (0; 0); (0; 1); (0; 2); (1; 0); (1; 2); (2; 2)g: (5.49)

Since u is binary the solutions where u = 2 are obviously false. If we instead consider the
ideal

I = hd + 2d
2
+ 2d

2
u+ 2du

2
; u

2
- ui (5.50)

we will get the variety

V(I) = f(d; u) : (0; 0); (0; 1); (1; 0)g (5.51)

which contains only correct solutions.

Instead of computing GBq(f�
ri
q (zi)g) we can directly construct a �-polynomial

that is a Gr�obner basis.

Lemma 5.3 Irreducible Lambda Polynomials
For the �-polynomial

�riq (zi) =
Y

0�k<ri

(zi - k) (5.52)

we have that GBq(f�
ri
q (zi)g) = f�riq (zi)g, i.e., Equation (5.52) gives a Gr�obner

basis. �

Proof Since GBq(f�
ri
q (zi)g) corresponds to a Gr�obner basis of two univariate

polynomials �riq (zi) and z
q
i -zi in the same variable we actually perform a greatest

common divisor computation.
We compute GBq(f�

ri
q (zi)g) from the general Gr�obner basis

GB(f�riq (zi); z
q
i - zig): (5.53)

We know that

z
q
i - zi =

Y
0�k�q

(zi - k): (5.54)

This means that zqi - zi can be written as f(zi)�
ri
q (zi), i.e., h�riq (zi); z

q
i - zii =

h�riq (zi)i. Then a polynomial with ri roots must have the degree ri, and by con-
struction the leading coe�cient will be 1 corresponding to the autoreduced Gr�obner
basis. �
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Example 5.12

All Gr�obner basis of �-polynomials in R7[z] are listed below:

r �rq(z)

1 z

2 6 z+ z2

3 2 z+ 4 z2 + z3

4 z+ 4 z2 + z3 + z4

5 3 z+ 6 z2 + 4 z4 + z5

6 6 z+ z2 + 6 z3 + z4 + 6 z5 + z6

7 6 z+ z7

5.8 Gr�obner Basis Tools

The Gr�obner Basis algorithm de�ned in Section 5.5.1 can be used as a compu-
tational engine in which we implement the operations needed for our relational
framework.

Arithmetic operations on functions represented by a single polynomial are triv-
ially implemented. Relational operations like < cannot be represented by opera-
tions on these polynomials since there is no ordering for elements in Fq . Equality
of two polynomials f(x) = g(x) can be given a canonical form by computing the
Gr�obner basis

GBq(ff(x) - g(x)g) (5.55)

5.8.1 Logic operations

Here we will present how to implement the ^, _ , and : operations as well as the
quanti�ers 9 and 8. As stated in Section 5.4 we regard = 0 as true and 6= 0 as
false.

The inputs to the operations are ideals hAi and hBi represented by the set
of generators A = fa1; : : : ; asg and B = fb1; : : : ; btg, respectively. Ideals and
polynomials belong to the quotient ring Rq [Z].

For proofs of the following statements see [40].

And-operation

Since the^-operation corresponds to intersecting the solution sets, i.e., the common
roots, we have

hAi^hBi = GBq(A [ B): (5.56)
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Or-operation

This operation corresponds to the union of solution sets. The _ -operation is
computed as

hAi _ hBi = GBq(A� B) (5.57)

where A� B is the cross product of the polynomial sets which produces the set of
pairwise products of polynomials from A and B.

Not-operation

To compute the :-operation on a single polynomial we have from Section 5.4:

:ai = 1 - a
q-1
i (5.58)

followed by reducing the result by a Gr�obner basis computation. For an ideal we
do the following:

:hAi = GBq(f(1 - a
q-1
1 ) � � � (1 - aq-1s )g) (5.59)

since the complement of an intersection is the union of complements.

Quanti�cation

The existential quanti�cation like 9y: A(x; y) performs a mapping of the two di-
mensional solution set of A(x; y) = 0 into one dimension, in this case the x-axis.

By choosing a special lexical ordering of the variables when computing a Gr�obner
basis we will have the polynomials representing the projection included in the re-
sulting polynomial set.

Having the variable sets X = fx1; : : : ; xsg and Y = fy1; : : : ; ytg, and the ideal
hA(X; Y)iE Rq [X; Y], the existential quanti�er is computed as

9Y: hA(X; Y)i = hGBq(A(X; Y); Y> X) \ Fq [X]i (5.60)

which will return an ideal in Rq [X] where the variety corresponds to the projection
of A(X; Y) on X.

Unfortunately there is no similar way to compute 8Y:A(X; Y). Therefore we for-
mulate the universal quanti�er from the existential one and by using the :-operator.

8Y: hA(X; Y)i = h:(9Y: (:A(X; Y)))i (5.61)

It is not necessary to reduce the inner :-operation by a Gr�obner basis computation.
Therefore the universal quanti�er only needs two Gr�obner basis computations.

Example 5.13 Logic Operations using Gr�obner Bases
This example is presented as a Mathematica notebook (ver 3.0). The total time of the
computations in this notebook is 15 seconds on a Sun Sparc 20. % refers to previous
output.



90 Polynomial Representation

We will de�ne GB to be the lexical Gr�obner basis (x1 > x2 ) for the variables x1 and
x2 in the quotient polynomial ring R5[x1; x2] . GB takes a list of generator polynomials
as input.

In[1]:= GB[poly ] :=

GroebnerBasis[poly [ fx51 - x1; x
5
2 - x2g; fx1; x2g; Modulus! 5];

The ^ -operation is computed as a Gr�obner basis of the union of the generators.

In[2]:= gbAnd[A ; B ] := GB[A [ B];

The _ -operation is computed as the Gr�obner basis of all pairwise multiplications of A
and B. Outer performs a matrix of two cross multiplied vectors. This matrix is then
attened to a list.

In[3]:= gbOr[A ; B ] := GB[Flatten[Outer[Times; A; B]]];

For the : -operation we apply the function 1 - p4 on the generators and then take the
product of them together.

In[4]:= gbNot[A ] := GB[fApply[Times; Map[(1 -#14&); A]]g];

Compute the relations (x1== 0)^(x2== 4) _ (x1== 1)^(x2== 3)

In[5]:= R1 = gbOr[gbAnd[fx1g; fx2 - 4g]; gbAnd[fx1 - 1g; fx2 - 3g]]

Out[5]= f2+ 3x2 + x22; 1 + x1 + x2g

and (x1== 1)^(x2== 3) _ (x1== 2)^(x2== 3).

In[6]:= R2 = gbOr[gbAnd[fx1 - 1g; fx2 - 3g]; gbAnd[fx1 - 2g; fx2 - 3g]]

Out[6]= f3+ 4x2; 2+ 2x1 + x21g

Check if these relations has the correct set of solutions:

In[7]:= Solutions[R1]

Out[7]= ff0; 4g; f1; 3gg

In[8]:= Solutions[R2]

Out[8]= ff1; 3g; f2; 3gg

The Gr�obner basis of R1 ^ R2 :

In[9]:= gbAnd[R1; R2]

Out[9]= f3+ 4x2; 1+ 4x1g

In[10]:= Solutions[%]
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Out[10]= ff1; 3gg

The Gr�obner basis of R1 _ R2 :

In[11]:= gbOr[R1; R2]

Out[11]= f2 + 3x2 + x22; 3x1 + 4x1x2; 4+ x1 + 3x21 + 4x2g

In[12]:= Solutions[%]

Out[12]= ff0; 4g; f1; 3g; f2; 3gg

The Gr�obner basis of :R1 :

In[13]:= gbNot[R1]

Out[13]= f4x2 + x52; 4x2 + 2x1x2 + 2x21x2 + 2x31x2 +

3x41x2 + x22 + 4x1x
2
2 + 4x21x

2
2 + 4x31x

2
2 + 3x41x

2
2 + 4x32 +

3x1x
3
2 + 3x21x

3
2 + 3x31x

3
2 + 4x41x

3
2 + x42 + x1x

4
2 + x21x

4
2 + x31x

4
2;

4x1 + x51g

In[14]:= Solutions[%]

Out[14]= ff0; 0g; f0; 1g; f0; 2g; f0; 3g; f1; 0g; f1; 1g; f1; 2g; f1; 4g;

f2; 0g; f2; 1g; f2; 2g; f2; 3g; f2; 4g; f3; 0g; f3; 1g;

f3; 2g; f3; 3g; f3; 4g; f4; 0g; f4; 1g; f4; 2g; f4; 3g; f4; 4gg

The universe of discourse in this case has 52 elements. The relation R1 has 2 solutions.
Therefore the number of solutions of :R1 is:

In[15]:= Length[%]

Out[15]= 23

We will make the following implementation of the 9-operator, where poly is the generator
set, q is the quanti�ed variable and p is all the other variables.

In[16]:= gbExist[poly ; q ; p ] := Select[

GroebnerBasis[poly [ fx51 - x1; x
5
2 - x2g; fq; pg; Modulus! 5];

Variables[#1] == fpg&];

And for the universal quanti�er:

In[17]:= gbForAll[poly ; q ; p ] := gbNot[gbExist[gbNot[poly]; q; p]];

The Gr�obner basis of 9x2:R1 is then computed to:

In[18]:= gbExist[R1; x2; x1]
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Out[18]= f4x1 + x21g

In[19]:= Solutions[%]

Out[19]= ff0g; f1gg

But for 8x2:R1 we get:

In[20]:= gbForAll[R1; x2; x1]

Out[20]= f1g

The ideal h1i has no solutions and represents the relation identical to false. Finally we
will reveal the implementation of Solutions :

In[21]:= Solutions[pset List] :=

Module[fiter; vars = Union@@Variables=@psetg;

iter = Sequence@@(f#; 0; 4g&=@vars);

Position[

Table[max@@(Mod[#1; 5]&)=@pset; Evaluate[iter]]; 0] - 1

];

5.8.2 Complexity

The complexity of Gr�obner basis computations is large in general. As always it
is important to reduce the number of variables as much as possible. The number
of variables is heuristically more important for the complexity than the size of the
variable domains. Therefore Gr�obner bases might be a good choice if we have large
variable domains.

Gr�obner basis computations for polynomial sets of Rq [Z] show much better
complexity �gures than general polynomials, due to the fact that there is an upper
limit on the degree of the polynomials in Rq [Z]. Normally q and �q are known a
priori for a speci�c problem. Then the Gr�obner basis algorithm can be optimized
so that the result of every step in the algorithm is reduced according to the zero-
polynomials and �q.

More information on Gr�obner bases and complexity for �nite �eld problems can
be found in [40].
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IDD & IMD

In Chapter 4, the use of reduced function graphs was discussed mainly in the case
of Boolean functions and relations, which could e�ciently be represented by BDDs.
The Boolean representations are very important in many cases, especially for ver-
i�cation of hardware, where the function of digital implementations are veri�ed.

However, in the case of having conceptual models for general �nite domains
we need to search for better representations. Often, we need to represent integer
relations directly without having to bother about Boolean bit representations of
integers. Moreover, the complexity of the representations often depends on the
number of variables included in the function. Therefore we will gain complexity
advantages if integer entities are represented by single variables. We also hope that
by using the internal structure of entities in models and by tailored representation
for every entity, we keep the structure of the model unchanged which in turn will
reduce complexity contributions from improper representations.

This chapter contains the main results of this thesis regarding representational
issues. First we will introduce the integer decision diagram (IDD), which is an
extension to the BDD structure. The IDD can represent any �nite domain relation
or function, in particular the arithmetic functions like addition and multiplication.
Upper limits of the complexity for addition and multiplication are also proved,
e.g., the number of vertices grows polynomially with the number of variables for
IDDs representing multiplication. Moreover, the IDD structure supports the same
features as BDDs for e�cient computation of relations, i.e., the Boolean operators
are extended to relations including non-Boolean entities. The IDDs are e�ciently
implemented in a C code package which is linked to Mathematica and integrated
into our tools for modeling and analysis of DEDS. The Landing Gear project,
presented in Chapter 7, is used as a benchmark for the IDDs.

In this chapter, we will also present how to e�ciently represent integer relations
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and functions by using a reduced graph representation of polynomials. This means
that relations and functions are �rst represented mathematically by polynomials
in Rq [Z], see Chapter 5, then the polynomials are represented by reduced function
graphs. The �rst form of this type of representations is the reduced recursive
polynomial expression (RRPE) [40]. We will introduce a new form which we will
call integrated monomial diagram (IMD) for reasons that will become clear later
on in this chapter. The purpose of representing polynomials by reduced function
graphs is to represent unique polynomial subexpressions only once in a graph. This
means for instance, that the size of an IMD is less than ordinary fully expanded
polynomials. The IMD will utilize the reuse of subexpressions even further by
separating integer factorials. It will also allow di�erent value ranges of the variables
which means that the polynomials can be tailored to �t speci�c variable domains.
(Compare with the �-polynomials in Section 5.7.)

These tools of graph represented polynomials have not yet been implemented
and tested in real applications. However, we know that they are e�cient for
arithmetic operations like, addition and multiplication, where we have polynomial
growth with respect to the number of variables.

6.1 Integer Decision Diagrams

In this section we will consider functions f : A ! B as represented by reduced
function graphs called integer decision diagrams (IDDs). Here A is a vector of
�nite sets and B is a �nite scalar.

Example 6.1 Functions over Finite Domains
For the function f(x1; x2; x3); f : A! B we have the domains

A = fZ2;Z3;Z4g (6.1)

and

B = Z2: (6.2)

This means that the values of the arguments are

x1 2 f0; 1g; x2 2 f0; 1; 2g; x3 = f0; 1; 2; 3g (6.3)

and that f(x1; x2; x3) 2 f0; 1g.

The motivation of the BDD structure was the Shannon expansion which was
recursively applied for the terms of the Boolean expression according to some vari-
able order. In the case of integer functions over �nite domains we do not have any
algebraic formulation in general. Therefore we cannot extend the Boolean algebra
directly.

Instead we may just consider the integer function as represented by a table from
which we extract some structure according to a variable ordering. To do this we
need to de�ne the Lagrange function.



6.1 Integer Decision Diagrams 95

De�nition 6.1 Lagrange Function
The Lagrange function1 denoted Lk(x) is de�ned as

Lk(x) =

8<
:1 k = x

0 k 6= x
(6.4)

�

Instead of using the Shannon expansion we may write:

f(x1; : : : ; xn) = L0(x1) f(0; x2; : : : ; xn)| {z }
f1
0
(x2;::: ;xn)

+ � � �

+ Ld1(x1) f(d1; x2; : : : ; xn)| {z }
f1
d1
(x2;::: ;xn)

f10(x2; : : : ; xn) = L0(x2) f
2
0;0(x3; : : : ; xn) + � � �

+ Ld2(x1) f
2
0;d2

(x3; : : : ; xn)

...

fnd1;::: ;dn-1;0 = c0

...

fnd1;::: ;dn-1;dn = cm-1

where di = range(xi) - 1 and the number of constant terminals cj is

m =
Y

0<i�n

range(xi) (6.5)

The function f(x1; : : : ; xn) is divided into subexpressions with progressively
fewer variables. Each subexpression can be regarded as a subgraph (in this case a
subtree) in the fully expanded function tree of f(x1; : : : ; xn).

Analogously to the BDDs we can represent f(x1; : : : ; xn) with a reduced func-
tion graph where identical subexpressions are represented by a single subgraph.

We will call this reduced function graph for functions over �nite domains, integer
decision diagram and de�ne it as follows.

De�nition 6.2 Integer Decision Diagrams
An integer decision diagram is a reduced function graph (de�nitions 4.1 and 4.5)
where the number of terminals M is arbitrary and the variable domain range(xi)
may be chosen arbitrarily for each variable xi.

1The name Lagrange function is natural considering the Lagrange interpolation polynomial in
Chapter 5.3.
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Remark:

� A BDD is a special case of an IDD.

� From Theorem 4.1 we know that an IDD is a canonical form.

�

The connection between IDDs and functions follows immediately from De�-
nition 4.2 but may be restated using the Lagrange function in order to obtain
something more similar to Equation (4.7).

De�nition 6.3 IDD to Function Connection
An IDD G having root vertex v denotes a function fv de�ned recursively as

1. If v is a terminal vertex, then fv = value(v) 2 f0; : : : ;M- 1g.

2. If v is a nonterminal vertex with index(v) = i, then fv is the function

fv(x1; : : : ; xn) = L0(xi) fchild(v;0)(x1; : : : ; xn) +

L1(xi) fchild(v;1)(x1; : : : ; xn) + � � �+

Lrange(xi)-1 fchild(v;range(xi)-1)(x1; : : : ; xn)

Here we assume that the maximum index of vertices in G is n. �

Example 6.2 IDD
Consider the two variables a 2 Z3 and b 2 Z6, and the function

f(a; b) = (a
2
+ b) mod 4 (6.6)

which is represented by the following IDD:

0 1 2 3

0
1

2 3

4

5

0
1

23

4

5

0 1

2

a

b

Each path from the root vertex down to a terminal corresponds to speci�c values of the
arguments a and b. There is only one copy of each vertex corresponding to a unique
expression, e.g., for both a = 0 and a = 2 we have, due to the modulo operation, the
same expression in b.
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Nr Name Interpretation Simpli�cation Com.

1 Plus(a; b) min(a+ b;M- 1) a = 0) b yes

2 PlusMod(a; b; c) a+ b mod c, c �M a = 0) b mod c yes

3 Minus(a; b) max(a- b; 0) b = 0) a no

4 Times(a; b) min(a � b;M- 1)
a = 0) 0

a = 1) b
yes

5 TimesMod (a; b; c) a � b mod c, c �M
a = 0) 0

a = 1) b mod c
yes

6 Mod(a; c) a mod c, c �M no

7 Equal(a; b) if a = b then 1 else 0 yes

8 LessThan(a; b) if a < b then 1 else 0 b = 0) 0 no

9 LessThanEQ(a; b) if a � b then 1 else 0 b = M- 1) 1 no

Table 6.1: Arithmetic and relational operations in IDDs. The column
\Simpli�cation" shows rules that give faster recursion termination. If the
operation is commutative ('Com.') only the simpli�cation rules for a is
presented.

6.1.1 Operations and Algorithms

The set of operations that can be used for IDDs includes all operations from BDDs
such as the ite-operator. In addition, we will also implement arithmetic operations
like plus and times as well as relational operations like > and = (equality).

Arithmetic and Relational Operations

Unfortunately we cannot �nd a unifying three input operator for the arithmetic
operations as we did for the BDDs by de�ning the ite-operator. We can of course de-
�ne a caseof -operation that follows closely the IDD structure, see Equation (6.15),
but we will not gain anything in doing that for the arithmetic operations. How-
ever, the implementations of the arithmetic operations are very similar and we will
present all implementations together in one algorithm. The implemented arith-
metic and relational operations are presented in Table 6.1. Note that we interpret
0 = false and 1 = true as for the BDDs.

Since we have a �nite domain we have to be careful how to interpret the behavior
of the operators at the limits of the integer range speci�ed. Note that we, at
this point, have not used any of the algebraic properties from Chapter 5 such as
representing the �nite domain as a ring or as a �eld. The arithmetic operations of
the IDD are regarded as in Z, which means that we use the normal interpretation
except for the endpoints. Table 6.1 describes this interpretation in detail.

The main algorithm for implementing the arithmetic operations applicable to
IDDs follow the same sketch as Algorithm 4.1 for the ite-operation. A depth-�rst
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recursion is used which utilizes the unique table and cache table in the same way
as for the BDDs.

First we try to make some simpli�cation and checks for terminal cases. The
recursion stops when all arguments are terminals but most often the recursion is
terminated before this happens due to the simpli�cation rules. See Table 6.1.

Then the arguments are sorted according to the indexes of the arguments. This
is possible only for the commutative operations (see Table 6.1). For generating
unique hash values for the operators we need to add the operator identity to gen-
erate good cache keys. Compare this with the caching of ite(F;G;H)-operations
where the three arguments uniquely speci�ed the operation.

For a general arithmetic operation op(a; b; c) in IDDs we use the BDD hash
key function key(F;G;H) with the following values of F;G and H:

F = op + 16 � c (6.7)

G = a (6.8)

H = b (6.9)

where c is the modulus for the operations PlusMod ;TimesMod and Mod . The
number op uniquely identi�es the arithmetic and relational operation, see table 6.1.
In this way we have a key function for operation identity and for two arguments.
But we have to separate evaluations of the same operations and arguments using
di�erent modulus. This is done by (6.7) which allocates the 4 least signi�cant bits
to the operation identity op and the remaining 28 bits to the modulus. Since there
are only 9 operations, 4 bits are enough. The largest modulus permitted is then
282 - 1 = 268435455.

Relations and Complement Edges

To reduce the number of vertices in a reduced function graph the technique of
using the same graph for f and :f was introduced for BDDs in Section 4.2. To
distinguish between f and :f a complement marking of edges was used.

In the case of IDDs we will also use this method to represent relations. A
relation in the form of an equation

f(x1; : : : ; xn) = 0 (6.10)

can be regarded as a function returning either 0 or 1, which in turn can be re-
garded as false and true, respectively. The variables x1; : : : ; xn may belong to
any �nite domain but the \value" of the relation f = 0 is always 0 and 1. The
complement of Equation (6.10) di�ers only in that when the value of (6.10) is 0
then the complement is 1 and vice versa. This means that we can represent both
f = 0 and :(f = 0) by a single graph for the IDDs as well.

The method to implement this is to add the attribute bool (v) to the IDD vertex
v. This attribute is used as follows:

� When bool (v) = true, the function fv of v only evaluates to 0 or 1.
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� When bool (v) = false, there exists a choice of the arguments of fv such that
the value of fv is neither 0 nor 1.

De�nition 6.4 Boolean Subgraph of IDD
The IDD subgraph rooted by v is called Boolean if the attribute bool (v) = true,
where bool is recursively de�ned as

1. If v is a terminal then

bool(v) =

8<
:true value(v) 2 f0; 1g

false value(v) =2 f0; 1g
(6.11)

2. If v is a non-terminal then

bool(v) =
^

0�i<range(v)

bool(child(v; i)) (6.12)

Remark:

� A representation of a relation always has bool(v) = true for all vertices in
the graph.

� All function graphs having only 0 and 1 as terminals, will have bool(v) = true

for all vertices.

�

The last remark may seem as a disadvantage. For example, the function de�ned
as

f(x) = g(x) mod 2 (6.13)

where g(x) is an arbitrary function over some �nite domain, will only evaluate
to the values 0 or 1 and therefore be a Boolean function, which is probably not
the intention. However, we must preserve a canonical representation and from the
view of the IDDs there is no di�erence between (6.13) and the relation f(x) = 1.
On the other hand, since Boolean relations are represented by 0 and 1 it is rather
immediate what will happen if a Boolean function is an input to an arithmetic
operation even though the result of course is not Boolean in general.

The relational operations Equal , LessThan and LessThanEQ in Table 6.1 will
always return Boolean IDDs as results.

Example 6.3 Complement Edges in IDD
Consider the two variables a 2 Z3 and b 2 Z6, and the relation

(b > 2a)^(b < 4) (6.14)

which is represented by the following IDD:
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0 1

0
1

2

34

5

0

1

2

3

4

5

0 1

2

a

b

The complement edges are showed as edges terminated by a ring. The root vertex is
also complemented which means, e.g, that the edge corresponding to a = 2 should be
interpreted as having the value 0 (false).

Boolean operators can easily be extended to work with relations of variables of
any domain. The only di�erence is that the recursion of the ite-algorithm must
follow all range(v) edges going from v.

The extended ite-algorithm can be reformulated as follows.

Algorithm 6.1 Extended ITE Algorithm

Syntax: ite apply(F;G;H)

Input: IDD references F,G,H.

Output: A IDD reference to the resulting IDD, Z.

1. Simplify and check for terminal cases according to (4.15) and (4.16).

2. Sort the arguments F,G,H with top variable �rst according to (4.18).

3. Transform the complement edges of F,G,H to standard form according to
(4.17). If F is complemented set the ag c = true and remove the complement
edge from F.

4. Look up in the cache table for a precomputed result Z. If found then if
c = true return :Z, else return Z.
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5. Let t be the top index: t = Min(index(F); index(G); index(H)) and start the
recursion

for i := 0 to range(t) - 1

begin

fi :=

8<
:child(F; i) t = index(F)

F else

gi :=

8<
:child(G; i) t = index(G)

G else

hi :=

8<
:child(H; i) t = index(H)

H else

zi := ite apply (fi; gi; hi)

end

6. Let Z = FindOrMake(t; z0; : : : ; zrange(t)-1).

7. Store an entry in the cache table for vertex Z and the tuple (F;G;H) as the
key.

8. If c return :Z, else return Z.

�

The function FindOrMake handles the update of the unique table, the comple-
ment edges and the bool -attribute.

Algorithm 6.2 Find or Make IDD Vertex

Syntax: FindOrMake(index ; z0; : : : ; zn-1).

Input: The index of the root variable index , and n IDD subgraphs referenced by
zi.

Output: An IDD reference to the resulting IDD, Z.

1. If all subgraphs are identical z0 = � � � = zn-1, then return Z = z0.

2. Create a new vertex v 0 with index index .

3. Let bool(v 0) = true i� bool(zi) = true for all i, according to De�nition 6.4.

4. If z1 is a complemented edge, let c = true and invert the complements on
all edges z0; : : : ; zn-1.

5. Let child(v 0; i) = zi; 8 i 2 f0; : : : ; n - 1g.
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6. Check if v 0 is in the unique table. If found, remove v 0 and let Z refer to the
vertex found. If not found, put v 0 in the unique table and let Z = v 0.

7. If c return :Z, else Z

�

The BDD operations restrict, compose and the quanti�cation operators are
extended in the same way to IDDs. From the compose- and the restrict operations
we can formulate a caseof operation

Z = caseof (F;G0; G1; : : : ; Grange(F)-1) (6.15)

which computes the function Z = GijF = i, i.e., the value of F chooses the corre-
sponding Gi. The caseof -operation for IDDs is what the ite-operation is for BDDs,
since the caseof -operation mimics the structure of IDD vertices in the same way
as the ite-operation does for BDDs.

The Arithmetic Algorithm

We can now formulate the recursive algorithm for the arithmetic operations in
Table 6.1.

Algorithm 6.3 Recursive Arithmetic IDD Operators

Head: arith apply(op; A; B).

Input: Operation identity op and IDD references A;B.

Output: A reference to the resulting IDD, Z.

1. Simplify and check for terminal cases according to Table 6.1.

2. Sort the argumentsA;B with top variable �rst if op is commutative according
to Table 6.1.

3. Look up in cache table for a precomputed result Z. If found, return Z.

4. Let t = min(index(A); index(B)) and do the recursion:

for i := 0 to range(t) - 1

begin

ai :=

8<
::Achild(A; i) t = index(A)

A otherwise

bi :=

8<
::Bchild(B; i) t = index(B)

B otherwise

zi := arith apply(op; ai; bi)

end

where the operator :v inverts the complement marking if v is complemented.
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5. Let Z = FindOrMake(t; z0; : : : ; zrange(t)-1).

6. Store an entry in the cache table for vertex Z and the tuple (op ; A; B) as key.

7. Return Z.

�

6.1.2 Complexity

The complexity of arithmetic and Boolean operations follows the worst case esti-
mates presented in Section 4.2.1 for BDDs. The reason for this is the use of unique
and cache tables that prevent the algorithms from recomputing old results and
revisiting vertices in the recursions. Therefore we know that the operations for
IDDs have a polynomial complexity with respect to the number of IDD vertices.

Since the complexity depends strongly on the number of vertices we will discuss
how addition and multiplication of integer variables increases the size of the result-
ing IDD. For addition we can easily derive an explicite formula describing how
variable ranges and the number of variables a�ect the IDD size. For multiplication
we will only give an estimate.

If we �rst consider addition we have the following result.

Lemma 6.1 Complexity of IDD Additions
The number of vertices Sadd (n;D) (not including terminals) of an IDD representing
an addition of n variables with the same variable domain D is given by

Sadd (n;D) =
n

2
(n(jDj- 1) - jDj+ 3) (6.16)

�

Proof The idea behind the proof is to build the IDD with n variables from the
IDD with n- 1 by replacing the terminals at the bottom with new vertices for the
n:th variable. Induction then gives the result. Let d = jDj.

For n = 1 we get the variable itself and therefore Sadd (1;D) = 1. The number
of terminals T1 is d.

Now let n = m, where Sadd (m;D) = Sm and the number of terminals is Tm.
Since addition does not cancel terms we must add a new nonterminal with index
m+ 1 for every terminal when adding the (m+ 1):th variable to the IDD. We get
Sm+1 = Sm +Tm. The number of new terminals Tm+1 will increase by d- 1 since
we can add the value d - 1 to the greatest of the previous terminals. Therefore
Tm+1 = Tm + d - 1 ) Tm = (m - 1)(d - 1) + d for m > 1. This means that
Sm = Sm-1 + (m- 2)(d - 1) + d for m > 1 and S1 = 1, which gives

Sm =
m

2
(md-m- d + 3) (6.17)

�
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From Lemma 6.1 we see that the size of addition depends quadratically on the
number of variables and linearly on the domain size.

We can compare this result with the integer addition performed by using BDDs.
In this case integers are represented by words of n bits, and the addition is rep-
resented by a BDD zi for each bit i in the resulting word. The complexity for zi
is in the best case linear, and in the worst case exponential with respect to n, see
[16]. The total number of vertices will in the worst case be O(nen).

If we use an IDD instead, we need 2 variables with domain 2n. We will have
2n + 1 vertices in the resulting IDD, i.e., we get the complexity O(en). This
indicates that the worst case complexity is similar for IDDs and BDDs if we have
two variables with domains of any power of 2. But if we increase the number
of variables we will probably get a worse increase of complexity for BDDs than
for IDDs. Moreover, IDDs can adjust to any variable domain compared to BDDs
where the domain always is 2n.

A complexity result for multiplication is harder to �nd in a closed form. Instead
we present an upper limit.

Lemma 6.2 Complexity of IDD Multiplication
An upper limit of the number of vertices Smul(n;D) (not including terminals) of
an IDD representing a multiplication of n variables with the same variable domain
D is given by

Smul(n;D) �

�
n+ jDj- 2

n- 1

�
(6.18)

�

Proof Let Sn denote the number of non-terminal vertices for the IDD representing
multiplication of n variables. The number of terminals Tn is equal to the number
of distinct values M of the product

M =
Y

1�i�n

xi (6.19)

where xi 2 f0; : : : ; d- 1g and d = jDj.
With concrete methods of discrete mathematics [47] and some major insight

from Gunnar Farneb�ack, Link�oping University, we will present an upper limit on
Tn.

We can derive an upper approximation of Tn from the product

M 0 =
Y

1�i�n

pi (6.20)

where pi is chosen from 0, 1 and the d- 2 �rst primes, i.e., the d �rst semi primes

pi 2 f0; 1g [ fPj j 1 � j � d - 2g: (6.21)

where Pj is the i:th prime number starting with P1 = 2.
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Figure 6.1: Multiplication complexity: a) Shows the logarithm of upper
approximation (solid) and the actual number of vertices (dotted) for jDj =

5. b) Shows the logarithm of the actual number of vertices for 2 � jDj � 10

and 1 � n � 20.
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Exclude for now the M 0 = 0 case, and let pi > 0 and note that multiplication
of elements from the set of semi primes (6.21) uniquely speci�es one value of M 0 if
the order of the pi is not considered. But M is not a product of semi primes and
therefore we will not have a unique M for every choice of xi. Therefore we have
more distinct values of M 0 than of M.

We can pick n values from the semi primes (6.21) in
�
n+d-2

n

�
ways. By adding

the zero case we get

Tn �

�
n+ d - 2

n

�
+ 1 (6.22)

The number of vertices for n + 1 variables is Sn+1 = Sn + Tn - 1 since the zero
terminal vertices will not contribute. Thus

Sn � S1 +
X

1<k�n

�
n+ d- 3

n- 1

�
=

�
n + d- 2

n - 1

�
(6.23)

�

For a large n the upper limit grows asymptotically as O(nd-1). At the same
time we have the growth O(dn+1) for large d. Hence, from this upper approxi-
mation we know that the complexity of multiplication is polynomial in both the
number of variables and size of domains.

The fact that Lemma 6.2 gives a rather rough upper limit is illustrated by the
following example.

Example 6.4 Complexity of IDD Multiplication
Figure 6.1 a) shows the natural logarithm for the number of vertices for both the upper
approximation (solid line) and the actual number of vertices (dotted curve) for jDj = 5

and 1 � n � 20.
We can let a computer plot the multiplication complexity for all combinations of

2 � jDj � 10 and 1 � n � 20. The result is showed in Figure 6.1 b).

Complexity results are often too conservative compared to the measures of
applications where decision diagrams have been used. One such example is the
modeling of the landing gear controller where both BDDs and IDDs were used.
The time for compilation of the controller code written in Pascal was reduced by
50% using IDDs, and the number of vertices was in some cases reduced by 75%.
See Section 7.5 for all details of this BDD/IDD benchmark.

6.2 Integrated Monomial Diagrams

This section deals with polynomials as the basic representation of functions, which
might be a nice and e�cient representation for functions where BDDs and IDDs
are not suitable. We will use reduced function graphs to represent the polynomials,
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which in turn represent the functions. We will only use the structure of function
graphs, not their interpretation. To de�ne something called polynomial graphs
would introduce a more appropriate terminology but would not give anything more
than that.

We have developed a reduced function representation for polynomials which
we call an integrated monomial diagram (IMD). IMDs follow the basic ideas from
the IDDs, but we will develop the IMDs from the reduced recursive polynomial
expressions (RRPE) [40]. During this presentation we will also mention the binary
momentum diagrams (BMDs) which were introduced by Bryant et al. [18]. BMDs
are a special case of IMDs in the same way as BDDs is a special case of IDDs.

6.2.1 Reduced Recursive Polynomial Expression

We will start the development of the reduced graphs for polynomials by considering
reduced recursive polynomial expressions [40].

De�nition 6.5 Recursive Polynomial Expression
Let f 2 Rq [x1; : : : ; xn] be a polynomial expression with variables xi 2 Fq . Then
f(x1; : : : ; xn) is in recursive form with respect to the variable ordering x1 > x2 >

: : : > xn i�

f(x1; : : : ; xn) =
X

0�i<q

f1i (x2; : : : ; xn)x
i
1

f1i (x2; : : : ; xn) =
X

0�j<q

f2i;j(x3; : : : ; xn)x
j
2

...

�

A recursive polynomial expression with variable ordering x1 > x2 > : : : > xn
is a polynomial in x1, where the other variables are collected as coe�cients of
this \univariate" polynomial in x1. Then the same is done for x2 locally in these
coe�cients, and so on for all variables in the polynomial.

Example 6.5 Recursive Polynomial Expression
The following polynomial in distributed form

f = 3+ 4 x
3
3 + 2 x1

3
+ x1

3
x2 + x1 x2

2
+ 5 x1

3
x2

2
x3 (6.24)

can be rewritten in recursive form as

f = (3+ 4x
3
3)1+ (x

2
2)x1 + (2 + x2 + (5x3)x

2
2)x

3
1 (6.25)

with the variable ordering x1 > x2 > x3.
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Recursive polynomial expressions can be represented by a tree where the edges
are marked by a monomial in one variable. The subgraph of each edge correspond
to the coe�cient expression for a certain power of that variable.

Example 6.6 Recursive Polynomial Expression Graph
A function graph representation for the recursive polynomial expression in (6.25) is illus-
trated by the following �gure:

1 2 3 4 5

0
3

1

2 01 2

01
3

x1

x2

x3

Remember that the edge labels correspond to powers for the corresponding variables. The
root vertex has three edges corresponding to x11, x

0
1 and x31, from left to right. All edges

connecting to the terminal 0 have been omitted for clarity.

When a part of an expression is present in several places in a recursive polyno-
mial expression we can refer to the corresponding subgraph of that expression sev-
eral times. This corresponds to the reduced function graph de�ned in Section 4.1.
For the polynomial representation we get the reduced recursive polynomial expres-
sion (RRPE) [40]. The structure of the RRPE is an ordinary reduced function
graph. This means that the abbreviation RRPE stands for the graph representa-
tion from now on. The di�erence will be more obvious when we de�ne how the
RRPE-graphs connect to polynomials.

De�nition 6.6 Reduced Recursive Polynomial Expression
A Reduced Recursive Polynomial Expression for the polynomial f 2 Rq [Z] is a
reduced function graph where

� The number of terminals is M = q - 1.

� Each variable zi 2 Z corresponds to vertices with index i, assuming the
variable ordering z1 > z2 > : : : > zn.

� The range range(v) = q for all vertices.
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Remark:

� The RRPE is a canonical form.

� The root vertex of an RRPE corresponds to the highest variable in the or-
dering z1 > z2 > : : : > zn even though the index of the root vertex is the
lowest.

�

Since we have de�ned RRPEs to be reduced function graphs we have to de�ne
how RRPEs connect to polynomials.

De�nition 6.7 The RRPE to Polynomial Connection
An RRPE G having root vertex v denotes a polynomial pv 2 Rq [Z], which is
recursively de�ned as follows

1. If v is a terminal vertex, then pv = value(v) 2 f0; : : : ; q - 1g.

2. If v is a nonterminal vertex with index (v) = i, then pv is the polynomial

pv =
X

0�k<q

pchild(v;k) z
k
i (6.26)

�

Example 6.7 Reduced Recursive Polynomial Expression
For the following polynomial

4 x1 + 4 x2 + 5 x1 x2
2
+ 5 x2

3
+ 2 x1 x3 + 2 x2 x3 + 6 x1 x2

2
x3 + 6 x2

3
x3

(6.27)

in R7 [x1; x2; x3] we get the RRPE

2 4 5 6

0
1

0 1

1 3 0
2

0 1

x1

x2

x3
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for the variable ordering x1 > x2 > x3.
Notice that both vertices corresponding to x3 is referred two times each. In this simple

case we have 8 edges in the RRPE compared to 10 terms in the polynomial.

The main arithmetic operations for RRPEs are addition and multiplication.
Boolean operations are reformulated as addition and multiplication by the rules in
Section 5.4.

Consider two RRPEs f =
P

0�i<q fix
i and g =

P
0�i<q gix

i having the same
top variable x, then:

f+ g = RRPE Reduce
� X
0�i<q

(fi + gi)x
i
�

(6.28)

f � g = RRPE Reduce

� X
0�k<q

� X
i+j=kmod q

i;j2Zq

fi � gi
�
xi
�

(6.29)

where RRPE Reduce makes the graph reduced.
We see that multiplication is not local to each variable as for IDDs. This makes

multiplication a very complex operation to perform. Therefore we will tune the
representation even further to gain performance for these operations.

6.2.2 Integrated Monomial Diagrams

It is desirable to have a graph based representation for polynomials that mimics
the power and exibility of IDDs. The key features of IDDs that we will address
here are:

� The domain can be speci�ed for each variable independently.

� IDDs represent both relations and functions, where relations are marked and
treated specially.

� Complements are handled by special markings for improved space perfor-
mance.

� IDDs implement operations recursively and such that reduction is performed
in every step. No reductions necessary afterwards.

� IDDs use caching of intermediate results for improved termination of recur-
sions.

All these aspects of the IDD structure can be implemented for polynomials as
well. The development of this structure starts from the RRPE to something that
we might regard as a close relative to IDDs, which we will call integrated monomial
diagrams (IMDs). Since this is a work in progress all details of IMDs cannot be
expressed here.

As often these ideas were �rst developed for the Boolean case. Binary moment
diagrams (BMDs) [18] are basically the same as the IMDs restricted to Boolean
function.
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Variable domain

For a given and �xed quotient polynomial ring Rq [Z] we want to manage variables
with smaller value ranges than Zq.

In Section 5.7 we constructed lambda polynomials �rq(z) 2 Rq [Z], which are true
only for valid values of z. The lambda polynomials for all \subranged" variables
were collected in the polynomial set �q and were reduced by a Gr�obner basis
calculation if necessary. Lemma 5.3 showed that the degree of �rq(z) is r which in
turn means that all for polynomials in Rq [Z]=�q the degree of the variable z will
be less than r.

This is good news for graph represented polynomials. By using �q for reduction
in every step we will never need more than r edges of any vertex for the variable
z. This makes the IMD a good choice if we have variables with di�erent domains.
Moreover, since the implementation of operations will use recursive algorithms
extensively we gain performance by reducing the number of edges as much as
possible.

Relational polynomials and Complements

We will mimic the IDD method to mark functions only evaluating to 0 and 1 with
a special attribute bool(v), see Section 6.1.

For IMDs we regard the roots to a polynomial as true and the non zero values
as false. This ambiguity for false has the consequence that two di�erent poly-
nomials may, if they have the same roots, represent the same relation. (Gr�obner
bases solved this problem syntactically by algebra.)

For the IMD we may use a more semantic approach. We say that the values of
a relational polynomial have to be either 0 or 1, i.e., 0 = true and 1 = false. In
this way we have a one-to-one correspondence between relations and polynomials.
Moreover, we get the following features:

� To reduce a polynomial f to a relational polynomial with the same roots we
compute fq-1.

� We use a special attribute bool(v) on the vertices to indicate that the poly-
nomial corresponding to the subgraph of v is a relational polynomial.

� The constant term in a relational polynomial is either 0 or 1. This can easily
be veri�ed by evaluating the polynomial with all variables set to zero.

The last remark above is enough to de�ne a proper way to impose complement
markings. If f is a relation polynomial corresponding to the relation R, then 1 - f

is the polynomial corresponding to the complement relation :R.
This interpretation of relations in IMDs gives an e�cient implementation of the

:-operation since we only have to compute 1 - f to get the complement. By ex-
perience though, it turns out that relation representations with polynomials which
are equal to 1 for values not belonging to the relation, give much more complex
polynomials compared to the Gr�obner basis representation. The Gr�obner bases
always return the best polynomial representation that preserves the roots, but let
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the non-root values be freely chosen. In some cases the polynomial representations,
where falseis forced to be equal to 1, will have a complexity of magnitudes larger
than the corresponding polynomial for Gr�obner bases. See the equations (6.32)
and (6.34) for a convincing example.

Further research on the IMD representation aims to incorporate the IMDs with
Gr�obner bases for R[Z] in such a way that we get a balance between e�ciency of
size or computation.

To represent the relation R canonically we will choose one of the polynomials f
or :f with no constant term (zero), say f, and then add an edge marking for the
complement if appropriate. Since the relational polynomials do not have constant
terms we gain better complexity measures, both concerning memory space and
computational performance.

When computing Boolean operators on relational polynomials we know that
the result also will be a relational polynomial. But for other operations there is no
such simple rule. We cannot derive the Boolean marking directly from the children
of a vertex, and it is not generally true that all vertices in a subgraph to a Boolean
vertex are Boolean. The attribute bool(v) is su�cient but not necessary for this.

Extracting Constant Factors

For polynomial expressions like 1 + 2x and 3 + 6x we see immediately that they
di�er only by the constant factor 3. We want to exploit this for IMDs by allowing
edge attributes for constant factors. This means that the expression 1 + 2x and
3+6x will be represented by the same IMD graph, but where the edges connecting
it will have 1 and 3 as constant factors, respectively.

For polynomials in Rq [Z] we may choose to factor out an integer such that the
term with highest degree always will have 1 as its coe�cient.

To factor out integers from relational polynomials will not change the roots of
the relation, but the complement values will be equal to 1 in general. To utilize
integer factorization for relations we cannot have that false = 1 which in turn
speaks for the Gr�obner basis interpretation of relations as discussed above.

We will de�ne the structure of IMD as follows.

De�nition 6.8 Integrated Monomial Diagrams
An integrated monomial diagram is a reduced function graph with two termi-
nal vertices 0 and 1, where each vertex v has the attributes factor (v; i) 2 Z+,
bool(v; i) 2 B and comp(v; i) 2 B for all the children child(v; i) connected to v.

The index of the root vertex of an IMD must correspond to the variable of
highest ordering which is included in the corresponding polynomial expression of
the IMD.

Remark:

� The last sentence removes the ambiguity of representing single constants.
These are instead represented by vertices with an index set to the highest
possible, connecting to the terminal vertex 1 with the appropriate value for
factor (v; i).
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� The zero terminal can be removed and replaced by null edges not connecting
any vertex.

�

The interpretation of IMDs is de�ned by the polynomial connection.

De�nition 6.9 IMD to Polynomial Connection
An IMD G having root vertex v denotes a polynomial pv 2 Rq [Z] de�ned recur-
sively as follows.

1. If v is a terminal vertex, then pv = value(v) 2 f0; 1g.

2. If v is a nonterminal vertex with index (v) = i, then pv is the polynomial

pv =
X

0�k<q

pchild(v;k) z
k
i factor (v; k) (6.30)

�

Example 6.8 IMD
For the same polynomial as in Example 6.7 we get the IMD

,

,

,

,

,

,

, ,

1

0 2

1 1

1 5

3 1

0 5

2 1

0 6 1 6

x1

x2

x3

The edge labels for the IMD consists of two integers. The �rst one speci�es the power
of the variable according to the RRPE. The second speci�es the integer factor that the
polynomial corresponding to a vertex should be multiplied with.

This will be exempli�ed by taking a closer look at two paths from the root vertex
down to the terminal. These paths corresponds to the leading term and the term with
minimum degree.
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Leading term: Starting from the root vertex we follow the edge with the maximum

power, i.e., the edge labeled 1; 6 with the factor 6. This edge corresponds to the
monomial 6x1. From the right-most x2-vertex we again follow the edge with the
maximum power which lead to the monomial x22. Then the last part of this path
gives x3. If we multiply these monomial contributions we get the term 6x1x

2
2x3

which is equal to the leading term of Equation (6.27).

Minimum term: In the same way as for the leading term except that we always follow
the minimal power, we get the term 6 � 5x2 � 2, which is 4x2 modulo 7. This term is
also present in Equation (6.27).

Each distinct path from the root vertex to the terminal corresponds to one term of the
polynomial in Equation (6.27). Notice also that since we can factor integers the imple-
mentation of IMDs always only need one terminal vertex.

The IMD has a leading coe�cient equal to 1 for all vertices except for the root vertex
in this case. We see from the IMD in this example that we factor the IMD by 6 from the
root vertex.

From the example above it is easy to realize that the IMD has low complexity
in representing arithmetic operations like addition and multiplication. The sum as
well as the product of n variables will have linear growth in the IMD. Both of these
operations will result in an IMD with n vertices connected into a chain with only
one path. The same will hold for all linear polynomials with constant coe�cients
and for many other special polynomial structures.

Results on algorithms implementing operations for IMDs and complexity results
for these cannot yet be presented.

6.3 Comparisons: Decision Diagrams vs. Polyno-

mials

The BDD structure of representing Boolean formulas has been a standard solution
in several engineering tools for formal veri�cation. The reason is that the BDD has
turned out to be capable of representing the class of Boolean expressions, which
are frequent in practice, in an e�cient way. Moreover, all the highly sophisticated
software tools for BDDs available nowadays have of course increased the popularity
of BDDs.

By the same reason we hope that the IDD concept will be useful for more
general problem domains where integer functions and relations turn out to be less
appropriate for a BDD representation. By construction the IDD is an extension to
BDD, which means that implementations of IDD will have the same performance
measures as BDD, but with better capability to represent relations of di�erent
domains. In Section 7.5 we have compared the use of IDDs and BDDs for a large
application.

Then, is there a need for the polynomial representations? The only way to
really answer this question is to try the polynomial approach in practice, i.e., to
test if a tuned implementation of IMDs (or Gr�obner bases) will be able to compete
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with representations based on decision diagrams for some large applications. This
type of evaluations has not yet been performed though.

Instead, we reason about theoretical aspects of polynomial representations from
the fact that there will always exist examples of relations for which any representa-
tion will explode. Therefore we know theoretically that no representation is better
than another, if no speci�c class of problem is considered. The important issue
is which types of problem are most common in practice. In other words; what
is the most common structure of the problems that we have to deal with when
using formal tools? What is clear from experience is that there are many problems
with a structure suited for decision diagrams, but for polynomial representations
we cannot say yet.

One observation for decision diagrams is that they provide very e�cient algo-
rithms for �nding solutions (or roots) to relations. For BDDs and IDDs we can
generate solutions in time proportional to the number of variables in the relation.
One might interprete this observation in such a way that decision diagrams are only
good for the class of problems where solutions are easy to �nd. In other words;
problems with inherent solving complexity must be represented by complex deci-
sion diagrams. For these types of problems the polynomial representation might
be a better choice.

6.3.1 Final Example

To conclude this discussion of the comparison between decision diagrams and poly-
nomial representations we will use the Egyptian triangle relation (a2 + b2== c2)
and represent it by an IDD, a Gr�obner basis, a principal polynomial and by an
IMD.

The Egyptian triangle relation ETR is simply the relation between the two
elements f[3; 4; 5]; [4; 3; 5]g. The relation is constructed as

ETR = (a== 3)^(b== 4)^(c== 5) _ (a== 4)^(b== 3)^(c== 5)

(6.31)

The universe of discourse will be set to Z7�Z7�Z7 which will correspond to the
quotient polynomial ring R7 [a; b; c].

IDD

The IDD representation with ordering a > b > c for the ETR is shown in Fig-
ure 6.2, where the two paths corresponding to the solution set are clearly visible.

Gr�obner basis

The Gr�obner basis representation of the ETR is the following set of polynomials:

f a+ b; 5 + b2; 5 + 6 c g (6.32)

where we have used the variable ordering a > b > c. The last polynomial gives
one unique solution for c, the middle polynomial gives two solutions for b, and the
�rst gives a unique solution to a given the value of b.
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Figure 6.2: The ETR (a2 + b2== c2) represented as an IDD.

Principal Polynomial

As we know, all relations can be represented by a single polynomial2 by composing
the polynomials from (6.32) together using the logical ^-operation, see Section 5.4.

1-
�
1 - (a+ b)6

��
1 - (5 + b2)6

��
1 - (5 + 6 c)6

�
(6.33)

2Rq[Z] is a principal domain, see footnote in Section 5.5.2, which means that a relation can
be represented by a single polynomial.
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which will result in the following huge polynomial

1 + 4 ab c + 2 a
3
b c + a

5
b c + 5 a

2
b
2
c + 6 a

4
b
2
c + 3 a

6
b
2
c +

2 ab
3
c+a

3
b
3
c+ 4 a

5
b
3
c+ 6 a

2
b
4
c+ 3 a

4
b
4
c+ 5 a

6
b
4
c+ab

5
c+

4 a
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b
5
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b
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b
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(6.34)

which has the property that all non zero values are equal to 1.

IMD

From the polynomial (6.34) above we can develop the IMD representation of the
ETR. This is done by rewriting (6.34) recursively corresponding to the variable
ordering a > b > c, identifying common subexpressions and factorizing the expres-
sion so that the leading term coe�cient is 1.

The IMD for the ETR is shown in Figure 6.3. From the �gure we see a signi�cant
reduction of representation size. In fact, the IMD has the same number of vertices
(not counting terminals) as the corresponding IDD for this example.

6.4 Summing Up

This chapter has been devoted to present our results for relational representations.
Integer decision diagrams have been de�ned as an extension of BDDs, for which
algorithms both for logical and arithmetic operations have been de�ned. Com-
plexity results for addition and multiplication have been derived, which shows that
addition grows quadratically in the number of variables, whereas multiplication
has an upper limit which is polynomial in the number of variables. The IDDs are
implemented by extending the highly e�cient BDD package [11] and IDDs have
been used in the landing gear application, Section 7.5, for comparison with the
BDD approach.

Suggestions to develop e�cient tools for polynomial representations have also
been given in this chapter. The structure of integrated monomial diagrams (IMDs)
has been de�ned to be one such tool. It can easily be veri�ed that IMD has good
size complexity for arithmetic operations. Further research will show the details of
operator algorithms for the IMD.
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Figure 6.3: The ETR (a2 + b2== c2) represented as an IMD.
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7

Veri�cation of Landing

Gear Controller

7.1 The Landing Gear Process

The case study in Sections 7.3 and 7.4 concerns the landing gear system on the
Swedish �ghter JAS 39 Gripen, depicted in Figure 7.1.

The landing gear system consists of a landing gear controller and three landing

Figure 7.1: The �ghter JAS 39 Gripen.

121
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Landing Gear
Controller

Landing GearPilot

Other system units

p[2] a[5]

s[30]

m[5]

Figure 7.2: The landing gear system (number of signals in brackets).

gears with corresponding doors. A simpli�ed block description of the complete
system is shown in Figure 7.2, where the arrows should be interpreted as signal
vectors.

The objective of the study is to apply methods for formal veri�cation of function
speci�cations to the landing gear controller.

7.1.1 Description of the System

The landing gear controller on JAS 39 is a DEDS which is implemented in Pascal86
(an Intel version of Pascal). It consists of a module of code which is mainly self-
contained but in some aspects communicates with the rest of the system code. The
controller code consists of approximately 1500 lines, of which about 300 handles
alarm functions and pilot information.

Besides the fact that the controller itself is discrete, the domains of all actuator
and measurement signals are discrete. However, the underlying system is contin-
uous and to fully understand the expected behavior of the controller, we need to
know how the gears work.

Maneuvering of gears and doors is commanded electrically but actuated hy-
draulically. There is one hydraulic actuator for each gear as well as one actuator
for each door. However, all gears are operated in parallel, as are the doors, i.e.,
it is not possible to close one door while keeping the other two open. In addition
to the valves controlling gears and doors, there is a valve that shuts o� hydraulic
pressure in the system during ight with retracted gears.

There are basically three maneuver types, retraction, extension and emergency
extension. Ordinary extension or retraction is commanded by a lever in the cockpit.
During emergency extension the control signals are generated by hardware logic
and not by the landing gear controller. However, when emergency extension is
initiated a signal is transmitted to the landing gear controller via other units in
the aircraft. In emergency extension mode hydraulic power is not used to lower
the rear gears. Instead they are extended by the air drag.

The feedback from the gears to the controller is generated by microswitches
positioned on gears and doors. By these switches it is possible to detect certain
discrete positions of the doors and gears, e.g., doors open, doors closed, gears
retracted, gears extended, etc. This means that we cannot monitor the continuously
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Signal Name Short Name Description

start landn panel.ut1 p1 Extend gears (switch 1)

start landn panel.ut2 p2 Extend gears (switch 2)

Table 7.1: Pilot input: Commands given by the pilot to control the landing
gear.

Signal Name Short Name Description

utport dd00[o avst vnt] a1 Hydraulic pressure on

utport dd00[fall in] a2 Retract gears

utport dd00[l ut st] a3 Extend gears

utport dd00[s lndst lck] a4 Close doors

utport dd00[o lndst lck] a5 Open doors

Table 7.2: Actuator signals: Commands to the hydraulic system.

changing position of the gears under e.g., extension, but only the discrete positions
detected by the switches. Hence, the interface between the gears and the controller
is discrete, which means that the models of the gears, which we will need for
multiple step analysis, can be made discrete. The degree of re�nement in the gear
models will reect the desired �delity.

7.1.2 The Signal Interface

As shown in Figure 7.2 there are basically three kinds of input to the landing
gear controller: pilot commands, information from other units in the system and
feedback from gears and doors.

The pilot command is detected by a double microswitch positioned on the
extension lever. The system information consists of input from various other parts
of the aircraft, e.g., power supply, hydraulic supply and motor. As mentioned,
the gear feedback comes from microswitches on gears and doors. There are three
microswitches on each gear and two on each door and each of the microswitches
has two contacts. This makes a total of 30 binary signals from the gears and doors.

A detailed description of all input signals can be found in Tables 7.1, 7.3 and
7.4. All signals except m3 and m4 are binary. Note that only the signals that will
be included in our model of the landing gear controller have been given a short
name.

The output from the controller consists of actuator signals to the hydraulic
valves, information signals to other aircraft units and signals used for status pre-
sentation in the cockpit. There are �ve (binary) signals to the actuators which are
presented in Table 7.2. The other output signals will not be included in our model
and are therefore not described in detail.
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Signal Name Short Name Description

nodutf stall m1 Emergency extension

commanded

motorn gaur m2 Motor is running

fpl tillst m3 Aircraft status

mark tillst m4 Aircraft status

plus28v kritblk m5 An element in the variable

so info.fo.power that

signals power down in AFPL

adc t afpl8 -

ess t afpl30.fsw.mode -

hyd larm f -

paudrag -

subfas inom 1hz -

update cnt ok -

Table 7.3: System state: Signals from other units in the aircraft.

Signal Name Short Name Description

nosstall inne s11; s
2
1 Nose gear retracted

nosstall ute s12; s
2
2 Nose gear extracted

nosstall infj s13; s
2
3 Weight on nose gear

nosstall lucka stangd s14; s
2
4 Nose door closed

nosstall lucka oppen s15; s
2
5 Nose door open

hstall h inne s16; s
2
6 Right gear retracted

hstall h ute s17; s
2
7 Right gear extracted

hstall h infj s18; s
2
8 Weight on right gear

hstall lucka h stangd s19; s
2
9 Right door closed

hstall lucka h oppen s110; s
2
10 Right door open

hstall v inne s111; s
2
11 Left gear retracted

hstall v ute s112; s
2
12 Left gear extracted

hstall v infj s113; s
2
13 Weight on left gear

hstall lucka v stangd s114; s
2
14 Left door closed

hstall lucka v oppen s115; s
2
15 Left door open

Table 7.4: Landing gear feedback: Output from microswitches on gears
and doors.
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Mathematica

Compiler

Symbolic
Analysis

Tools

Binary
Decision
Diagram

x1^x2 _ :x4

Figure 7.3: The software con�guration based on Mathematica. The BDD-
tool is kept in an external C-package which communicates with Mathemat-

ica thorough MathLink. From Mathematica the BDDs act like ordinary
Boolean expressions.

7.2 Software Tools

Using an e�cient symbolic algebraic computation engine is crucial if we are to
be able to analyze realistically sized examples. In this project we use an exper-
imental software system consisting of Mathematica [114, 115] code together with
externally linked C code for critical operations through the MathLink structured
communication protocol, see Figure 7.3.

The C code used in this package is an e�cient implementation of binary de-
cision diagrams (BDDs) and integer decision diagrams (IDDs) which we use as a
computation engine for relations. E�cient tools for BDD exists [11] whereas the
author has developed the code for the IDD as an extension of the BDD package.
The IDD software was not available in the beginning of the landing gear project.
Therefore BDDs were used throughout that project, even though a comparison
between IDD and BDD has been performed after the completion of the landing
gear project. This is presented in Section 7.5.

7.2.1 Modeling

In the modeling part of the landing gear project, see Section 7.3, the implemented
Pascal code of the LGC is compiled to a relational modelM(z; z+). The Pascal code
is �rst parsed to an intermediate code called MPascal which essentially is the same
Pascal code written as a Mathematica expression. This code is then processed
by a compiler, also written in Mathematica. The result from the compiler is a
relational model M(z; z+) represented as a BDD, where all relations between input
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Commands Description

ReachableStates[M(z; z+),I(z)]
Returns the set of states reach-
able from I(z) for the model
M(z; z+). See (2.80).

BDDTLEvaluate[M(z; z+), F]

Returns the set of states
from which the temporal al-
gebra expression F is true.
BDDTLEvaluate works as the
operator Verify in Section 2.3.2.

BDDSolve[R(z)]
Returns all solutions of R(z) =

true for the variables z.

BDDCountSolutions[R(z)]
Counts all solutions of R(z) =

true. This is often more interest-
ing than a huge set of solutions.

BDDRandomSolve[R(z)]
Returns one possible solution of
R(z) = true chose by random.

Table 7.5: Some of the most common commands for analysis.

variables and output variables are stored whereas temporary variables in the code
are removed. See Section 7.3.2 for details.

7.2.2 Analysis

Tools for analysis of the polynomial models were developed in Mathematica as
well. For these tools the e�ciency of the underlying computation engine is even
more important than for modeling. For multiple step analysis we have to do �x
point computations, i.e., to iterate until the answer remains the same between two
iterations, and it is essential to reduce data complexity in these iterations. In our
case this is done by the BDD package that always represents expressions as simple
as possible with respect to the variable order chosen.

To give a taste of how to use the analysis tools Table 7.5 shows the most
important commands used in the project.

The commands BDDSolve and BDDCountSolutions searches recursively through
the BDD (or IDD) graph starting at the top down to the constant 1. BDDRandomSolve
chooses one possible path down to the constant 1.

7.3 Modeling Based on the Controller Implemen-

tation

This section describes modeling based on the implemented Pascal code of the land-
ing gear controller. As a �rst e�ort a model based on partial documentation of the
landing gear controller was constructed. The partial documentation represented a
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good opportunity to �ne tune the software used in the veri�cation process. In fact,
many packages were written and given their �rst real life test in this initial phase.
This e�ort also showed some of the pitfalls using incomplete models. For example,
the analysis results was not in correspondence with results obtained when using
the implemented code for modeling.

In the case study presented below the implemented code is used for the model
because the representation of the controller must be in exact correspondence with
the implementation to ensure reliable veri�cation results. In this case the only
available representation of the implemented system is the code itself. Hence we
have to use a compiler for the translation from the implemented code to a relational
model.

7.3.1 Restrictions in the Modeling

The modeling has been done using a restricted class of Pascal86. This section
describes the restriction as well as the minor adjustments that we must make in
order to �t the controller code into the �nite state domain.

The allowed data types are integer and Boolean. The integer range used is
f0; : : : ; 15g, which is enough to represent all enumerable variables in the controller
code. The controller code also makes use of linear arrays and abstract data types.
It is possible to automatically represent these data types by integers and Booleans,
but in this case it has been done by hand.

Some of the Pascal primitives have also been excluded. For a list of allowed
primitives, see Table 7.6. For code primitives such as FOR-loops and the OTHERWISE
statement in conditionals, a manual translation was made where the FOR-loop was
rewritten as a sequence of code (loop unrolling, see e.g., [1]) and OTHERWISE replaced
by explicit arguments.

Timer variables and time conditions in the code have been replaced by binary
state variables (ip ops) and corresponding input signals. A time condition be-
coming true in the original code corresponds to the timer input signal triggering
the state variable. Once triggered, the state variable will be true until there is an
explicit timer reset.

From the code module we have excluded the procedures concerning alarm han-
dling and pilot information since they do not a�ect the other procedures in the
controller directly. Since we have not had access to all values of signals from other
units in the aircraft we have also de�ned some new input signals that are aggrega-
tions of the unknown signals.

7.3.2 Translating Pascal to Relations

The translation from Pascal to a relational model of the code is performed in
two steps. First we parse the Pascal code to an intermediate representation in
Mathematica, which we call MPascal. This Mathematica representation of the
code is then automatically compiled into a representation in Boolean algebra. One
formal way of describing the steps of parsing and compilation is to use structured
operational semantics [100] and we will therefore begin with an introduction to this
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Comment Syntax Domains

Type BOOLEAN B

INTEGER I

Arithmetic expr. + I
2! I

- I
2! I

Relational expr. > I
2! B

< I
2! B

= I
2! B

NOT B ! B

AND B
2 ! B

OR B
2 ! B

Control IF THEN ELSE

CASE OF

BEGIN : : : END

Miscellaneous := I or B

VAR I or B

PROGRAM

PROCEDURE

FUNCTION

Table 7.6: Allowed Pascal primitives. I and B stands for integer and
Boolean respectively.

formalism. We will then describe the parsing and compilation of the landing gear
controller code in some detail and comment on the resulting relational model.

Structured Operational Semantics

Structured operational semantics (SOS) is a way of describing the semantics of
programming languages. This is done by combining the notion of transition se-
quences and proof construction. This essentially means that SOS consists of a
set of transitions where each transition describes a semantical mapping and where
a transition can be used only if its necessary conditions are proven to be true.
The standard reference on SOS is [100]. A related formalism is natural semantics
which is described in e.g., [71]. These and other formalisms are used alternately
and therefore the notation has not fully converged. We will in the following use a
notation based on SOS and natural semantics. In order to adapt the formalism to
our application we will make our own de�nitions, even though some of them di�er
only marginally from the standard notation within the �eld.

With structured operational semantics we can express derivation rules for how
a piece of code changes the state of the compiler. The state of the compiler is
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essentially a symbol table containing the present values of the symbols used in the
code. When the whole code is processed we use the �nal state of the compiler to
compute the relational model representing the code.

The state of the compiler is described by a binding environment, �. A binding
environment (BE) is a partial function from identi�ers (or variables) to values. We
will write a binding environment as a set

� = fxi 7! �ig; i = 0; : : : n (7.1)

where xi is an identi�er and �i is the corresponding value.
We want to perform operations on the binding environments. For example

we want to evaluate values of identi�ers in a binding environment and alter these
values. These operations are de�ned as:

De�nition 7.1 Binding Environment
Let � be a binding environment containing the identi�er xi. Then

(i) [[�(xi)]] gives the value of xi.

(ii) �[xi 7! �i] sets the value of xi to �i while all other variables in � remains
unchanged.

�

We introduce a new variable in the binding environment by setting its value.
To simplify the notation we use �[fx1; x2; : : : g 7! f�1; �2; : : : g] for setting the value
of several variables in �. We illustrate the de�ned operations with an example.

Example 7.1 Binding Environment
Let �1 = fx 7! 1; y 7! 2g. We can then evaluate x by

[[�1(x)]] = 1

If we want to change the value of y to 3 we write

�1[y 7! 3]

This means that �1 is changed to the set fx 7! 1; y 7! 3g. By writing

�1[fy; zg 7! f4; 5g]

we alter the value of y and add a new identi�er z to the binding environment. The value
of �1 will now be fx 7! 1; y 7! 4; z 7! 5g.

Since we in the compilation represent all values in � as Boolean expressions, it
will be useful to de�ne the logical operations f^; _ ;:g on � (see Section 2.1.3 for
a relational interpretation of the logical connectives).

De�nition 7.2 BE Operators
Let �1; �2 be two binding environments containing the same set of identi�ers and
b an arbitrary Boolean expression.
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� � = �1 op �2 is de�ned by

[[�(xi)]] = [[�1(xi)]] op [[�2(xi)]]; i = 0; : : : ; n

for all op 2 f^; _ g.

� � = :� is de�ned by

[[�(xi)]] = :[[�(xi)]]; i = 0; : : : ; n:

� � = �1 op b is de�ned by

[[�(xi)]] = [[�1(xi)]] op b; i = 0; : : : ; n

for all op 2 f^; _ g.

�

Example 7.2 BE Operators
Let �1 = fx 7! a; y 7! bg, �2 = fx 7! c; y 7! dg and g 2 B . Then

�1 ^ �2 = fx 7! a^c; y 7! b^dg

�1 _ �2 = fx 7! a _ c; y 7! b _ dg

:�1 = fx 7! :a; y 7! :bg

�1 ^ g = fx 7! a^g; y 7! b^gg

(7.2)

We also need to de�ne a special kind of intersection between two binding envi-
ronments.

De�nition 7.3 BE Intersection
Let �1; �2 be two binding environments, not necessarily containing the same set
of identi�ers. Then � = \�2�1 is de�ned by

[[�(xi)]] = [[�1(xi)]]

for all xi contained in both �1 and �2. �

Example 7.3 BE Intersection
Let �1 = fx 7! a; y 7! b; z 7! cg and �2 = fx 7! d; y 7! eg. Then

\�2�1 = fx 7! a; y 7! bg: (7.3)
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Let a sequence of code primitives be denoted L. We restrict L to contain the
primitives from Table 7.6 together with the empty string �. With L and � as basic
elements we can now make the following de�nitions.

De�nition 7.4 Con�guration
A con�guration � is a tuple (L; �). �

De�nition 7.5 Transition
A transition ` is a mapping from a con�guration � = (L; �) to a con�guration � 0

or to a binding environment � 0,

� ` � 0 or � ` � 0: (7.4)

�

De�nition 7.6 Transition Relation
A transition relation � is a rule of the form

� =
C1 : : : Cn
� ` � 0

(7.5)

where the numerator is a set of conditions which are premises for the denominator.
The interpretation of the notation in (7.5) is that � 0 can be derived from � if all
conditions Ci (1 � i � n) hold. �

Remark: Note that names transition and transition relation above are not to be
confused by transitions of a DEDS.

For most of the transition relations presented in this thesis the conditions will be
transitions but there are also other types of conditions. We illustrate the di�erent
types of conditions with an example.

Example 7.4 Conditions

(i) The condition

C1 = � ` � 0 (7.6)

means that it must be possible to derive � 0 from �.

(ii) The condition

C2 = N 2 Z (7.7)

means that the value of N must be an integer.

(iii) The condition

C3 = t = MB (7.8)

means that t must equal the symbol MB.
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Remark:

(i) For transitions where the binding environment is obvious, we will write

L ` L 0 (7.9)

to simplify the notation.

(ii) Unconditional transition relations will be written as

� = � ` � 0: (7.10)

u )
x ) Code

) y) x+

Figure 7.4: Signal interaction with the code.

Inputs ) Code ) Outputs

Figure 7.5: Input-output view of the code.

Input, Output and State Variables

The landing gear controller code is one part of the software loop in the aircraft
system. This means that the state of the code is stored until next iteration of
the code. If we want to write the system as in (2.37) we must determine which
variables correspond to system state, next state, input and output. The equations
in (2.37) can be represented by a block diagram as in Figure 7.4, where u; y and x
are vectors for input, output and state variables respectively. Any part of the code
(a single primitive or a complete program) can also be regarded as a function which
computes and assigns values to output variables depending on input variables, see
Figure 7.5. If we compare the �gures 7.4 and 7.5, we �nd that the state variables
are equal to the variables in the set Inputs\Outputs. In words we say that if there
is an input variable which is reassigned in the code, it should be considered as a
state variable. The state variables in the model of the controller are described in
Table 7.7.

Temporary variables which are neither input nor output variables can be omit-
ted in a model like the one in Figure 7.4, since we are only interested in the output
behavior of the system. Still, the compiler must use the temporary variables in the
code to compute the relations between input and output variables.
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Variable Name Short Domain Description

Name

utf pagar x1 F2 Extension maneuver

tid latt lte block tid latt x2 F2 Timer condition

spin start lte spin tid x3 F2 Timer condition

utf start lte block tid inf x4 F2 Timer condition

utf start gt luck oppn tid x5 F2 Timer condition

init ag x6 F2 Initialization ag

utf mod x7 F11 Extension mode

inf mod x8 F8 Retraction mode

man akt mod x9 F6 Maneuver action

mode

fj mod x10 F3 Take-o� mode

man komm mod x11 F8 Maneuver command

mode

Table 7.7: State variables in the code.

Parsing Pascal to MPascal

The �rst step in the translation is the parsing from Pascal to MPascal. The pars-
ing is in this case straightforward and has been done by hand, but could of course
be automated. MPascal represents the restriction of Pascal86 mentioned in Sec-
tion 7.3.1.

Before we de�ne the semantics of the parser formally, we give a simple example
of the parsing of a piece of code.

Example 7.5 Parsing
An IF-THEN-ELSE statement will be parsed to MPascal according to the �gure below,
where a; b; c; d and e are Pascal expressions.

IF a=b THEN

y1 := c

ELSE

BEGIN

y1 := d

y2 := e

END;

 

MIfThen[

MEqual[a,b],

MAssign[y1,c],

MBeginEnd[

MAssign[y1,d],

MAssign[y2,e]

]

]

The parsing would in this case make use of the transition relations (7.18), (7.22), (7.25)
and (7.31), de�ned below.
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We are now ready to de�ne the parser for the keywords of Table 7.6. In the
parser we will not need the binding environment, which means that all transitions
will be of the form (7.9). The parser consists of the following transition rules:

Constants

TRUE ` MTrue[] (7.11)

FALSE ` MFalse[] (7.12)

N 2 Z

N ` N
(7.13)

Arithmetic expressions

+

e1 ` e 01 e2 ` e 02
e1 + e2 ` MPlus[e 01; e

0
2]

(7.14)

-

e1 ` e 01 e2 ` e 02
e1 - e2 ` MMinus[e 01; e

0
2]

(7.15)

Relational expressions

>

e1 ` e 01 e2 ` e 02
e1 > e2 ` MGreaterThan[e 01; e

0
2]

(7.16)

<

e1 ` e 01 e2 ` e 02
e1 < e2 ` MLessThan[e 01; e

0
2]

(7.17)

=

e1 ` e 01 e2 ` e 02
e1 = e2 ` MEqual[e 01; e

0
2]

(7.18)

NOT

e1 ` e 01
NOT e1 ` MNot[e 01]

(7.19)

AND

e1 ` e
0
1 e2 ` e

0
2

e1 AND e2 ` MAnd[e 01; e
0
2]

(7.20)
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OR

e1 ` e 01 e2 ` e 02
e1 OR e2 ` MOr[e 01; e

0
2]

(7.21)

Control primitives

IF THEN ELSE

c ` c 0 s1 ` s 01 s2 ` s 02
IF c THEN s1ELSE s2 ` MIfThen[c 0; s 01; s

0
2]

(7.22)

c ` c 0 s1 ` s 01
IF c THEN s1 ` MIfThen[c 0; s 01; �]

(7.23)

CASE OF

e ` e 0 k1 ` k 01 : : : kn ` k 0n s1 ` s 01 : : : sn ` s 0n
CASE e OF k1:s1; : : :;kn:sn END ` L

(7.24)

where

L = MCaseOf[e 0; k 01; s
0
1; : : : ; k

0
n; s

0
n]

BEGIN s1; s2 END

s ` s 0

BEGIN s END ` MBeginEnd[s 0]
(7.25)

s1 ` s 01 s2 ` s 02
s1 ; s2 ` s 01 , s

0
2

(7.26)

Procedures and functions

Declaration:

args ` args 0 s ` s 0

PROCEDURE id(args) s ` MProcedure[id ; fargs 0g; s 0]
(7.27)

args ` args 0 s ` s 0 e ` e 0

FUNCTION id (args):t BEGIN s; id:=e END ` L
(7.28)

where

L = MFunction[id ; fargs 0g; MBeginEnd[s 0; MReturn[e 0]]

Arguments of procedures and functions:

v1; : : : ; vk:t1;vk+1; : : : ; vn:t2; : : : `

v1; : : : ; vk; vk+1; : : : ; vn
(7.29)
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Procedure and function call:

e1 ` e 01 : : : en ` e 0n
id(e1; : : : ; en) ` id[e 01; : : : ; e

0
n]

(7.30)

Miscellaneous code primitives

:=

e ` e 0

v := e ` MAssign[v; e 0]
(7.31)

VAR

t1 ` t 01 t2 ` t 02
VAR v1; : : : ; vk : t1;vk+1; : : : ; vn : t2; : : : ` L

(7.32)

where
L = MVar[ft 01; v1; : : : ; vkg; ft

0
2; vk+1; : : : ; vng; : : : ]

BOOLEAN ` MB (7.33)

INTEGER ` MI (7.34)

PROGRAM

s ` s 0

PROGRAM s ` MProgram[s 0]
(7.35)

By these transition rules we have de�ned the parsing step of the compilation of
the restricted Pascal language de�ned in Table 7.6. To separate input and output
variables in the code (see Section 7.3.2), the keywords MInput and MOutput are
added to the MPascal language. These keywords are used with the same syntax as
for MVar.

Input variables:

t1 ` t 01 t2 ` t 02
VAR u1; : : : ; uk : t1;uk+1; : : : ; un : t2; : : : ` L

(7.36)

where
L = MInput[ft 01; u1; : : : ; ukg; ft

0
2; uk+1; : : : ; ung; : : : ]

Output variables:

t1 ` t
0
1 t2 ` t

0
2

VAR y1; : : : ; yk : t1;yk+1; : : : ; yn : t2; : : : ` L
(7.37)

where
L = MOutput[ft 01; y1; : : : ; ykg; ft

0
2; yk+1; : : : ; yng; : : : ]

Note that the state variables will be declared both as input and output vari-
ables. The second step in the compilation will treat variables declared with MInput,
MOutput and MVar di�erently, see Section 7.3.2.
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Compiling MPascal to a Relational Model

In the second stage we translate MPascal to a Boolean relation C(z; z+). As men-
tioned earlier, any part of the code (a single primitive or a complete program) is
essentially a function which computes and assigns values to output variables de-
pending on input variables. Compiling these functions from MPascal to a Boolean
relation can at least be made in two di�erent ways.

One way is to �rst translate all primitives (the smallest parts) of the code into
relations, and then combine these into larger relations. This would be a straightfor-
ward method which is easy to implement recursively. The disadvantage is that the
combination of relations requires a substantial amount of substitutions and quan-
ti�cations, which are time consuming operations in the present implementation of
the software tools.

We have instead chosen to view the translation from the data perspective. First
we separate all but the temporary variables into inputs U and outputs Y . Then we
go through the code, statement by statement, following the execution sequence1 of
the code. For each statement we store information of how the values of the output
variables

Y = [~y1; : : : ~yp+n] = [y1; : : : ; yp; x
+
1 ; : : : ; x

+
n ] (7.38)

are a�ected by the input variables2

U = [~u1; : : : ; ~um+n] = [u1; : : : ; um; x1; : : : ; xn]: (7.39)

This information, which corresponds to a function f~yi : U ! ~yi, is stored as a
Boolean expression for each ~yi. In each step the expressions f~yi is updated until
we reach the �nal statement when f~yi is a complete description of how the output
variable ~yi depends on the input variables U .

At the end all these expressions together with the output variable symbols are
combined into a �nal relation, which will be used for analysis.

Since we model with Boolean expressions and the compiler must handle integers
(in this case in the range 0; : : : ; 15) we will use a binary vector representation for
the integers. We make the following de�nition

De�nition 7.7 Integer Bit Representation
The vector space of bit-represented integers, denoted In, is

In = ffen-1 ; : : : ; e0gjei 2 B [Z]; 0 � i < n- 1g (7.40)

where B [Z] is the set of all Boolean expressions. The position of e0 is least signi�-
cant. The elements of In represent all integers from 0 to 2n - 1. �

Consider the following example

1This is essentially the same as traversing a corresponding control ow graph,
see e.g., [6].

2This corresponds to a data ow analysis for each output variable, see e.g., [6].
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Example 7.6 Integer Bit Vector
Let n = 4 and assume that the integer output variable y depends on the Boolean input
variables u1 and u2. This dependence could for example be as in the following element
from I4:

ffalse; u1;:u2; u1 _ u2g:

For the di�erent instantiations of the inputs we obtain the instantiation of the Boolean
vector and the corresponding output value according to the table below.

u1 u2 Boolean vector y

false false ffalse; false; true; falseg 2

false true ffalse; false; false; trueg 1

true false ffalse; true; true; trueg 7

true true ffalse; true; false; trueg 5

We also de�ne a number of operations on the binary vectors in In.

De�nition 7.8 Bit Vector Operations

(i) Let Bit : Z2n ! In be a function that converts an integer to its bit represen-
tation, e.g., Bit(3) = ffalse; false; true; trueg for n = 4.

(ii) Let Int : Bn ! Z2n be a function that converts constant bit-vectors to integers
(the notation B

n indicates that the bit-represented integer is constant).

(iii) Let BAdd : In � In ! In be a function that computes the sum of two bit-
represented integers using Boolean operations on the Boolean expressions in
the vectors.

(iv) Let BSub : In � In ! In be a function that computes the subtraction of one
bit-represented integer from another. The Boolean relations are computed in
a similar way as for BAdd.

(v) Let BGreaterThan : In � In ! B [Z] be a function that computes the Boolean
relation of two bit-represented integers x; y which is equal to true i� x > y.

(vi) Let BLessThan : In � In ! B [Z] be a function that computes the Boolean
relation of two bit-represented integers x; y which is equal to true i� x < y.

(vii) Let BEqual : In�In ! B [Z] be a function that computes the Boolean relation
of two bit-represented integers x; y which is equal to true i� x = y.

(viii) Let
s$: In � In ! B [Z] be a function de�ned as

fxn-1; : : : ; x0g
s$ fyn-1; : : : ; y0g =

n-1̂

i=0

xi $ yi (7.41)
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�

The Boolean relations for adding two bit-represented integers can be computed
recursively using a full adder [34], see the example below.

Example 7.7 Addition on Bit Vectors
Let two integers n1; n2 2 Z4 be bit-represented by the vectors x = fx1; x0g and y =

fy1; y0g respectively. The sum n1 + n2 is represented as the vector

BAdd(x; y) = f(y0^((y1^((x0^x1) _ ((:x0)^(:x1)))) _

((:y1)^((x0^(:x1)) _ ((:x0)^x1))))) _

((:y0)^((y1^(:x1)) _ ((:y1)^x1)));

(y0^(:x0)) _ ((:y0)^x0)g:

(7.42)

For n1 = 2 and n2 = 1 we get the vectors x = ftrue; falseg; y = ffalse; trueg. From the
summation vector above we get BAdd(x; y) = ftrue; trueg.

Since no integer variable in the landing gear controller code takes values greater
than 15 we use I4 for representing integers in this case study.

As mentioned in Section 7.3.2 we support a special form of variable declaration
which not only de�nes the data type for each variable, but also de�nes if the variable
is an input, output, state or temporary variable. The compiler initiates all input
variables with symbols that represent an arbitrary input value. All other variables
are initiated with ?. This symbol is used to indicate if there exist values of the
input variables for which the value of some output variable is unde�ned.

Before de�ning the transformation rules for the compilation step formally we
illustrate the compilation with a simple example.

Example 7.8 Compilation
In the �gure below we see how the values of the variables in the IF-THEN-ELSE statement
would be represented as Boolean expressions. The compilation would in this case use the
transition relations (7.57), (7.58) and (7.60).

All variables are Boolean and f-
~y2

de�nes the value of the variable y2 before this piece

of code is executed. If y2 has not been assigned a value before, f-
~y2

will be equal to the
symbol ?, which we interpret as unde�ned.

MIfThen[

q,

MAssign[y1,c],

MBeginEnd[

MAssign[y1,d],

MAssign[y2,e]

]

]

 

Variables Values

y1 f~y1 = c^q _ d^:q

y2 f~y2 = f-
~y2

^q _ e^:q
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Finally all variables are connected to their values and combined into a single relation.
In the example above we get

R(z; z
+
) = (y1$ (c^q _ d^:q))^(y2$ (?^q _ e^:q)): (7.43)

We can now give the transformation rules for the compilation from MPascal to
relations:

Evaluation of expressions

Constants:

MTrue[] ` true (7.44)

MFalse[] ` false (7.45)

N 2 Z

N ` Bit(N)
(7.46)

Arithmetic expressions:

e1 ` e 01 e2 ` e 02
MPlus[e1; e2] ` BAdd(e 01; e

0
2)

(7.47)

e1 ` e 01 e2 ` e 02
MMinus[e1; e2] ` BSub(e 01; e

0
2)

(7.48)

Relational expressions:

e1 ` e 01 e2 ` e 02
MGreaterThan[e1; e2] ` BGreaterThan(e 01; e

0
2)

(7.49)

e1 ` e 01 e2 ` e 02
MLessThan[e1; e2] ` BLessThan(e 01; e

0
2)

(7.50)

e1 ` e 01 e2 ` e 02 (e 01; e
0
2 2 I4)

MEqual[e1; e2] ` BEqual(e 01; e
0
2)

(7.51)

e1 ` e 01 e2 ` e 02 (e 01; e
0
2 2 B [X])

MEqual[e1; e2] ` e 01 $ e 02
(7.52)

e ` e 0

MNot[e] ` :e 0
(7.53)

e1 ` e 01 e2 ` e 02
MAnd[e1; e2] ` e 01^e

0
2

(7.54)

e1 ` e
0
1 e2 ` e

0
2

MOr[e1; e2] ` e 01 _ e 02
(7.55)
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Compiling statements

Sequences of statements:

(s1; �1) ` �2
( s1,s2 ; �1) ` (s2; �2)

(7.56)

Assignment:

(e; �) ` (e 0; �)

(MAssign[v; e]; �) ` �[v 7! e 0]
(7.57)

Control statements:

(c; �) ` (c 0; �) (s1; �) ` �1 (s2; �) ` �2
(MIfThen[c; s1; s2]; �) ` �1^c 0 _ �2^:c 0

(7.58)

(e; �) ` (e 0; �) k1 ` k 01 : : : kn ` k 0n (s1; �) ` �1 : : : (sn; �) ` �n
(MCaseOf[e; k1; s1; : : : ; kn; sn]; �) ` �

(7.59)

where

� = �1^(e 0
s$ k 01) _ � � � _ �n^(e 0

s$ k 0n)

_ �^:((e 0
s$ k 01) _ � � � _ (e 0

s$ k 0n))

(s1, : : :,sn; �1) ` �2
(MBeginEnd[s1; : : : ; sn]; �1) ` �2

(7.60)

Variable declarations3

Temporary variables:

t = MB

(MVar[ft; v1; : : : ; vng; vardecl ]; �) ` �
(7.61)

where

� = (MVar[vardecl ]; �[v1 7! ?; : : : ; vn 7! ?])

t = MI

(MVar[ft; v1; : : : ; vng; vardecl ]; �) ` �
(7.62)

where

� = (MVar[vardecl ]; �[v1 7! f?;?;?;?g; : : : ; vn 7! f?;?;?;?g])

3Note that these rules are de�ned recursively.
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Input variables:

t = MB

(MInput[ft; u1; : : : ; ung; vardecl ]; �) ` �
(7.63)

where
� = (MInput[vardecl ]; �[u1 7! u1[b]; : : : ; un 7! un[b]])

t = MI

(MInput[ft; u1; : : : ; ung; vardecl ]; �) ` �
(7.64)

where

� = (MInput[vardecl ]; �[u1 7! fu1[3]; u1[2]; u1[1]; u1[0]g; : : : ;

un 7! fun[3]; un[2]; un[1]; un[0]g])

Output variables:
The transitions for the declaration of output variables (MOutput) are similar
to the transitions for MVar, see (7.61) and (7.62).

Procedures and functions

Declaration:

(MProcedure[id ; fargsg; s]; �) `

�[Arg(id ) 7! args ;Code(id ) 7! s] (7.65)

(MFunction[id ; fargsg; s]; �) `

�[Arg(id ) 7! args ;Code(id ) 7! s] (7.66)

where Arg(id ) and Code(id ) are place holders for the argument symbols and
the code of the procedure or function named id in the binding environment
�.

Execution:

E ([[�1(Code(id))]]; �1[[[�1(Arg(id ))]] 7! fe 01; : : : ; e
0
ng]) ` (er; �2)

(id [e1; : : : ; en]; �1) ` (er;\�1�2) (7.67)

where
E = (e1; �) ` (e 01; �) : : : (en; �) ` (e 0n; �)

(e; �) ` (e 0; �)

(MReturn[e]; �) ` (e 0; �)
(7.68)

The PROGRAM keyword

s ` �

(MProgram[s]; ;) ` (�; ��nal )
(7.69)

where ; denotes the empty binding environment, and ��nal denotes the �nal
binding environment (�nal state of the compiler).
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Using these transition rules we automatically compile MPascal to a relational
model C(z; z+). For this application we let integer variables take values in the
range f0; : : : ; 15g, but for most of the integer input variables this range is too large.
It is therefore important to reduce the range to avoid false input cases. Let �(u)

denote a Boolean expression that includes all range conditions for all input variables
(compare to the set of all �-polynomials, �q, described in Section 5.7). Then we
can compute the �nal BDD relation as

~C(z; z+) = C(z; z+)^�(u) ^�(u+): (7.70)

The valid range for each integer variable is speci�ed in MPascal and the �-expres-
sion is automatically computed by the compiler.

The Controller Model

Let ~C(z; z+) denote the relation representing the output and state variables of
the 1200 lines of controller code. This relation has approximately 320 000 nodes
when represented as a BDD. It contains 105 binary variables, of which 26 are state
variables. The time required for the compilation is approximately 35 minutes on a
SPARCstation 10.

In order to make the BDD representation e�cient it is critical to choose a good
variable ordering. The basic rule is to rank the inputs lowest and the outputs
highest with temporary variables in between. This is intuitive since the output
variables depend on both temporary and input variables and should be found higher
up in the tree structure. Also the ordering among the variables in each of the three
groups a�ect the size of the BDD relation. As a help in choosing ordering we have
studied how the BDD grows when combining the variables. A big increase in the
size when adding a variable to the relation suggests that this variable should have
been ordered higher. To improve the e�ciency it would be of interest to introduce
an automatic choice of variable ordering in the parsing of the code.

We have thus parsed and compiled the implemented Pascal86 code into a re-
lation model whose behavior is in exact correspondence with the original code.
In the next section we will use this relational model to analyze the landing gear
controller.

7.4 Analysis of the Landing Gear Controller

In this section we describe the analysis of the landing gear controller with respect to
some function speci�cations. The purpose is to show that it is possible to perform
formal veri�cation of function speci�cations for a system of industrial size. We
begin by computing the reachable states of the system and then proceed to static
analysis and dynamic analysis of the system.

7.4.1 Computation of Reachable States

A part of the Pascal code initializes the controller. Using this initialization and
the system relation ~C(z; z+) it is possible to compute all reachable states of the
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controller. It turns out that there are 10 015 reachable states and that they are
all reachable in no more than �ve iterations of the code. This should be compared
with the 226 states that could be represented by the 26 binary state variables used
in the code.

By combining the system relation with the relation describing all reachable
states it is possible to reduce the size of our model. If �+

1
(x) denotes the reachable

states, the reduced model4 is computed as

Cred(z; z
+) = ~C(z; z+)^ �+

1
(x)^ �+

1
(x+): (7.71)

In this case, the complexity of the model is reduced considerably, from 193223 to
136841 vertices, see Section 7.5.

Using the reduced model it is possible to draw conclusions about the behavior
of the system.

7.4.2 Static Analysis

By static analysis (see Section 2.3.1) it is, for example, possible to ask questions of
the type

\Is it possible to simultaneously give the hydraulic commands ex-
tend gears and retract gears?"

The answer to such a question can be true (or false) in which case the statement
holds (is false) for all combinations of the input signals and states. There is also a
possibility that we get a relation as the answer. This relation represents all input
combinations for which the statement holds.

Using our model of the controller for veri�cation of the statement above we
get the answer false. This result can also trivially be deduced from the original
Pascal code.

In order to try our machinery on a set of more interesting (and realistic) ques-
tions we have used material from an earlier veri�cation project within SAAB Mili-
tary Aircraft. In this project SAAB veri�ed certain static properties of the landing
gear controller with the use of NPCircuit [84], a commercial tool which essentially
is a Boolean equation solver.

In these tests SAAB assumed that the hardware (switches etc.) works as in-
tended and this gives additional restrictions on the input variables. These restric-
tions, which we also will use, are as follows (see the tables 7.1, 7.2, 7.3 and 7.4 for
an explanation of the variable names):

1. Both switches on the extension lever in the cockpit have the same value.

p1 $ p2

2. Emergency extension is not activated.

:m1

4The size will decrease in most cases.
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3. All feedback switches on gears and doors have two contacts. These have the
same value.

s1j $ s2j ; j = 1; : : : ; 15

4. The switches on the doors do not give unreasonable values (open and closed
at the same time).

:(si4^s
i
5)^:(si9^s

i
10)^:(si14^s

i
15); i = 1; 2

5. The switches on the gears do not give unreasonable values (retracted and
extended at the same time).

:(si1^s
i
2)^:(si6^s

i
7)^:(si11^s

i
12); i = 1; 2

6. A gear with weight on is extended.

(si3 ! si2)^(si8 ! si7)^(si13 ! si12); i = 1; 2

7. Power supply is working.
:m5

8. The variables m3 and m4 have values according to their de�nitions.

(m3 = 1)$ (s13^s
1
8^s

1
13)

(m3 = 0)! (:s13^s
1
8^s

1
13)

(m4 = 0)! (m3 = 1)

These restrictions can be regarded as a �rst model of how the landing gear works
and they can be combined into one relation, which we denote P1(u).

Static Analysis I We want to verify the statement

\If extension of gears is performed (a3), then opening of doors is
performed (a5) simultaneously."

under the following conditions:

� Hardware operates correctly in accordance with items 1{8 above.

� Nose door is closed, i.e., (s14 _ s24).

� Nose gear is retracted, i.e., (s11 _ s21).

� Previous gear command was not \extend gears", i.e.,

(x7 = 0 _ x7 = 1 _ x7 = 2):

In terms of Boolean algebra the statement can be expressed as

(Cred(z; z
+)^P1(u)^P1(u

+)^(s14 _ s24)^(s11 _ s21)^

(x7 = 0 _ x7 = 1 _ x7 = 2))! (a3 ! a5): (7.72)

The result of the analysis is true, which means that the statement is true for
any combination of inputs and states. This corresponds to the result obtained
earlier by SAAB.
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Static Analysis II We want to verify the statement

\Retraction of gears is not performed (:a2)."

under the following conditions:

� Hardware operates correctly in accordance with items 1{8 above.

� Nose door is closed, i.e., (s14 _ s24).

� Nose gear is extended, i.e., (s12 _ s22).

� Previous gear command was not \retract gears", i.e.,

:(x8 = 4)^:(x8 = 5):

� In the previous iteration the nose gear was not retracted, i.e.,

:(x8 = 7):

In terms of Boolean algebra this is expressed as

(Cred(z; z
+)^P1(u)^P1(u

+)^(s14 _ s24)^(s12 _ s22)^

:(x8 = 4)^:(x8 = 5)^:(x8 = 7))! :a2: (7.73)

The result of the analysis is a BDD relation, with approximately 50 000 nodes,
describing for which combinations of inputs and states the statement holds. We
have not analyzed this result further. However, it could be in correspondence with
the veri�cation performed by SAAB, since they also found that there were cases
when the statement did not hold.

7.4.3 Dynamic Analysis on Closed Loop Landing Gear Sys-
tem

With dynamic analysis (see Section 2.3.2) we take an arbitrary number of steps
in the controller into account. This means that we can verify statements that for
example say that certain events never (or always) will take place. The speci�cations
are given in terms of temporal logic.

As in the case with static analysis the answer will be either true, false or
a relation describing all input and state combinations for which the statement
holds. If we try to verify behaviors of the controller with the input signals totally
uncorrelated with the actions of the gears and doors there will be a number of
\false" input-state combinations in the answer that will be hard to interpret.

Up to now the analysis has been performed on the controller, i.e., the open loop
system. We will now perform dynamic analysis on both the controller model and
a model of the plant connected in a closed loop. Temporal logic will be used both
for speci�cation and modeling of the plant.

The physical plant of the landing gear system is the landing gear itself with in-
puts controlling the hydraulic actuators, and outputs connected to several switches.
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Retracted Middle Extended

OutG OutG

OutGInG

InG InG

Figure 7.6: Plant model with �xed depth.

Gear state SWGearR SWGearE

Retracted true false

Middle false false

Extended false true

Table 7.8: Output mapping from gear plant model.

As mentioned in Section 7.1.2 the interface between the plant and the LGC is dis-
crete, which means that we can make a discrete model with the same behavior as
the continuous system seen from the LGC.

The LGC can only determine the state of the gears to be in three di�erent
regions: retracted, middle and extended. The same is also true for the doors which
have the regions: closed, middle and open. All the gears and the doors are operated
in parallel.

The simplest model with this behavior is a double 3-state automaton. The
automaton for the gears will look like Figure 7.6 where the input symbol OutG and
InG are place holders for the LGC actuator outputs. The output from the plant
are signals from the switches indicating the positions of gears and doors. For the
gear model the outputs are de�ned as in Table 7.8.

For the doors we get a similar model.
The plant model for both gears and doors are written in MPascal and then

compiled into a relational model P2(z; z
+). The resulting model has 8 Boolean

state variables. Each automaton has a single integer state variable, and integers
are represented by 4 Boolean variables in this case. This makes it easy to enlarge
the model later. There are 12 output variables and 5 input variables.

The structure of this model is

P2(zp; z
+
p ) := (x+p = fp(xp; up))^(yp = gp(xp)):

The outputs yp of the plant do not directly depend on the inputs up. This is
important to ensure that we avoid an algebraic loop when connecting the plant
and the LGC. The structure of the LGC model is

Cred(zc; z
+
c ) := (x+c = fc(xc; uc))^(yc = g(xc; uc))

where yc depend directly on uc.
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The input/output variables in the plant model P2(zp; z
+
p ) are the same as the

corresponding output/input variables in the LGC model. Therefore we can easily
compute the closed loop system Gc(z; z

+) as

G1(z; z
+) := Cred(zc; z

+
c )^P2(zp; z

+
p ) (7.74)

where z = zc [ zp.
Before analyzing the closed loop model we need a speci�cation or a test case

from which we can formulate a temporal logic expression. For the landing gear
system the most critical maneuver is extension, i.e., the landing gears should always
reach the extended state when the pilot pushes the gear extension button. More
formally we say:

The gears should always reach the extended state Gear (ext) in �nite
time, when the pilot command is extension Pilot(ext).

This speci�cation can be directly translated to the temporal logic expression
AG[Pilot(ext) ! Gear (ext)]. By verifying this expression we will obtain all states
from which the speci�cation is true. It is often more convenient to search for
the states not ful�lling the speci�cation. Therefore we de�ne the �rst temporal
expression in the opposite way as

F1(z) := EG[:(Pilot(ext)! Gear (ext))]: (7.75)

We verify this statement by

S1(z) := BDDTLEvaluate[G1(z; z
+),F1(z)]

where we use one of the commands in Table 7.5. We obtain a relation S1(z)

including 82 variables and with 5 di�erent solutions. By analyzing these solutions
further, using knowledge from the SAAB company, we found that for all 5 solutions
a time out condition TimeOut was set. This means that the analysis had found the
cases where extension time had exceeded its limit and the maneuver was stopped.
Then the pilot has to restart the extension by choosing retraction �rst and then
extension. To avoid this trap we reformulate the speci�cation as follows

Having the pilot command retract Pilot(ret) and in the next state hav-
ing Pilot(ext) and not TimeOut the gear should always reach the state
Gear (ext) in �nite time.

As before we formulate the temporal expression for �nding the errors.

F2(z) :=Pilot(ret)^EX[EG[

:((Pilot(ext)^:TimeOut)!
Gear(ext))]]

(7.76)

This is veri�ed by

S2(z) := BDDTLEvaluate[G1(z; z
+),F2(z)]
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which returns S2(z) � false, i.e., we have proved that the gears will always reach
the extended state provided the conditions above. Note that we do not specify an
initial state for the analysis. This means that this veri�cation holds for all behaviors
of the system preceding this extension maneuver. By this we have proved a liveness
property, i.e., the system cannot be trapped in a dead-lock situation. This proof is
only valid with respect to the simple model of the plant.

For the plant used above we have distinguished between three di�erent regions
for the gears: retracted, middle and extended. We used a three state automaton as
a model for the plant behavior. Doing this we have made an important assumption
about the system. Since the plant model works synchronously to the LGC it might
be relevant to consider how many iterations the LGC needs during a normal plant
maneuver. For the plant model P2 the LGC only needs 2 iterations to reach the end
state of the plant. The real implemented LGC iterates several times per second,
which means that a reasonable assumption is that it takes more than 20 iterations
to ful�ll a maneuver. To get a more realistic plant model we can build a model
with several middle states. If we let the number of middle states be larger than the
maximal depth of the LGC and if the dynamics of the LGC always reach a �xed
point, we know that this �xed point will be reached during the middle states. In
our case the maximal depth of the LGC is 5. By choosing a plant with 8 states, of
which 6 are middle states we have an appropriate plant model.

However there are some disadvantages with this method. First of all the com-
plexity increases since we add more states to the system. It turns out that by
adding more states to the plant we get harder complexity problems doing veri-
�cation compared to increasing the complexity of the temporal logic statements.
Second, we can only verify the system for a �xed depth (�xed number of middle
states) of the plant. We cannot in one veri�cation test plants with several di�er-
ent depths, without discrepancies. The last drawback is that we at this stage do
not know if the LGC reaches a �xed point. This feature can be examined by our
analysis tools, but it is not necessary if we use the power of temporal logic instead.

The most general plant in the sense of capturing all possible depths would be
the nondeterministic automaton which remains in the middle state an arbitrary
number of iterations and then goes to the end state. But if the plant should be
used for liveness veri�cation we have to have a model that reaches an end state
after a �nite number of steps. We do this by introducing condition signals ManG
(Maneuver) for the gears and ManD for the doors. See Figure 7.7 for the gear
model. The model for the doors is constructed in the same way. The gear and
door models are combined into a relational model P3(zp; z

+
p ) which is used for the

closed loop model

G2(z; z
+) := Cred(zc; z

+
c )^P3(zp; z

+
p ): (7.77)

We adjust the de�nition of the temporal expression F2(z) for the plant model
P3(zp; z

+
p ) such that the model will reach the extended state after a �nite time,

i.e., ManG and ManD are true only in a �nite time. The result is:

F3(z) :=Pilot(ret)^

EX[EU[~F2(z);EG[:ManG^:ManD^~F2(z)]]]
(7.78)
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Retracted Middle Extended

OutG OutG^:ManG

OutGInG

InG^:ManG InG

InG^ManG

OutG^ManG

Figure 7.7: Plant for arbitrary �nite depth. The ManG -signal is true as
long as the plant should be (maneuvering) in the middle state.

P3(zp; z
+
p ) T

up yp ~yp

EG

EDP4(zp; z
+
p )

Figure 7.8: Plant model with sensor failures.

where ~F2(z) = :((Pilot (ext)^:TimeOut) ! Gear (ext)). In this way we have
captured all plants with a �nite depth

We verify this statement by

S3(z) := BDDTLEvaluate[G2(z; z
+),F3(z)]:

The relation S3(z) is identical to false which shows that we will always reach the
extended state for all plants with �nite depth, i.e., the speci�cation F3 holds inde-
pendently of the number of iterations for the LGC during an extension maneuver.

This analysis was possible to perform without increasing the complexity of the
model. Instead, by using temporal expressions to build more general models we
can analyze more complex behavior.

The plant model P3(zp; z
+
p ) used above does not account for errors or distur-

bances on the signals. But there is a need to take some possible failures in the
switches into account. Therefore another plant model is created from the �rst
one, see Figure 7.8, where the outputs are �ltered and disturbed by two signals
EG and ED. The disturbance mapping T models the possibility of short circuits
in the switches measuring the state of the plant. Therefore when EG = true all
gear switches are true, i.e., the gears seams to be both retracted and extended
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simultaneously. The disturbance ED works in the same way for the doors. Note
that the reason for having double switches at each sensor, see Section 7.1, was to
be able to handle these type of failures.

We will refer to this plant model as the relational model P4(zp; z
+
p ). The closed

loop system is now

G3(z; z
+) := Cred(zc; z

+
c )^P4(zp; z

+
p ) (7.79)

In spite of the disturbance on the plant outputs we want the LGC to ful�ll its task
as stated in F3(z), i.e., the extension maneuver should be completed in �nite time
for P4(zp; z

+
p ) also. By computing

S4(z) := BDDTLEvaluate[G3(z; z
+),F3(z)]

we get the result S4(z), which is equal to false. This shows that we will always
reach the extended state for all plants with �nite depth and sensor failures.

7.5 Performance Improvements using IDDs

As mentioned in Section 7.2 the software for this project was originally designed
for BDDs. The experience of the BDDs in the project is that the representation of
integers are rather cumbersome. This motivated us to implement the IDDs from
Chapter 6 by rewriting the BDD package into a IDD package.

We have run all the computations of the landing gear project both with BDDs
and IDDs to be able to compare performance. The main di�erence of course is
that when we use the IDD we represent all integer variables in the Pascal code
with only one IDD variable. Moreover, we do not need to compute any constraints
(�-polynomial) for every integer since the IDD lets us specify the range for each
variable separately. The number of variables for the relations are presented in
Table 7.9. The same variable ordering is used both for the BDD and IDD case.

The comparison is done by a script in Mathematica that performs all the steps
from the compilation of the Pascal code to the dynamic veri�cation at the end.
During this process we have logged the time for some check points of the di�erent
computations. These checkpoints are presented in Table 7.10.

The times for these checkpoints are presented in Figure 7.9. The total com-
putation time for BDD is 35 minutes and for IDD 16 minutes. As we se from
Figure 7.9, this proportional di�erence is approximately the same for all computa-
tions performed. The most time consuming part, as expected, is the compilation
of the LGC. But we have to remark that during this compilation the BDD/IDD
package has to rebuild the structure several times, i.e., new memory must be al-
located and the unique and cache tables are rebuilt. A second compilation of the
LGC would take perhaps 10% less time to compute.

More surprisingly though, is that the composition of the LGC-model and the
plant model takes more time than the dynamic analysis where two �xed point
iterations are performed. But as a payback for the computation of the closed loop
model we get a smaller BDD/IDD as result. See Table 7.9.
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Description BDD IDD

Number of variables in LGC relation 105 70

Number of variables corresp. to integers
in LGC relation

47 12

Size of LGC relation 193223 127784

Number of variables in reachable state rel. 26 12

Number of variables corresp. to integers
in reach. state relation

20 5

Size of reachable state relation 346 93

Size of LGC relation restricted by the
reachable state relation

136841 84556

Size of closed loop relation 117934 62825

Memory size of one vertex/node. (32 bits
pointer arithmetics)

16 bytes
Booleans, 16 bytes

Integers, 72 bytes

Size of LGC relation (in bytes) 3091552 3287968

Size of reachable state relation (in bytes) 5536 4960

Total computation time. 35 min 16 min

Table 7.9: Comparison of size and number of variables for the LGC and
reachable state relations represented by BDD and IDD. The same variable
ordering is used for both BDD and IDD

We will also present some �gures comparing the size (number of vertices) of the
LGC relation represented by BDD and IDD respectively. Figure 7.10 shows the
width of the LGC relation model represented as a BDD. The width of a BDD/IDD
graph is the number of vertices for each variable included in the graph. For the
top variable (top vertex) we have the width 1, but variable number 61 has 9992
vertices as show in Figure 7.10. In the �gure we have also marked the variables
corresponding to integer bits by a dot.

Figure 7.10 shows that we have two peaks where the variables have many ver-
tices. The variables for the �rst peak are integer bit variables whereas the second
peak corresponds to Boolean variables in the LGC.

The LGC relation represented by the IDD, with similar variable ordering as
for the BDD case above, gives the width presented in Figure 7.11. We notice that
the �rst peak from Figure 7.10 is reduced whereas the second peak remains the
same. This indicates that we have reduced the complexity of representing integer
valued relations by the use of IDD. Still, as the �gure shows, the �rst peak has not
vanished, which indicates that the variable ordering may not be the best. How to
�nd an optimized variable ordering is a hard problem and not within the scope of
this thesis.

The width of the relation representing the reachable states of the LGC, is shown
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Checkpoints Description

1 Start of compilation of the LGC.

2 End of compilation of the LGC.

3 Start of computation of reachable states.

4 First step �nished

5 End of computation of reachable states.

6 The number of reachable states computed.

7 Start of compilation of plant model.

8 End of compilation of plant model.

9
Closed loop model composed. Start of dynamic
analysis of formula (7.78).

10 End of dynamic analysis.

Table 7.10: Checkpoints of the computations for comparing BDDs and
IDDs.

2 3 4 5 6 7 8 9 10
Checkpoint

5

10

15

20

25

30

35

Minutes

Figure 7.9: Times for the checkpoints in Table 7.10. The upper curve for
BDD and the lower for IDD.
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Figure 7.10: The width of the BDD representing the LGC relation. The
marked points correspond to integer bit variables.

20 40 60 80 100
Variable
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Figure 7.11: The width of the IDD representing the LGC relation. The
marked points correspond to integer variables.
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Figure 7.12: The width of the BDD (upper) and IDD (lower) representing
the reachable state relation. The marked points correspond to integer bit
variables.
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in Figure 7.12. In this relation the di�erences between the BDD and IDD, are not
as evident as for the LGC relation. Note though that the number of total vertices
is magnitudes less than for the LGC relation in both cases. This means that the
computation of the relation for the reachable states is not as complex in this case,
and that the BDD/IDD structures take advantage of the sparse reachable state
space. Moreover the fraction of variables corresponding to integers are bigger for
this relation than for the relation of the LGC model. This gives a greater advantage
for the IDD since the number of variables included in the relation is reduced by
50%, which in turn gives that the size of the relation is reduced by 73% according
to Table 7.9.

Table 7.9 shows the sizes in bytes of the LGC relation and the reachable state
relation. There is no major di�erences in sizes between the BDD and the IDD
representation. The reason for this is that the implementations of BDDs and IDDs
use 32 bit (4 bytes) to represent each edge in the diagrams. This is a disadvantage
for the IDDs, since each integer vertex of an IDD has 16 children. This gives the
total vertex size of 72 bytes. In this project though, we will not need to span 232

bytes of memory and therefore the vertices could be made smaller. This leds to a
non standard pointer arithmetics which is not within the scope of this thesis.

This comparison has shown that the use of IDD has increased performance and
utilized the integer structure as expected. The fraction of integer variables was 17%
in the IDD representation (45% in the BDD), which led to reduced computation
time by 54% and the number of vertices reduced by 34% for the LGC relation and
by 73% for the reachable state relation.

7.6 Conclusions and Future Work

The goal of this case study was to investigate if our relational framework can be
used for modeling and veri�cation of discrete event dynamic systems of industrial
size. The application chosen as an example was the landing gear controller of the
Swedish JAS 39 �ghter aircraft. In this section we will give some general conclusions
and directions of future work.

7.6.1 Conclusions

In this case study we have given an example of how one may verify a discrete
dynamic control system by building a model of the closed loop process:

Gc(z; z
+) := C(z; z+)^P(z; z+) (7.80)

where C(z; z+) is the controller and P(z; z+) is the plant.

We can also build a simple model of the function speci�cation S(z) using tempo-
ral logic. Using the closed loop system model Gc(z; z

+) and the speci�cation S(z)

we can then either verify or falsify the system behavior w.r.t. the speci�cation. In
case we falsify the system behavior we can also generate a sequence of inputs that
exhibits the failing behavior. This can then be independently veri�ed in a system
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simulator and the error should be characterized well enough for modi�cation of the
controller.

Below we briey list some of the overall conclusions regarding this application
of relational systems theory to an industrial scale problem.

� The developed methods and tools allow us to analyze industrial scale discrete
systems. In particular this allows us to prove (or disprove) that the system
behaves according to its speci�cation.

� The system should be automatically translated from an internal model de-
scription language to the relational format, which is suitable for analysis.
This procedure eliminates potential discrepancies between documents and
the actual system. Pascal is not suited for descibing DEDS. The reasons for
this will be discussed more thoroughly in Section 10.2.

� Analysis has been performed successfully on the di�erent models. Static
analysis has given results corresponding to prior knowledge from SAAB. The
most promising result is that a dynamic analysis has been performed on the
closed loop system by using temporal algebra as a representation of informal
speci�cations.

� A comparison have been made on IDDs and BDDs. This has shown that
the use of IDDs gains performance advantages, when integer variables are
included in the problems.

7.6.2 Future Work

Let us conclude this part by giving some examples of future work concerning the
modeling and analysis aspects of discrete event dynamic systems.

We need more research on model description languages aimed at symbolic anal-
ysis (e.g. veri�cation) rather than simulation or code generation. There are several
candidate languages to examine, some are international standards and some are
industry speci�c model description languages. Furthermore we need to better un-
derstand the relation between model complexity, as seen in some model description
language, and model complexity in the BDD/IDD representation. This is of cru-
cial importance when doing symbolic analysis and design and the problem would
greatly bene�t from a more focused study.

In the analysis part there are a number of important issues concerning complex-
ity. In particular, in performing the dynamic analyses there are several equivalent
computational formulations that have wildly di�erent space and time complexities.
These ought to be investigated more thoroughly.

In order to reach our ultimate goal of capturing the entire design process from
analysis to implementation, we should also begin to investigate the problem of
design and implementation for industrial scale examples.
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8

Synthesis of a Tank System

In industry, control and supervision have often been regarded as separate problems,
where the supervision has been dealt with in an ad hoc manner. With the increas-
ing complexity of discrete event dynamic systems there is a need for structured
methods for control of DEDS. There are several results in the area of supervisory
control, initiated by Ramadge and Wonham [104]. Two good surveys are [111] for
the automata-theoretic approach to supervisory control and [65] for the Petri net
approach to supervisory control

The earlier approaches within the �eld, mentioned above, have concentrated
on the pure supervision problem. It would however be desirable to �nd a design
method, formally handling both control and supervision aspects in a discrete set-
ting. By supervision we mean avoiding forbidden states and the control problem
is that of achieving a desired behavior among all allowed behaviors.

We propose a method where we use polynomials in a quotient ring to represent
the system and the controller. By working through an example we investigate
whether it is possible to automatically synthesize the control law for a discrete event
dynamic system using this representation. We describe the process of controller
design for the example, but the method is not speci�c for this example and general
conclusions are drawn about the method used.

We begin by describing the model of the water tank. In Section 8.2 we describe
the design criteria, deal with the computation of the control laws, using Gr�obner
bases, and analyze the resulting controller. In the last chapter we discuss the results
achieved and draw some general conclusions. Since the method makes extensive
use of polynomials in a quotient ring, which are described in Section 5, the reader
may bene�t from beginning with this chapter.

159
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u1 u2

u3 u4

x=0

x=6

w

d

Figure 8.1: The water tank.

8.1 Modeling the Water Tank

The example system chosen for controller design is a water tank (see Figure 8.1) in
which we want to control the water level. The tank has one inlet and two outlets,
which are controlled by valves that are either on or o�. The inlet is supplied by a
pump that is either on or o� and in one of the outlets there is a measurable but
uncontrollable ow out of the tank. Apart from the normal control of the tank we
also want to be able to handle a possible pump failure at the inlet.

The supervisory objective is to prevent the tank from drying up or overowing.
In addition we have a control objective of keeping the level as close to the middle
of the tank as possible. We want to compute a control law that uses only the pump
as long as that is su�cient. When a pump failure occurs, however, we have to use
the valves to ful�ll the objective.

This con�guration is not the result of modeling a physical system. Instead, we
have tried to generate a good test example which is not entirely trivial but where it
is possible to analyze the computed control laws by hand. Even if this is a simple
system some important features in the process of control design are clearly visible.
It should also be noted that the example does not have to be much larger before
it becomes di�cult to solve by hand.

8.1.1 Notation

Let u1 represent the binary control signal to the pump with o� corresponding to
u1 = 0 and on corresponding to u1 = 1. Let u2; u3 and u4 be the binary control
signals to the valves, where an open valve corresponds to ui = 1, while a closed
valve is represented by ui = 0. We let � be the net ow in the tank with � = 0
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u1 d ~u1

0 0 0

1 0 0

0 1 0

1 1 1

0 2 1

1 2 1

Table 8.1: The e�ect of the disturbance d.

Variable Domain Quantity

x F7 Water level

u1 F2 Pump signal

u2 - u4 F2 Valve signals

� F3 Net ow

w F2 Outow disturbance

d F3 Pump failure

Table 8.2: Variables with corresponding domain.

corresponding to a negative ow, � = 1 to no net ow and � = 2 to a positive
ow. The level in the tank is denoted x and is discretized to take values between
zero and six.

The ow at the outlet is modeled as a measurable binary disturbance w, with
w = 0 corresponding to no ow in the outlet and w = 1 corresponding to a ow
out of the tank.

The pump failure is modeled as a three-valued disturbance, d, acting on the
pump. The signal d represents two failure states and one normal state of the
pump. The e�ect of the disturbance on the pump is described in Table 8.1, where
~u1 represents the e�ect on the ow into the tank. In other words, when d = 0 the
pump is stuck and when d = 2 the pump is running, regardless of the value of u1.
Only when d = 1, the pump obeys the control signal, u1. The disturbance, d, is
assumed to be measurable.

The di�erent variables and their domains are shown in Table 8.2.

8.1.2 Deriving the Model

To reduce complexity it is essential to divide the system into subsystems, if possible.
In this case we can use the net ow � to write the tank model as

x+ = f1(x;�)

� = f2(u1; u2; u3; u4; w; d)
(8.1)
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where x+ denotes the next value of the state. Note that this is an untimed DEDS,
the \real time" is not included in the description. This means that the model will
not contain time information as e.g., how fast the water level increases or decreases.
The model just de�nes the order of the events interacting with the tank.

In Table 8.2 we see that x is the variable with the largest domain (f0; : : : ; 6g).
Therefore we have to represent all signals by polynomials in R7 [Z], where Z is the
variable set fx;�; u1; u2; u3; u4; w; dg. The variables that are two- or three-valued
can be embedded in R7 [Z] using the following relations (see Section 5.7)

�27(ui) = u2i - ui; i = 1; : : : ; 4

�27(w) = w2 -w

�37(d) = d(d - 1)(d - 2)

�37(�) = �(� - 1)(� - 2)

(8.2)

The set of these �-polynomials will, according to De�nition 5.12, be denoted �7.
When deriving the polynomial f1 in (8.1) it is important to keep in mind the

physical aspects of the tank. When x = 6 and we have a positive net ow into the
tank (� = 2), it will overow. This means that x+ should still be six. A similar
problem has to be accounted for when the level is x = 0 and the net ow � = 0.
Because of this, the polynomials describing the system become fairly complicated.

One way of describing the behavior of the system is to write down two tables,
one specifying how � depends on u1; u2; u3; u4; w and d, and one specifying how
x+ depends on x and �. These tables then specify � and x+ as functions. Using
the Lagrange interpolation polynomial introduced in Section 5.3 we can derive the
polynomial description of the system. The two polynomials f1 and f2 in (8.1)
become

f1(x;�) = x+ 3� - 3�2 - 3�x + 3�2x+ 3�x2 - 3�2x2 -

- 3�x3 + 3�2x3 + 3�x4 - 3�2x4 - 3�x5 + 3�2x5 -

- x6 + �x6
(8.3)

and

f2(u1; u2; u3; u4; w; d) = 1 + 3du2 - 3d2u2 + 2du1u2 - d2u1u2 -

- u3 - u4w+ u3u4w - 3du2u3u4w+

+ 3d2u2u3u4w - 2du1u2u3u4w +

+ d2u1u2u3u4w:

(8.4)

where f1; f2 2 R7 [z; z
+] with z being the set of system variables.

Here, f1 is a description of the next state, when we know x and �. The poly-
nomial f2 tells us how �, in its turn, depends on the control signals and the
disturbances. Together these polynomials tell us how x+ depends on the control
signals and the disturbances. It is of course easy to verify that the behavior is as
desired by substituting values for the ui, w and d and computing the value of the
next state modulo 7.
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Example 8.1

Let us for example assume that the pump works normally (d = 1) and is on (u1 = 1),
that the disturbance w is equal to one and that the valves are positioned according to

u2 = 1 u3 = 0 u4 = 0

Substituting these values into (8.4) the result is 2, which means that we have a net ow
into the tank. Let us assume that the current state is x = 3. Substituting values for �
and x in (8.3) we see that f1 = 4. Thus the next state will be x+ = 4.

In (8.3) and (8.4) we have a mathematical model of the water tank. The
question now is how to specify the control objectives and how to compute the
desired control law.

8.2 Controller Design

In this chapter we will describe the process of controller design for the water tank
modeled in Section 8.1. We begin by formulating the design criteria in terms of
polynomials in Section 8.2.1 and then we derive the control laws using successive
Gr�obner basis computations in Section 8.2.2. Finally we analyze the designed
controller in Section 8.2.3.

8.2.1 Design Criteria

The supervisory objective is to avoid the case when the tank dries up or overows.
In terms of the level x, we want to avoid x = 0 and x = 6. Given the present level
and the disturbances w and d, we want to �nd a control law that guarantees that
we never reach the forbidden levels, speci�ed by the polynomial

p(x) = 1 + x+ 6x2 + x3 + 6x4 + x5 + 5x6: (8.5)

This polynomial can be generated from e.g., a table, using the Lagrange interpo-
lating polynomial described in Section 5.3. The polynomial is equal to zero for all
values of x, except x = 0 and x = 6, where it is equal to one.

By formulating only a supervisory objective we get a set of solutions. For
example, since we only want to avoid x = 0 and x = 6, we know that there are no
constraints on � at all, unless the level, x, is in a neighborhood of the forbidden
levels. In addition to this, we have four actuators to choose between at every
instant, some of them giving the same control behavior.

One way of �nding one of the possible control laws, is to reduce the set of
solutions by imposing more requirements on the system. A weighting function could
then be used, both to obtain our control objective and to reduce the solution set.
Using a weighting function, we could formulate our control objective as reducing
the weight of the next value of x compared to the present value. In other words,
we steer the level towards the middle of the tank. If we can still guarantee that the
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level never reaches x = 0 or x = 6, this is just one way of picking a single solution.
The weighting function that we have chosen is given by Example 5.5.

x 0 1 2 3 4 5 6

J(x) 3 2 1 0 1 2 3
(8.6)

If we represent the weighting function as a polynomial, we have from (5.17):

J(x) = 3 + 3x + 6x2 + x3 + 2x4 + 6x5 + 2x6 (8.7)

where J(x) 2 R7[x]. Use this polynomial to weight the new values of the state
variable:

J(x+) = J(f1(x;�)): (8.8)

We want to �nd the value of � that minimizes J(x+) with respect to the ordering
0 < 1 < � � � < 6, i.e.,

� = arg min
�2F3

J(f1(x;�)): (8.9)

Now let the polynomial p1(x;�;m) be de�ned as

p1(x;�;m) = J(f1(x;�)) +m - J(x): (8.10)

If there exists a � 2 F3 that decreases the weight of the state with m steps, that
value of � is de�ned as the solution to

p1(x;�;m) = 0: (8.11)

This solution is valid only in the case when m < q - Jmax (q = 7 here), where
Jmax = argmax

x2F7
J(x) and m, q and Jmax and the max- and <-operations are re-

garded as in N. The ordering will otherwise be destroyed, and there will be false
solutions.

By this construction we will �nd a solution, �, if one exists. If we can express
� explicitly, the values of the actuator signals are the solutions to

p2(�;u1; u2; u3; u4; w; d) = 0 (8.12)

where p2(�;u1; u2; u3; u4; w; d) is de�ned as

p2(�;u1; u2; u3; u4; w; d) = f2(u1; u2; u3; u4; w; d) -�: (8.13)

The explicit expressions for the polynomials p1 and p2 are

p1(x;�;m) = -3� + 3�2 +m + x+ �x- 2�2x- 2x3 - 2�x3 -

- 3�2x3 - 2�x4 + 2�2x4 + 2x5 - 2�x5 (8.14)

p2(�;u1; u2; u3; u4; w; d) = 1 -� + 3du2 - 3d2u2 + 2du1u2 -

- d2u1u2 - u3 - u4w + u3u4w -

- 3du2u3u4w + 3d2u2u3u4w -

- 2du1u2u3u4w + d2u1u2u3u4w

(8.15)
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8.2.2 Computation of the Control Laws

The two polynomials p1(x;�;m) and p2(�;u1; u2; u3; u4; w; d) express relations
between the variables, implicitly describing the control laws. We want to �nd
explicit control laws

u1 = Ku1(x;w; d)

u2 = Ku2(x;w; d)

u3 = Ku3(x;w; d)

u4 = Ku4(x;w; d)

(8.16)

where the ui are functions of x, w and d. For every combination of these variables,
the control laws should guarantee that we never enter the forbidden area and that
the additional control objective is met.

In order to do this, we �rst need to express � as a function of x, using the poly-
nomial p1. One way of doing that is to compute a Gr�obner basis with lexicographic
ordering, where we rank � the highest and use m as a parameter. The Gr�obner
basis will then contain a polynomial that is linear in � (see De�nition 5.10), since
the choice of � is unambiguous for every x.

Computing the Desired Net Flow

We know that the level x in the tank cannot increase or decrease by more than
one in each step. Therefore it is only possible to reduce the weight by at most
one (m = 1) in each time step, and it will not be possible to �nd control laws for
m > 1.

Begin by computing the Gr�obner basis

GBa = GB7

��
p1(x;�;m); �37(�)

	
jm=1

�
(8.17)

with lexicographic order � > x. In the general case a Gr�obner basis contains a
number of polynomials

GB = fg1(�; x); g2(x); : : : ; gi(x)g : (8.18)

In this case the Gr�obner basis only contains two polynomials (i = 2), so we have

GBa = fg1(�; x); g2(x)g : (8.19)

By the construction of p1 from (8.10) we have no ambiguity for m = 1, i.e., � is a
functionally dependent variable w.r.t. hp1; �

3
7i and the �rst polynomial in GBa can

be written (see Section 5.6)

�- k�a(x) (8.20)

The other polynomials in GBa de�ne where this solution is valid. Let the polyno-
mial v�a (x) denote the valid area for k�a (x). Generally we would compute v�a(x)
as

v�a(x) = g2(x)^g3(x)^: : :^gi(x): (8.21)
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Here we only have one polynomial except g1, so v�a(x) is

v�a(x) = g2(x): (8.22)

In this case it turns out that the solution is valid for all x, except x = 3. This is
of course due to the fact that we have required the weight of the state to decrease
by one and this is not possible when x = 3. Instead, we have to be satis�ed as long
as the weight does not increase. This means that we have to search for another
solution in the case when v�a 6= 0. Compute

GBb = GB7

��
p1(x;�;m); �37(�);:v�a (x)

	
jm=0

�
(8.23)

with lexicographic order � > x to get

� - k�b(x) (8.24)

with corresponding polynomial v�b(x), denoting the valid area for k�b (x).
We can now compute � as a function of x as

� = K�(x) = k�a(x):v�a(x) + k�b(x):v�b (x) (8.25)

with valid area

V� = v�a _ v�b : (8.26)

It turns out that V� � true. Therefore the valid area covers all values of x and
there is a solution in � for every x 2 F7 . The explicit expression for K�(x) is

K�(x) = 2 - x - 3x2 - 3x3 + 2x4 - 2x5: (8.27)

If we are able to compute the ui as functions of �, w and d, using p2, we
can express the actuator signals in the desired form of equation (8.16) by using
equation (8.27).

Finding an Unambiguous Control Law

In order to compute the ui as functions of �, w and d we need the solution to
equation (8.12) to be unambiguous. Obviously, this is not the case with the water
tank. There are several control actions that, given values of w and d, give the
same net ow �. Therefore we need to make a priority among the actuators. In
this case it is natural to try to control the tank by using the pump, if possible, and
only use the valves if necessary.

Therefore we start by computing a Gr�obner basis for the case when we only use
the pump for control, setting the other actuators to default values. In some cases
the choice of default values is quite natural, but we can of course de�ne them any
way we want. Here we let the default values of the valves be as in normal operation
(the pump working), that is: u2 open, u3 closed and u4 open. The default value
for the pump is chosen to be u1;def = 0.
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The �rst Gr�obner basis computation gives us a valid area for the �rst control
law. We then continue with the computation of a second Gr�obner basis, using u1
and u2 for the control. In this way we �nally get four expressions for each ui, valid
in four di�erent areas and these can be combined into one control law.

Due to physical causes, there is a possibility that some of the actuators can not
a�ect the behavior of the system. In terms of the Gr�obner basis this means that
the value of the corresponding variable will be unspeci�ed. In order to guarantee
that there is only one solution to (8.12) in these cases, we need extra constraints
in the Gr�obner basis computations. This is illustrated by a simple example.

Example 8.2 Extra Constraints
Consider a pipe with one valve that can be either open or closed, see the �gure below.

φ
v

An open valve corresponds to v = 1, while a closed valve is represented by v = 0. The
ow into the pipe is represented by � and can be either � = 1 (ow) or � = 0 (no ow).

Obviously, when � = 0, it does not matter what we do with the valve. To get a unique
control strategy we can decide that we let v = 1 be the default value in this case. Using
polynomials this can be expressed by the condition

c(�; v) = (�- 1)(v- 1): (8.28)

If we include a polynomial like this in the Gr�obner basis computations the result will be
that when � = 0, v is forced to the value 1, while the condition is satis�ed no matter
what v is, when � = 1 .

In the case of the water tank we have, for example, that when d = 0 or d = 2

we cannot use u1 for control, so for these values of d we assign the default value to
u1. There are three similar cases to account for and all these have to be expressed
by extra constraints. These extra constraints will be speci�ed in the next section.

Computation of the Actuator Signals

First de�ne default values for the actuators

u1;def = 0

u2;def = 1

u3;def = 0

u4;def = 1

(8.29)
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The extra constraints are given by

c1(u1; d) = (d - 1)(u1 - u1;def)

c2(u2; d) = (d - 2)(u2 - u2;def)

c3(u3; w) = w(u3 - u3;def)

c4(u4; w) = (w - 1)(u4 - u4;def)

(8.30)

Let kui;j denote the control law for actuator i in valid area vj, where i = 1; : : : ; 4

and j = 1; : : : ; 4.
Start by computing

GB1 = GB7 (fp2; c1; �7g ju2=1;u3=0;u4=1 ) (8.31)

with lexicographic order u1 > � > d > w. This gives us

u1 - ku1;1(�; d;w) (8.32)

as the �rst polynomial in GB1, and a valid area for this solution which we denote
v1(�; d;w). In this valid area, we let the other actuators take their default values,
that is

ku2;1 = 1

ku3;1 = 0

ku4;1 = 1

(8.33)

Next use both u1 and u2. Since this control action should not be allowed in v1
we add :v1 in the Gr�obner basis computation. That is, compute

GB2 = GB7 (fp2; c1; c2;:v1; �7g ju3=0;u4=1 ) (8.34)

with lexicographic order u1 > u2 > � > d > w.
From this we get ku1;2 and ku2;2, while ku3;2 and ku4;2 take their default

values. We then continue by computing

GB3 = GB7 (fp2; c1; c2; c3;:v1^:v2; �7g ju4=1 ) (8.35)

and

GB4 = GB7 (fp2; c1; c2; c3; c4;:v1^:v2^:v3; �7g) (8.36)

with lexicographic order u1 > u2 > u3 > � > d > w and u1 > u2 > u3 > u4 >

� > d > w respectively.
Since the valid areas in the four cases are disjoint by construction, we can

compute the total control law for each ui as

Kui(�;w; d) =

4X
j=1

kui;j:vj: (8.37)
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This control law will have the total valid area Vu = v1 _ v2 _ v3 _ v4. If we
express the control laws and the valid area explicitly, we get

Ku1(�;w; d) = -d�- 3d2� + d�2 - 3d�w - 2d2�w -

- 2d�2w + d2�2w

Ku2(�;w; d) = 1 - 3d + 3d2 - 3� + 3d� + 3�2 - 3d�2 - d�w +

+ d2�w - 3d�2w + 3d2�2w

Ku3(�;w; d) = 1 + 2� - 3�2 -w- 2�w + 3�2w

Ku4(�;w; d) = 1 - 3� + d� + 2d2� + 3�2 - d�2 - 2d2�2 - 2�w +

+ 2d�w - 3d2�w +�2w + 3d�2w - d2�2w

Vu(�;w; d) = 1 - 3� + d� + 2d2� + 3�2 - d�2 - 2d2�2 (8.38)

As we will see later, the valid area will not cover all possible combinations of x, d
and w.

We have now computed all the control laws and could substitute (8.27) into
(8.38) to get the equations in the desired form (8.16). However, to reduce complex-
ity, it is essential to keep the modularity of the system. In the analysis we therefore
avoid the substitution as long as possible.

8.2.3 Analysis of the Design

After the design phase we need to make sure that both the control objective and
the supervisory objective are achieved. We will focus on

� Controllability. Is it possible to ful�ll the control objectives by actions on the
inputs?

� Supervisability. Given an initial state which is allowed, can we guarantee that
we will never reach a forbidden state?

Controllability

The polynomial Vu in (8.38) represents the values of the variables �;w; d, for
which we have an appropriate control law. If this polynomial is false for some
values of �;w; d we know that for those values no control law has been computed.
This is an indication that the system is not controllable everywhere for the design
con�guration chosen. If the system was controllable everywhere, this design method
would �nd control laws for all values of �;w; d.

Evaluating the polynomial (8.38) for all values of �;w and d, we �nd that Vu
is false only for the case �

� = 2

d = 0
(8.39)
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(independent of w). This corresponds to the case when there is a pump failure
and, at the same time, the level in the tank is required to increase. Looking at the
physical system in Figure 8.1 there is no doubt that it is impossible to ful�ll that
requirement.

A false value forces us to do a re-engineering of either the system itself (adding
some actuators) or the objectives stated for the control design. In this example we
choose the latter.

With an uncontrollable system we cannot trust that the control laws will give
us the expected behavior. Therefore we have to de�ne a true net ow, �0, which
corresponds to the true net ow for the real tank. The true net ow �0 may di�er
from the desired net ow � when we have an uncontrollable system. The desired
net ow � is used in the computations of the actuator values but may not always
be obtained because of the uncontrollability.

The Closed Loop System

From (8.3), (8.4), (8.27) and (8.38) we have the model and the control law equations
from which we shall derive a closed loop description.

The closed loop system must be properly de�ned, which means that the control
laws also must be de�ned for the non valid area. Let us do that in two ways:

1. Let the control laws take their default values also outside the valid area (a
simple and intuitive strategy when the physical causes of the non valid area
are unknown).

u1;def = 0; u2;def = 1; u3;def = 0; u4;def = 1 (8.40)

2. It seems smarter and more careful to let the valve u4 be closed. (To be sure
that the level is not decreasing.)

u1;def = 0; u2;def = 1; u3;def = 0; u4;def = 0 (8.41)

These two ways of handling the control laws will generate the closed loop descrip-
tions Gc1(x;w; d) and Gc2(x;w; d) respectively.

The computation of the closed loop system x+ = Gc(x;w; d) is straightforward
using simple substitutions

x+ = f1(x;�0) (8.42)

�0 = f2(u1; u2; u3; u4; w; d) (8.43)

u1 = Ku1(�;w; d) (8.44)

u2 = Ku2(�;w; d) (8.45)

u3 = Ku3(�;w; d) (8.46)

u4 = Ku4(�;w; d) (8.47)

� = K�(x;w; d) (8.48)

where we substitute (8.48) into (8.47) and so on. To formulate the closed loop
system in one polynomial in the general case is of course rather heavy (even for a
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computer). Still, it is possible to do this in our small example, and it will make
the analysis convenient for us.

The resulting polynomials for the two closed loop systems are

Gc1(x; d;w) = -2d + 3d2 - 2x + 3dx - d2x- 2wx + 3dwx -

- d2wx- dx2 - 2d2x2 + 3wx2 - dwx2 - 2d2wx2 -

- x3 - 3dx3 + d2x3 + 2wx3 - 3dwx3 + d2wx3 +

+ 3dx4 - d2x4 - 2wx4 + 3dwx4 - d2wx4 + x5 -

- dx5 - 2d2x5 + 3wx5 - dwx5 - 2d2wx5 + 3x6 -

- dx6 - 2d2x6 + 2wx6 - 3dwx6 + d2wx6

(8.49)

Gc2(x;w; d) = -2d + 3d2 - 2x+ 3dx- d2x- dx2 - 2d2x2 -

- x3 - 3dx3 + d2x3 + 3dx4 - d2x4 + x5 - dx5 -

- 2d2x5 + 3x6 - dx6 - 2d2x6
(8.50)

Note that the polynomial Gc2 is independent of w which means that the control
laws eliminate the inuence of the disturbance signal w. This in turn leads to a
simpler polynomial.

These polynomials are hard to interpret as they are. One way of gaining insight
would be to substitute all possible values of the variables and derive a table of the
closed loop system. For larger systems such a method would be of little use, and
as we will see in the next section it is possible to analyze the closed loop behavior,
using the polynomial description.

Supervisability

One way of checking supervisability is to test backward reachability for our closed
loop systems. If we from all forbidden states move backwards one step with all
possible input signals, and the states reached are all forbidden, we know that it is
impossible to reach a non forbidden state in any number of backward steps. Thus
the forbidden states are not reachable from a non forbidden state. If the polynomial
describing the allowed states is simpler, it would of course be better to test forward
reachability from the allowed states instead.

The forbidden states are described by the polynomial :p(x) = 0, where p(x) is
as de�ned in (8.5). Now consider the ideal

A = h:p(x+); x+ -Gc(x;w; d); �7i: (8.51)

Let the values of x in the variety V(A), specifying the one step backward reachable
states from the states de�ned by :p(x+), be contained in a set denoted Bx. We have
that if Bx � V(:p(x)), a properly initialized system cannot reach the forbidden
area, in other words the objectives are ful�lled.

Let us compute the Gr�obner bases for the two cases with lexicographic order
d > w > x+ > x.
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(i)

GB7
�
f:p(x+); x+ -Gc1(x;w; d); �7(w;d)g

�
=

f d; -w +w2; -x+wx; x+; 3x+ 4x2g (8.52)

(ii)

GB7
�
f:p(x+); x+ -Gc2(x;w; d); �7(w;d)g

�
=

f d; -w +w2; 2x + x+; x2g (8.53)

The backward reachable states are speci�ed by the last polynomial in the Gr�obner
bases above, since x has the lowest rank. For Gc1 we have the polynomial 3x+4x2

which has f x = 0; x = 1g as roots, and we see that this system does not ful�ll our
objectives, since x = 1 is in the non forbidden area. For Gc2 we have x = 0 as the
only root, showing that no non forbidden states are reached. Therefore Gc2 is a
robust design for this model of disturbances and choice of forbidden states. The
supervisability analysis shows that it is important to deal appropriately with the
control behavior outside the valid area.

To conclude the discussion about the closed loop behavior the complete closed
loop description is presented in Table 8.3.

8.3 Conclusions

The example has shown that the relational framework based on a polynomial rep-
resentation can be used to formally handle both control and supervision aspects in
a discrete setting. Even if some steps were manipulated by hand in this example,
the results indicate that the design process could be stated as an algorithm. This
means that it would be possible to generate control code automatically, given a
DEDS model and control/supervisor objectives. This topic is further discussed in
Plantin [99].

8.3.1 The Design Method

The design method used produces control laws that are functions of the measurable
variables. In order to achieve this we must have a way to choose one of, possibly,
many control laws ful�lling the speci�cation. We propose the use of a weighting
function, where the forbidden states are given the highest weight. This method
allows assignment of weights to groups of states and it also opens the possibility
to speci�cations of another kind than \forbidden states".

We also propose a priority among the actuators. This priority sometimes is
a natural priority, otherwise we can regard it as a design criteria. It could for
example be used to distinguish emergency actions from normal control, i.e., handle
supervision aspects.

The functions representing the control laws can be analyzed symbolically. An-
other advantage is that we get a valid area for our control laws, which makes it pos-
sible to examine the controllability of the design. If there is a need for re-engineering
the controllability analysis indicates what parts need to be re-engineered.
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x

d w 0 1 2 3 4 5 6

0 0 1 2 3 3 4 5

0 1 0 0 1 3 3 4 5

0 1 2 3 3 3 4 5

1 1 1 2 3 3 3 4 5

0 1 2 3 3 3 4 5

2 1 1 2 3 3 3 4 5

x

d w 0 1 2 3 4 5 6

0 0 1 2 3 3 4 5

0 1 0 1 2 3 3 4 5

0 1 2 3 3 3 4 5

1 1 1 2 3 3 3 4 5

0 1 2 3 3 3 4 5

2 1 1 2 3 3 3 4 5

Table 8.3: Values for x+ = Gc1(x; d; w) and x+ = Gc2(x; d; w) respec-
tively.

8.3.2 Computational Aspects

The key issue in the design process is to reduce the complexity as much as possible.
This is done by careful modeling and by imposing requirements on the behavior of
the system that reduces the number of possible control laws.

In the modeling it is very important to divide the system into subsystems with
as few interacting variables as possible. An open question is how the choice of the
�nite �eld a�ects the complexity of the model.

The computations described in this paper are done by a straightforward imple-
mentation of Buchberger's algorithm [30] inMathematica [114]. The seven Gr�obner
bases needed in this example were computed in a total time of half an hour on an
LX SparcStation, which is acceptable considering that the algorithm is designed
for general polynomials. Since the problem domain is discrete there are a lot of
optimizing possibilities to consider, e.g., extending existing algorithms for Boolean
equations.

When this thesis is printed the author has tried some Gr�obner Basis computa-
tions on the new version (3.0) of Mathematica [115], see Section 6.3. This version
o�ers much better performance for Gr�obner Basis computations. The computa-
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tions in this chapter have not been recomputed using this version, though, but the
author's impression is that the Gr�obner Basis in this chapter will be computed in
a few minutes.

Even though it might be time consuming to compute many Gr�obner bases it is
important to notice that in each Gr�obner basis calculation we get an indication if
we have speci�ed the design criteria enough. If the Gr�obner basis equals identity,
we know that we have imposed too many constraints and that there is no solution.
Similarly, if the unknown variable is not functionally dependent we need to impose
more design constraints.

An important aspect is that the control laws computed, easily can be translated
into executable code. This means that once the system description and the design
criteria are decided, the controller code could be generated automatically. Since
the computation of the actuator signals only consists of evaluating a polynomial
for the measured values of the system variables, the computation can be made very
fast and is therefore suited for real time controllers.
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Modeling of DEDS - General
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9
Approaches to Describing

Discrete Event Dynamic

Systems

The area of discrete event dynamic systems (DEDS) has increased in importance
during the last years. The reason is the growing need of tools which support
the development of the complex DEDS of today. The nature of DEDS is that
complexity often grow very fast, and they are therefore di�cult to analyze and
verify.

Research of DEDS became a topic within the automatic control community in
the beginning of the eighties. Since then several di�erent approaches have been
developed for DEDS, but none of these approaches has proven to be the ultimate
choice. Therefore the research area is still open for new suggestions.

In this chapter we briey discuss the main candidates of these approaches for
DEDS. Three of them: Ramadge-Wonham, Petri nets and COCOLOG will also be
described in more detail in Chapter 11.

9.1 The Automata Theoretic Approach

The notion of �nite automata was introduced by McCulloch and Pitts [87] in the
mid-forties and since then the area of �nite automata has been developed further
by, e.g., Moore and Mealy [92, 90] in the �fties.

In the area of automatic control, Ramadge and Wonham [104] initiated the
supervisory control theory which is used for correctness issues in the control of
DEDS. This theory was set in a simple, abstract framework of formal languages
[68] and �nite automata, chosen for conceptual simplicity and generality rather
than modeling e�ciency or computational tractability. See [104] for a survey of
supervisory control theory. Properties of DEDS such as controllability [116] and
observability [83] have been investigated in the theory of supervisory control.
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To reduce complexity of synthesizing a control law for DEDS, horizontal [101]
and vertical (hierarchical) [118] decomposition of the overall control task has been
studied.

The framework of untimed DEDS has been extended with real time features. In
this framework, timed transition models with real time temporal logic [95] are used
for formal veri�cation. See [94] for a survey of formal models and speci�cations for
real-time systems.

Another extension to the area of DEDS is the notion of in�nite strings and
B�uchi automata [103]. These are used for modeling in�nite behavior and for
analyzing e.g., absence of deadlock properties of these behaviors.

To further develop the modeling process of �nite automata, statecharts were
introduced by Harel [62] and now exist in a number of versions. Statecharts support
aggregation of state-machine models without combinatorial explosion. For a special
class of the statechart formalism: hierarchical state machines (HSM), Brave and
Heymann [13] have a suggestion of an algorithm solving the reachability problem
of HSMs.

For a survey of the area discussed above, see [111] and [78].

9.2 The Petri Net Approach

Petri nets were introduced by Petri in 1962 [98] and have since then been used
for modeling and analysis of DEDS. Petri nets were �rst used to give a theoreti-
cal framework for communication between concurrent systems, e.g., asynchronous
communication between computers, see Holt et al. [67]. For an introduction to
Petri nets, see Peterson [97] and Murata [93].

Not until recently have Petri nets been used for analysis and synthesis of control
laws for DEDS. Krogh and Holloway [75] and Ichikawa and Hiraishi [69] have
introduced controlled Petri nets (CPN) which is a Petri net extension, from which
they have formulated theories and methods for supervisory control.

The dynamics of Petri nets can be viewed from a perspective analogous to
linear algebra, where the dynamics are represented by a linear matrix equation.
This approach has been formulated in a control context by Giua, DiCesare and
Silva [45], and by Li and Wonham [81, 82].

The notation of Petri nets is often extended, [97], to supports new types of
systems, e.g., Timed-Event-Graphs (TEG) [5] which is a class of Petri nets where
time delays are included in the notation. To represent TEGs algebraically Cohen,
Dubois, Quadrat and Viot have introduce the max-plus algebra [29]. Max-plus is
a dioid algebra [5] which is the mathematical framework of the system theory of
TEG models. The TEG theory has many analogies of the theory of linear systems,
but the applications of the theory are mainly concerned with performance and
optimization issues rather than feedback control. For a tutorial of max-plus and a
survey of the system theory of TEG, see [28] and [5].
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9.3 The COCOLOG Approach

In 1990 Caines and Wang [20] introduced COCOLOG, a conditional observer and
controller logic for �nite machines. COCOLOG is designed to adaptively compute
control actions from observed outputs and inputs of the system. A COCOLOG
controller can be regarded as an adaptive controller for �nite machines.

The COCOLOG framework is based on �rst order logic. In COCOLOG axioms
of the model, the measurements of the process, and the control strategies are used
to generate theories. From these theories control action can then be derived. All
computations are done with a theorem prover [10] called Blitzensturm [19].

For an introduction see [20] and the application of controlling an elevator [32].

9.4 Simulation and Perturbation Analysis

Perturbation analysis [46] deals with the problem of minimizing a function J(�)

which is some performance measure of the behavior of a DEDS, where � denotes,
e.g., model parameters and control actions. Minimizing J(�) is an optimization
problem with large complexity in general, and since � often takes discrete values
optimization methods based on di�erentiating J(�) are not useful. However, per-
turbation analysis extracts J's dependence on � by analyzing a sample path (one
behavior) of the system and how this path is \perturbed" for small variations on
�.

Perturbation analysis is used to analyze and optimize DEDS, see [21, 64]. For
a research survey of the area see [22].
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10

Aspects of Modeling using

Algebraic Methods

In this chapter we will deal with some aspects of modeling using polynomials over
�nite �elds. The purpose is to give some guidelines of how to make a DEDS model
using polynomials. Before making a DEDS model, we must choose a suitable
�nite �eld Fq . We should also try to separate the systems into subsystems to
lower complexity. Guidelines that hopefully will make these choices easier will be
presented in this chapter.

We will also reason about the di�erences between event and signal interaction
with a DEDS. As shown in the previous parts of this thesis it is rather straightfor-
ward to represent signals with variables of a �nite �eld. But it is not straightforward
to convert signals to events and vice versa. We will give some useful hints of the
process of converting system descriptions between event and signal interactions,
see Section 10.3.

To do modeling directly with polynomials is not a realistic approach in everyday
engineering work, and to make modeling more convenient we will have to use some
kind of modeling language. At the end of this chapter we will point out the features
we would like to see in a modeling language, but we will not make any suggestions
about a new modeling language.

10.1 Polynomial Representation of DEDS

In the previous parts of this thesis we have modeled systems using polynomials in
R7 [Z]. We have also used Boolean relations which can be regarded as polynomials
in R2 [Z]. Modeling DEDS with Boolean equations is a well known technique from
Moore and Mealy [92, 90].

To be able to indicate some conceptual di�erences between modeling a system
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Figure 10.1: Simpli�ed tank

in a smaller or larger �eld we remodel a simpli�ed version of the tank from Sec-
tion 8.1.2 twice. First we do a more thorough modeling of the tank using R7 [Z],
compared to Section 8.1. Then we do the same using Boolean expressions.

By doing this remodeling manually we hope to see if there are some advantages
using R7 [Z] compared to the Boolean expressions. Even if polynomials is not
realistic and practical for manual use, this comparison might indicate the potential
in a modeling tool based on polynomials.

In this section we will use the simpli�ed tank shown in Figure 10.1.

Example 10.1 Polynomial Tank Model
For the tank in Figure 10.1 we will model the relation between the level of the tank x and
the net ow into the tank �. The de�nitions of x and � are analogous to Section 8.1.2.

Since the level of the tank only takes seven di�erent values we can let the variable x
belong to the �eld F7 which is a natural choice of �eld since we then can express the level
with only one state variable. Basically we now have the following state equation

x
+
==x + (�- 1) (10.1)

where (�- 1) takes values from f-1; 0; 1g. (� is de�ned as in Section 8.1.2.)

Equation (10.1) works �ne for all levels except at the top (x = 6) and the bottom
(x = 0), where x+ will take wrong values if � is 2 or 0 respectively. To prevent this we
add a condition C(x; �) to the state space equation as

x
+
== x+ (�- 1) � C(x; �) (10.2)

where C(x; �) is a polynomial which is equal to 1 (false) for all values of x and � except
for the cases fx = 6; � = 2g and fx = 0; � = 0g for which C(x; �) equals 0 (true). The
condition C(x; �) is de�ned as

C(x; �) = (x== 6)^(�== 2) _ (x== 0)^(�== 0) (10.3)

The polynomial representing C(x; �) can now be computed using the rules described in
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Section 5.4.

C(x; �) = (x== 6)^(�== 2) _ (x== 0)^(�== 0)

= (x- 6)^(�- 2) _ (x)^(�)

= (1- (1- (x- 6)
6
)(1- (�- 2)

6
)) _ (1 - (1- x

6
)(1- �

6
))

= (1- (1- (x- 6)
6
)(1- (�- 2)

6
))(1- (1 - x
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If we plug (10.4) into (10.2) and expand the result we get

x
+
== x + 3�- 3�

2
- 3�x+ 3�

2
x+ 3�x

2
- 3�

2
x
2
- 3�x

3
+ 3�

2
x
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+

3�x
4
- 3�

2
x
4
- 3�x

5
+ 3�

2
x
5
- x

6
+ �x

6 (10.5)

which is the same expression as (8.3) in Section 8.1.2.

Even if the resulting polynomial is complex and di�cult to handle manually,
the modeling method used is rather straightforward. In this case we formed the
state space equation (10.1) simply by adding x and � together. This was correct
except for two cases for which the model was adjusted.

To compare the modeling performed above with modeling using Boolean ex-
pressions consider the following example.

Example 10.2 Boolean Tank Model
For the tank in Figure 10.1 we will model the relation between the level of the tank x and
the net ow into the tank �. The de�nitions of x and � are analogous to Section 8.1.2.

Since the level of the tank takes 7 di�erent values we must at least represent these
levels with 3 Boolean state variables. We could also represent each level by one Boolean
variable, which makes a total of 7 Boolean state variables. But if we want to reduce the
number of variables in the model we choose the former approach.

Let the level x and the net ow � be bit represented in I3 (see De�nition 7.7) as
x = [x3; x2; x1] and � = [�2; �1] where xi; �i 2 B . The levels of the tank are encoded
as [false; false; false] for the bottom level (x== 0) up to [true; true; false] for the top
level (x== 6).

For the net ow � we hope that by letting �1 and �2 correspond to one direction each
we will simplify the manual composition of the expressions of the model. That is � =

[true; false] corresponds to increasing the level whereas � = [false; true] corresponds
to decreasing the level of the tank. With � = [false; false] the level is constant. � =

[true; true] is not allowed.
We want to �nd the functions f1; f2; f3 in the state space equation below.

[x
+
3 ; x

+
2 ; x

+
1 ]== [f3(x3; x2; x1; �1; �2); f2(x2; x1; �1; �2); f1(x1; �1; �2)]

(10.6)

As in the previous example we will start by considering the increasing and decreasing be-
havior of the model. By adding two bit representations like [x3; x2; x1]+[false; false; �1]
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we will get the appropriate expressions for the increasing behavior, and since -1 is repre-
sented by [true; true; true] we get the decreasing behavior by [x3; x2; x1] + [�2; �2; �2].
Therefore the expressions for both increasing and decreasing ow can be computed by
[x3; x2; x1] + [�2; �2; �1 _ �2]. To convert the integer plus to Boolean expressions we
use the function BAdd from De�nition 7.8,

[~f3; ~f2; ~f1] = BAdd([x3; x2; x1]; [�2; �2; � _ �2]) (10.7)

which gives the following expressions:

~f3 =(�1^�2^x1^x2^x3) _ (�1^�2^x1^(:x2)^x3) _

(�1^�2^(:x1)^x2^x3) _ (�1^�2^(:x1)^(:x2)^(:x3)) _

(�1^(:�2)^x1^x2^(:x3)) _ (�1^(:�2)^x1^(:x2)^x3) _

(�1^(:�2)^(:x1)^x2^x3) _ (�1^(:�2)^(:x1)^(:x2)^x3) _

((:�1)^�2^x1^x2^x3) _ ((:�1)^�2^x1^(:x2)^x3) _

((:�1)^�2^(:x1)^x2^x3) _ ((:�1)^�2^(:x1)^(:x2)^(:x3)) _

((:�1)^(:�2)^x1^x2^x3) _ ((:�1)^(:�2)^x1^(:x2)^x3) _

((:�1)^(:�2)^(:x1)^x2^x3) _ ((:�1)^(:�2)^(:x1)^(:x2)^x3)

~f2 =(�1^�2^x1^x2) _ (�1^�2^(:x1)^(:x2)) _ (10.8)

(�1^(:�2)^x1^(:x2)) _ (�1^(:�2)^(:x1)^x2) _

((:�1)^�2^x1^x2) _ ((:�1)^�2^(:x1)^(:x2)) _

((:�1)^(:�2)^x1^x2) _ ((:�1)^(:�2)^(:x1)^x2)

~f1 =(�1^�2^(:x1)) _ (�1^(:�2)^(:x1)) _

((:�1)^�2^(:x1)) _ ((:�1)^(:�2)^x1)

The expressions ~f1; ~f2; ~f3 correspond to an ordinary counter in the interval 0-7. To adjust
the behavior at the bottom and top level we add appropriate constraints to �1; �2 by
substituting the entries of �1; �2 in ~f1; ~f2; ~f3. The substitution rules are

� =

�
�1 ! �1^:(x3^x2^:x1)

�2 ! �2^:(:x3^:x2; :̂x1)

�
(10.9)

and with � we can now compute the �nal state space expressions

[f3; f2; f1] = [~f3; ~f2; ~f1]j� (10.10)

We will not present f3; f2; f1 explicitly here, but instead make the observation that
f3; f2; f1 will be rather complex and impenetrable, and to compute (10.8) without us-
ing a computer is not a tempting task.

It is not fair to draw any precise conclusions from the modeling of one system
only. But we have seen that in this case the polynomial approach with R7 [Z] gives
simpler computations and model. This indicates that there are cases where a larger
�eld is more appropriate to use.

In Section 8.2.1 we presented the function J(x) as a weighting function that
assigned di�erent weights to the states of the plant. With this function it was
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possible to compute a control law that reduced the present weight to a minimum.
To introduce a similar weighting function in a model based on Boolean expressions
will be harder. It seems that the arithmetic operations following from the use of a
larger �eld, are essential for simplifying both the modeling and design e�orts.

Theoretically we know that there are always cases which have the worst case
complexity independent of the choice of �eld. Still, we hope that most of the real
applications are not worst cases, and that they are modeled e�ciently using an
appropriate polynomial approach with a good choice of the �nite �eld Fq .

10.2 Modeling Description Language

To model systems directly with polynomials is not realistic except for trivial cases,
since the polynomial representation is hard to interpret manually. The model-
ing is best performed in an appropriate model description language (MDL) which
preserves the behavior of the system correctly.

We will discuss what necessary and preferable properties we would like to have in
an MDL, by discussing MDLs in general and by some examples where we use Pascal
and Petri nets. This is a large research area with many results and suggestions of
MDL aspects, see the following overview. In this section though, the experiences
achieved from the modeling of the landing gear controller and the tank in Part II in
this thesis, and the section can therefore be regarded as an introduction to future
research and studies in the area.

No MDL will be nominated as the best choice in this thesis. Instead we would
like to focus on the perspective of modeling languages, where the modeling aspects
are more important than design or synthesis aspects although we have to take
precaution to include these aspects as well.

10.2.1 An MDL Overview

There are many suggestions of MDLs, and the number of proposals are increasing.
The suggestions originates from a variety of applications and disciplines like appli-
cations in manufacturing industries, telecommunication and integrated circuits.

Some of the MDLs like Grafcet [24], Simulink, Pascal and C are used as engi-
neering tools for developing control systems and are widely used in the industries.
Other MDLs like VHDL [70], ASA [112], SDL [23] are supported by tools per-
forming veri�cation of designs modeled in the languages. The veri�cation can be
performed both formally and by performance measures.

There are also MDLs originating from the research area like Statecharts [62],
SIGNAL [8], ESTRELLE [9], and LUSTRE [61]. Results on object-orientation for
modeling can be found in Zeigler [117]. For a comparative survey of di�erent MDLs
applied to a design problem see [27].

MDLs are used in all stages in development, e.g., ASA for speci�cation, Simulink
for testing and analysis and Pascal for implementation. See [41] for a study of
avaliable MDL tools at SAAB Military Aircraft and how these tools support the
development process in di�erent stages.
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All these MDLs support di�erent features that are important for a good model-
ing environment. But the main objective of an MDL is to give an exact description
(or model) of the behavior of the system. If this is ful�lled and if the model is a
�nite system, i.e., all quantities of the model are of �nite domains, then it is pos-
sible to translate the MDL model into the relational domain without introducing
discrepancies [40]. The mapping from an MDL to a corresponding relational repre-
sentation must capture the system behavior described by the MDL representation
exactly.

10.2.2 Modeling of Physical DEDS

In order to compare MDLs, we need to specify which type of systems are interesting
in the perspective of modeling. There are systems where modeling is not necessary
since the systems we want to model already are de�ned in some sort of formal
language. Therefore it is not useful to remodel these to some intermediate modeling
language. The language de�ning a system might not be the most suitable for
translation but these di�culties must be solved even if an intermediate language
is used.

In the case of the tank from Section 8.1 we have another situation. The tank is a
physical system with physical quantities. In general and for the tank in particular,
a physical system is best described by a continuous model. The water level and
moving parts of pump and valves in the tank system follows physical laws in the
continuous domain. Therefore the exact behavior of the tank is best modeled by
methods of continuous or heterogenous domains.

However, if we have the discrete perspective of the tank we know that the
discretization of this system is straightforward due to the discrete nature of the
pump and valves. Therefore the system can be viewed from the controller as a
pure discrete system. Still the discretization will not give us a formal description
of the discrete behavior of the system and we are therefore forced to do modeling.

In the rest of this section we will use the term physical DEDS (PDEDS) which
denotes continuous systems well suited for discretization.

Pascal

In Section 7.3 we used a piece of Pascal code to describe the controller of the
landing gear of the �ghter aircraft JAS 39 Gripen. As pointed out in Section 7.6.1,
Pascal is not suited for describing a DEDS. What are the main characteristics in
Pascal that makes it a bad choice as an MDL for DEDS? This question can at least
be answered in three ways:

1. Pascal is not a pure language for �nite domains.
This is of course a trivial observation, since we in Pascal have data types for
real valued variables (approximated with a bounded representation), which
is not a member of a �nite domain.

2. Pascal is a language that is meant to be used for synthesis of systems.
Many computer languages like Pascal or C are used for system development
and not as a modeling tool. There are very few, if any, languages for modeling.
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3. Pascal is a sequential language.
As a consequence of the synthesis nature of Pascal the statements are written
down in a sequence which have some practical engineering advantages, but
when doing modeling of a PDEDS we �nd it rather confusing since these
systems often contain concurrent events.

These observations of problems using Pascal as an MDL give us some motiva-
tions for necessary features of more useful MDLs.

To illustrate essential criteria for a good MDLs we use the following example.

Example 10.3 Pascal Model of the Tank

u1 u2

u3 u4

x=0

x=6

w

d

If we write a model of the tank from Section 8.1 using the subset of Pascal presented in
Section 7.3.2, one solution is:

CASE d OF

0 : pump := FALSE;

1 : pump := u1;

2 : pump := TRUE

END;

inflow := pump AND u2;

outflow := u3 OR ( u4 AND w);

phi := 1;

IF inflow AND (Not outflow) THEN

phi := 2

ELSE

IF (NOT inflow) AND outflow
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phi := 0;

CASE phi OF

0 : IF x > 0 THEN

x := x - 1;

1 : ;

2 : IF 6 > x THEN

x := x + 1;

END;

The Pascal code gives the same behavior and interacts with the signals in the same
way as the real process shown in the �gure above.

From Example 10.3 above we can conclude that it is very di�cult to see any
structural similarities between the Pascal code and the physical system. If we only
had access to the Pascal code as a description of the system it would be hard to
see that the actual system is a tank.

Petri Nets

The problem mentioned above might be solved with a graphical MDL, where graph-
ical symbols represent di�erent parts of the system. Note that specifying the struc-
ture of a system using ordinary block diagrams will not be classi�ed as an MDL,
since these diagrams must be used together with another language to specify the
behavior. In general it is not easy to �nd a graphical language that gives good
structural and behavioral descriptions at the same time.

Consider the example below where we model the tank using Petri nets [97].

Example 10.4 Petri Net Model of the Tank
To simplify the modeling of the tank using Petri nets we assume that the tank is in�nitely
high. The resulting Petri net model will then be like the �gure below. The �gure shows
the Petri net model with initial level x0 = 3 (marked by three tokens). The transitions
(bars at the top and bottom) represent inputs to the Petri net and are assigned to logical
conditions. These conditions depend in turn on the input signals of the tank. Every time
the condition for a transition becomes true a token will pass through the transition.

u2^(u1^(:(d = 0)) _ (d = 2))

u3 _ (w^u4)
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?

6

?

u1

d
u5

u2

Figure 10.2: Modi�ed inow construction.

Further details of how to model the tank using Petri nets is presented in Section 11.2.

This example shows that the graphical language of Petri nets in this case can
model the tank in a more straightforward way than Pascal. The structure of the
system and the physical interpretation can at least with some amount of imag-
ination be discovered in the Petri net model. Water is coming from above into
the tank controlled by some logical conditions, and the outow is controlled by a
condition at the bottom of the tank.

The logical conditions that control the in- and outow are modeled directly
using the interpretation of the valves, the pump and the disturbances, as presented
in Section 8.1.

A problem with the Petri net in Example 10.4 is that the physical information
of how the valves and the pump are connected is lost. Moreover, if we for instance
modify the tank by connecting an extra pipe u5 between the pump and the valve u2
(see Figure 10.2), it is not clear how to modify the Petri net model in Example 10.4.

Modi�cations in systems should be easy to apply in the MDL describing the
system. In case of Figure 10.2 we added a device to the system which would corre-
spond to adding two models together in the MDL. This feature must be included
in a good MDL.

Bond Graphs

The perfect MDL should be a description that is in some sense as close to the
physical system as possible to make modeling easier and making the model sup-
port simpler. The same needs for an MDL as presented here can be identi�ed in
the domain of modeling continuous systems. The most common way of modeling
a continuous system today is to identify the mathematics behind the primitive
elements in the system and then to compose these into a complete mathematical
model. In this way all physics behind the mathematics is hard to interpret in the
model, and the model is not easily adjusted for changes in the physical system.

In this area the bond graph language [96, 72] is a suggestion of how to model
a system without going into the mathematical details at once. The bond graph
language can be automatically compiled to a mathematical form. This is essentially
the same as to compile an MDL model for DEDS to the relational domain.
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The bond graph language is composed of a small number of primitive elements
that are connected in a graph. The functionality of the system is described by this
graphical language at the same time as the overall structure and topology of the
system can be preserved. In this sense the bond graphs gives inspiration to the
features we would like to have in the perfect MDL.

Bond graphs have been used with great success for continuous systems [14].
Str�omberg et al. [110] introduced switched bond graphs in order to handle discon-
tinuities. This was done by adding a new primitive element the switch to the bond
graph language. Each switch element introduces a binary state taking the values
e�ort and ow that can be interpret as on/o� for switch. Actually, a bond graph
consisting of only switches can be regarded as a model of a DEDS. This means that
a pure switched bond graph is an MDL.

The pure switched bond graph may be a starting point for the search for the
perfect MDL in the sense that principles of the bond graphs should be adopted in
the MDL. But it would not be practical to use primitive elements of such a low
level as binary switches. The ability of the MDL to model complex systems will
then be lost.

The main idea of bond graphs is that subsystems are connected by interchanging
energy, and that causalities for the energy interchanging subsystems are not decided
until after the interconnection. This means that we can have a general description
of a subsystem that is valid for all di�erent types of surrounding systems. The
corresponding feature in the MDL case is that we can build a general model for a
DEDS subsystem independently of the context in which this model is going to be
used. We will give an example of this by using a PDEDS consisting of a production
line.

Example 10.5 LEGO Car Factory
At the Dept. of AC. in Link�oping there is a LEGO car factory laboratory process [109].
This factory assembles parts of a car in a speci�ed sequence. The control sequences are
synthesized directly and written into a Grafcet editor that compiles the code into PLC
code. For an overview of the factory see the �gure below.

TR

     M2

M3 M4

Stop1 Stop2

      M1

The factory consists of four machines, namely M1 ;M2 ;M3 and M4 working along
an assembly line TR. There are two stoppers Stop1 ; Stop2 positioned after M2 ;M3

respectively. The production of a car follows the sequence:

1. The machine M1 delivers a chassis to the conveyor TR.

2. When the chassis reaches the front of M2 , Stop1 blocks the conveyor and M2 puts
a roof on the chassis.
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3. The stopper Stop1 releases the car.

Similar actions will be taken by M3 and Stop2 when M3 �xes the roof on the car.
The machine M4 is a storage of completed cars.

The factory consists of several actuators working together and inuencing each other
depending on the situation. Let us look closer at one of the stoppers.

�

�

?

6

TR

uout uin

sin

sout

The signals interacting with the stopper are the inputs uin and uout and the sensors sin
and sout.

The stopper is essentially analogous to the valve in a pipe since it stops the ow (of
cars) on the assembly line. But this analogy will not hold for the case when the stopper
smashes into a bypassing car. This case is an error case and if we want a good model of
the stopper this behavior must be included in the model. This would not be the case in
the context of uid material.

The example shows that the interaction between the stopper and its environ-
ment decides how the interacting models should be mapped to a relational descrip-
tions. Compare this with the acausal property of bond Graphs were the compu-
tational causality is �rst decided by global rules applied to the bond graph (see
[96, 110]).

Two stoppers positioned right after each other will have the same e�ect as two
valves on the same pipe. If we are to compute control laws as in Section 8.2.2 for
such a system we need an extra constraint that excludes one of the combinations of
the stoppers states to give an unambiguous control law (see 8.2.2 for further details).
The problem of �nding extra constraints automatically for a complete model will
be as complex as to compute a single explicit control law directly. Instead it might
be possible to compute local extra constraints between two subsystems connected
to each other in the MDL model. Combining1 local extra constraints together will
then give the necessary reduction of the solution space to give an unambiguous
control law. This shows that to be able to automate the modularization of analysis
and synthesis, it is necessary for an MDL to preserve the structure of the system.
For MDLs that preserve the structure of the system, it will be easier to do analyze
and synthesize modularly in order to reduce complexity.

To conclude this section we will repeat the desirable features2 of an MDL.

1Compare this with computing local control laws from local speci�cations.
2This is a wish list.
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(i) The MDL should be graphically represented.

(ii) The MDL should preserve the structure of the modeled system.

(iii) Sequential description of the behavior should not be necessary for the MDL.

(iv) Abstraction and modularity should be supported in the MDL.

(v) The MDL should support a smart context dependent interconnection of gen-
eral devices.

(vi) The MDL should support a user interface intended for system modeling, not
for system design and synthesis.

Further research will show if there is a language that ful�lls the speci�cation
above or if it has to be invented or if such a language cannot even exist.

10.3 Event and Signal Models

In this section we will discuss events and event driven models compared to models
where inputs and outputs are signals. Even though the system behind the models
is the same, an event driven model and a signal model might look quite di�erent.
The reason for this will be discussed below.

First we will de�ne what we mean by signals and events.

De�nition 10.1 Signals & Events

(i) A signal is a quantity that has a value. This value is measurable at all times.
Changes of the signal value can occur at any time instant with no noti�cation.

(ii) An event is a noti�cation (message) present only at a time instant. Events
can contain information.

�

Typically, events give information of changes, whereas signals keep track of the
present values.

We will in the following discuss transformation of systems from signal models
to event models and vice versa.

Gu(t) y(t)

Figure 10.3: A continuous system.
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R
dt

_u(t) d
dt

G
u(t)

G 0

y(t)
_y(t)

Figure 10.4: A system interacting with signal changes.

10.3.1 Going from Signals to Events

We will make some analogies with continuous systems. Consider the system G in
Figure 10.3, where u(t) is the continuous input signal and y(t) is the continuous
output signal.

If we want to transform G to a model G 0 that instead of signals interacts with
signal changes, we will have a the system in Figure 10.4.

We see in Figure 10.4 that by adding an integrator to the inputs and a di�eren-
tiator to the outputs we can derive G 0 from G. Note that the number of states will
increase with the number of input signals. These states can be regarded as input
observers for the system G.

For DEDS we can reason the same way. If we want to create an event driven
modelM 0 for a DEDS system represented by a signal modelM, we will have to add
a �nite automaton for every input signal that can observe events corresponding to
the signal changes.

Example 10.6 Automata as Input Observers
The tank in Section 8.1 has three input signals u1; d and w. To make an event model we
have to represent each possible value change in these signals by a corresponding event.
These events are presented in the following table:

Signal Events �I Event States

u1 u1(o� ); u1(on) U0; U1

w w(stop); w(open) W0;W1

d d(stuck ); d(normal); d(run) Ds; Dn; Dr

The states needed to observe the input events are presented in the third column of
the table above. The resulting automata will have the structure as shown in the �gure
below:
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DnU1

U0 W0 Dr

W1 Ds

where the labels of the transitions are omitted but easily can be deduced from the table
above.

We see that the number of states is increased by a factor 12 (2� 2� 3) for the event
driven model.

Transforming model outputs from signals to events can in some cases decrease
the number of states in the model, since the only purpose of these states is to
capture the output events and generate the output signals. However, if the outputs
from the event driven model of the tank in Example 10.6 are the inow and outow
events, the output states (level in the tank) are still necessary since the output
events depends on the level.

Example 10.6 indicates that the transformation from signal models to event
driven models, increases the state dynamics for the inputs in the systems. The
e�ect of this is also shown in Sections 11.1.2 and 11.2.2 where �nite automata and
Petri nets are used to model the tank system.

10.3.2 Going from Events to Signals

We will now discuss the opposite problem: How to represent event driven models
by signal models. In fact, we have already done this in Chapter 2 where �nite
automata were modeled by relational models.

Consider the following example:

Example 10.7 More Machine
Let the Moore machine [92] M1 be de�ned by the �gure below
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x1

x2

u1

u1

u1

u2

u2

u2

y1

y2

x3

where the variables x1; x2; x3 are Boolean state variables, u1; u2 are Boolean input vari-
ables representing the input events and y1; y2 are Boolean output variables.

The state transition relation is given by

f(x
+
; x; u) = x

+
1 $ (x3^u1)^

x
+
2 $ (x1^u2 _ x2^u2)^

x
+
3 $ (x1^u1 _ x2^u1 _ x3^u2)

(10.11)

and the output relation is given by

g(y; x) = y1 $ (x1 _ x2)^

y2 $ x3
(10.12)

where x = [x1; x2; x3]; u = [u1; u2] and y = [y1; y2].

The relations f(x+; x; u) and g(y; x) are relations of variables that take the
values true and false. In this sense f and g represent a signal model of a event
driven system. How is this possible?

The input variables of the model represent one input event each. Each one of
these variables has a value that corresponds to \no event". Therefore it is possible
to evaluate the model even for the case of no events.

By using R3 [Z] instead of the Boolean representation for the system in Exam-
ple 10.7, we would get the input variable u 0 2 F3 where the values correspond to
events as

u 0 Event

0 No event

1 u1

2 u2

This means that if we evaluate the model with the input u 0 = 0 no state transitions
will take place.

To include symbols for \no events" is often recommendable in general. It is par-
ticularly important if the model is to be implemented in a simulator that evaluates
the model periodically independent of event occurences.
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11

Comparative Reviews of

the Tank Model

As described in Chapter 9 there are several theories and methods for modeling,
analysis and synthesis in the domain of DEDS. Even though these approaches are
di�erent, they often share concepts since they often solve similar types of problems.

In this chapter we will focus on three di�erent DEDS approaches from the area
of automatic control: Ramadge-Wonham [104], Petri nets [98] and COCOLOG [20].
By remodeling the tank from Section 8.1 using these approaches, we get a measure
of how appropriate it is to use the relational framework for modeling of DEDS,
compared to these three established approaches. The purpose is not to make the
comparison complete in all details, but to concentrate on the main features of
methods in these approaches. We will, for example, not deal with aspects of com-
putational performance.

The similarity between the chosen approaches is that their main objectives are
analysis and synthesis of supervisory control laws for DEDS, i.e., control laws that
prevent the system from reaching forbidden states. The system (or the model) is
often assumed to be given in an appropriate way for the framework of the theory.
This assumption makes sense since translations of a DEDS model from one frame-
work to another often can be performed. Still, the process of building models of
physical systems is not always that obvious.

In this chapter we will start from a physical system (the tank from Section 8.1)
and make a model that can be applied to control law synthesis, if possible, for each
framework mentioned above. In particular we will see that modeling is not always
straightforward in various formalisms.

197
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11.1 The Ramadge-Wonham Approach

Ramadge and Wonham (RW) [104] introduced the supervisory control theory for
DEDS in the mid-eighties. This theory is based on �nite automata and formal
language theory and supports methods and algorithms for solving correctness issues
in control of DEDS.

The tank from Section 8.1 will be modeled as a �nite automaton (FA) [68]
following the principles of converting signals to events that we discussed in Sec-
tion 10.3. We will also discuss the problem of modeling the behavior of a system
that is inuenced by real time, since we are only using theory for logical DEDS
(DEDS with no time description).

Before we can go further into these details we give a short introduction to the
theory of Ramadge-Wonham.

11.1.1 Introduction to the RW Theory

In a logical model of a DEDS we are interested in the sequence of events which the
process can generate as outputs or accept as inputs. All these sequences of events
form the language of the DEDS.

De�nition 11.1 Formal Language

(i) Let � denote the �nite set of events (the alphabet) that labels the state
transitions of the model.

(ii) Let �� denote the set of all �nite strings of elements of � including the empty
string �.

(iii) The set of all admissible, i.e., physically possible strings of a system is denoted
L. The term sample path is often used instead of string. Since L contains all
possible sample paths for a system, L speci�es or de�nes the behavior of the
system.

(iv) A string z is a pre�x of a string v 2 �� if for some w 2 ��, v = zw.

(v) The pre�x closure of L � �� is the language

L = fz : zv 2 L for some v 2 ��g

(vi) If L = L we say that L is pre�xed closed.

�

If L is a pre�xed closed language then all pre�xes of the strings in L are members
of the language L.

We will only model DEDS represented by a pre�xed closed language L over the
alphabet �, where each z 2 L represents a possible (partial) event sample path of
the DEDS.
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Let the automaton or \generator" representing the plant be denoted M.

De�nition 11.2 Finite Automata (FA)

(i) Let Q denote the set of all states of M.

(ii) Let � : �� �Q! Q be a transition function de�ned as

�(�; q) =q

�(w�; q) =�(�; �(w;q))

whenever ~q = �(w;q) and �(�; ~q) are de�ned.

(iii) Let �(w;q)! be an abbreviation for \�(w;q) is de�ned". In terms of the graph
of M, �(w;q)! simply means that there is a path in the graph starting from
q that is labeled by the consecutive elements of the string w.

(iv) The closed behavior of M is de�ned to be the pre�xed closed language

L(M) = fw : w 2 �� and �(w;q0)!g:

�

To introduce a control mechanism Ramadge andWonham postulate that certain
events of the system can be disabled (i.e., prevented from occuring) when desired.

De�nition 11.3 Control Mechanism

(i) Partition the set of events � into uncontrollable and controllable events:
� = �u [ �c, �u and �c are mutually exclusive. The events in �c can be
disabled at any time, while those in �u cannot.

(ii) A control input forM consists of a subset  � � satisfying �u � . If � 2 ,
then � is enabled by  (permitted to occur), otherwise � is disabled by 

(prohibited from occuring).

(iii) Let � � 2� denote the set of control inputs.

(iv) A supervisor is a map f : L ! � specifying the control input f(w) for each
event in all strings w 2 L.

�

If we apply the supervisor map f to the system we get the closed loop system.

De�nition 11.4 Closed Loop System
The language Lf of the closed loop system is de�ned as
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(i) � 2 Lf and

(ii) w� 2 Lf i� w 2 Lf, � 2 f(w), and w� 2 L.

�

To de�ne the control objectives, Ramadge and Wonham use a sublanguage to
de�ne the speci�cation of the closed behavior.

De�nition 11.5 Desired Language & Controllability

(i) Let the sublanguage K � L denote the desired closed loop behavior.

(ii) The sublanguage K is said to be controllable if the condition

K�u \ L � K (11.1)

is satis�ed.

�

When composing a desired closed loop behavior it is often useful to intersect
languages of subspeci�cations.

Lemma 11.1 Pre�xed Closed Languages ([104])
If the languages K1; K2 2 ��, then

K1 \ K2 � K1 \ K2 (11.2)

and if K1; K2 are pre�x closed languages then

K1 \ K2 = K1 \ K2 (11.3)

�

Ramadge and Wonham has found a necessary and su�cient condition to deter-
mine when it is possible to �nd a supervisory control law f.

Theorem 11.1 Existence of Supervisor ([104] and [102])
For nonempty K � L there exists a supervisor f such that Lf = K i� K is pre�x
closed and controllable. �
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Figure 11.1: The tank
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Figure 11.2: FA model of the tank.

11.1.2 The FA Model of the Tank System

To demonstrate the Ramadge-Wonham approach and to point out some special
aspects that might occur in modeling a DEDS, we remodel the tank in Figure 11.1
using the RW approach.

When we did the control law synthesis of the tank using the polynomial ap-
proach (see Section 8.2.1) we introduced a priority among the actuators. The
priority was set so that the valves u2, u3 and u4 only were used in emergency
cases. In this modeling we will exclude the valves represented by the signals u2, u3
and u4. Instead we hope that some of these valves will be determined as necessary
in the control law synthesis for ful�lling our objectives, i.e., the some of the valves
are needed to get a controllable system with respect to the states control objectives.

The actual synthesis will not be presented in this thesis, but for a comparative
view of synthesis between the approach of RW and the polynomial approach see
the thesis of Plantin [99].

The notations and interpretation of FA models can vary to some extent, and it
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Signal Events �I Event States

u1 u1(o� ); u1(on) U0; U1

w w(stop); w(open) W0;W1

d d(stuck); d(normal ); d(run) Ds; Dn; Dr

Table 11.1: Events and states of tank input signals.

DnU1

U0 W0 Dr

W1 Ds

Figure 11.3: FAs modeling the tank input. The arcs correspond to the
events given in Table 11.1.

is not intuitively clear which type of FA is the best for modeling the tank or for
the RW framework. Throughout this section we will try simple things �rst and if
necessary adjust the models or the notation.

In the previous e�ort of tank modeling (see Section 8.1.2) we considered the
inputs to the system to be regarded as signals. Keeping the notion of signals we
could make the automaton shown in Figure 11.2 where

� = u2^((d== 2) _ u1^:(d== 0)) (11.4)

� = u3 _ (u4^w)

are predicates that must be true to make a state transition possible. This model
is not yet a pure event driven model since (11.4) are functions of signals and
therefore � and � also are signals. (See Section 10.3.) We also need a more
detailed description of how the tank interacts with the input signals if the model
should be used for synthesizing a control law.

To make a pure event driven FA model we have to change the interpretation of
the inputs. Following the guidelines in Section 10.3 we associate each value of each
signal with a unique event that represents a signal change towards that value. For
the tank we denote the set of these events as �I (see Table 11.1).

The events presented above represent signal changes. This means that the
model must remember the most recent event for each signal. Therefore the model
must include an FA for each signal. For the three signals u1; w; d we get the FAs
in Figure 11.3.
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States of u1 and w

States of d U0 U1

W0 W1 W0 W1

Dr � - � -

Dn - � � -

Ds - � - �

Table 11.2: Total state space for input FAs where � and � denotes the net
ow in the tank. '-' means no event.

fDn; U1;W0gfDn; U0;W0g

u1(on)=�

u1(off)=-

Figure 11.4: Mealy FA sending event � in one of the transitions. The
labels of the transitions are input=output .

With the three FAs speci�ed by Figure 11.3 and Table 11.1 we now have a model
for the inputs to the tank. In order to proceed we must decide how to specify the
behavior these FAs give the system.

For each combination of states of the FAs in Figure 11.3, at most one of the
events � and � is possible. To state the exact behavior of the tank we form one FA
including the total behavior of the input events using the cross product (see [68])
of the FAs in Figure 11.3. This FA will have 12 states and is illustrated as a table
of state combinations of the FA for u1; w and d, see Table 11.2. The table also
indicates for which state combinations the level of the tank increases or decreases
(denoted by � and � respectively) following the predicates in (11.4). Table 11.2
describes all 12 states of the total input FA, where no information of how the arcs
are connected is presented, but the structure of the arcs is trivially deduced from
Figure 11.3.

In the Table 11.2 we have indicated for which states the events � and � should
occur. We must now decide how to represent these events properly by the input
FA.

Let us assume that the events �;� are generated from the FA of Table 11.2
formed as a Mealy machine [68, 90] in the way shown in Figure 11.4, where we take
a closer look at the pair of states fDn; U0;W0g and fDn; U1;W0g.

If we label each arc going to a state that increases the level of the tank with an
event � (and conversely for decreasing) we will get the behavior which increases the
tank level every time we go into an increasing state. But what will happen if we
remain in an increasing state? The physical behavior of the tank is that when the
input states give an increasing net ow, the tank will eventually be full. How fast or
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fDn; U1;W0gfDn; U0;W0g

u1(off)

u1(on)

�

Figure 11.5: FA enabling event � in one of the states.

slow this happens is essentially a matter of time, and we could of course use a time
event called tick1 to represent a certain elapse of time necessary to increase the
level one unit. For an �-state the tick events will make transitions towards state 7
in Figure 11.2, but for a �-state the tick-events will make transitions toward state
0.

We have until now tried to create an FA that generates the events �;�. This
is the most intuitive approach since � and � are internal events in the tank that
are generated from events on the actuator of the tank. But for RW this is not
the most appropriate way to model the behavior. The RW approach regards all
events (external or internal) to be generated by some \universal" event generator.
From where an event is generated is not the issue for RW. Instead RW uses FAs
to specify which strings of events are accepted by the system. It is therefore only
interesting to specify the possible sequences of events in a system. This is done by
using incomplete FAs, i.e., FAs where some transitions of events are missing.

We use the input FA to enable or disable � and �. In this way we do not have
to actively generate � and �. We only specify for which input states � and � are
allowed to happen. For the pair of states in Figure 11.4 we get the result shown
in Figure 11.5, where only � is allowed to happen in the state fDn; U1;W0g, and
none of �;� are allowed to happen in state fDn; U0;W0g.

By adding an arc as in Figure 11.5 for each state in Table 11.2 that is indicated
with an � or a �, we �nally get a pure event FA describing how � and � depend
on the input events. The resulting FA is denoted MI.

We modify the tank level FA in Figure 11.2 by adding all input events �I as
possible events for each state. This will not make the FA de�ned for all possible
events. If this modi�cation is not done this FA will prevent all occurences of events
in �I. The resulting FA is denoted MT and is shown in Figure 11.6.

We can now consider the FA models fMI;MTg as FA descriptions of the system
in Figure 11.1. It would be possible to combine these FAs using a cross product to
a single FA denoted M with a total number of 84 states2, since MI has 12 states
and MT has 7 states. But we will not gain any immediate advantages by doing
that and it is also hard to present M graphically.

We know from the the modeling using polynomials in Section 8.1.2 that by

1The tick events are introduce in framework of \Timed Discrete Event Systems" [12].
2The cross product results in an FA where the number of states is equal to the product of the

number of states for the input FAs.
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0 1 2 3 4 5 6

� � � � � �

�

� � � � � �

�

�I �I �I �I �I �I �I

Figure 11.6: MT: Final FA model for the level dynamics. �I denotes the
set of all input events.

�nding ways to separate systems into subsystems often reduces complexity. In fact,
in this case fMI;MTg correspond in a sense to the polynomials ff1; f2g respectively,
whereas f�;�g represent the net ow variable �.

The language of the events describing the behavior of the tank represented by
the total FA M can now be generated using the FAs fMI;MTg.

11.1.3 The Language Model and Control Objective of the
Tank

A language for a DEDS contains all strings of events that inuence the system.
From the section above we have two FAs fMI;MTg from which we shall deduce
the language L describing all the possible system events. In the following we will
�nd that onlyMI is needed for L, whereasMT gives inspiration to the speci�cation
of the closed loop behavior K. More about this later in this section.

Deducing L

The alphabet of events of the tank system is

� = �I [ f�;�g (11.5)

From this alphabet event strings are generated that run the FAs fMI;MTg.
For MT we have transitions for all events in � at all states. This means that the
language of MT is

L(MT) = �� (11.6)

which is the language of all possible combinations of events in �. Therefore, MT

has no restrictions on the language and is in this case not interesting.
The language accepted by MI cannot accept �;� in all states, and therefore

L(MI) � ��. On the other hand MI has no restrictions on events in �I which
means that we can make the following observation

��I � L(MI): (11.7)
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1 2 3 4 5
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�I �I �I �I �I

Figure 11.7: FA MK specifying the non forbidden behavior.

Since L(MI) � L(MT) we can specify the language L accepted by the FA M to
be

L = L(M) = L(MI) (11.8)

In general the language L depends on the initial state of the system, but in this
case L is independent of the initial state of the tank. However, the initial state
becomes important when specifying the desired behavior K, see the following.

The property L = L is ful�lled for our tank since we have

uv 2 L) u 2 L:

Therefore L = L which means that L is a pre�x closed language.
The alphabet � can be divided in controllable and uncontrollable events as

�c = fu1(o� ); u1(on)g (11.9)

�u = � n �c (11.10)

Deducing K

To express our control objectives of the tank from Section 8.2.3 as a language we
use an FA. The FA MT now becomes important since we can easily apply the
constraints saying that the level of the tank must not reach x = 0 or x = 6 (using
the notations from Section 8.2.3). By simply removing the end states and the
corresponding arcs from MT we get the FA denoted MK shown in Figure 11.7.

The FA MK restricts the maximum length of string containing consecutive
events � or �. But we also realize that the set of allowed strings of MK depends
strongly of the initial state of MK. We let the initial state be q0 = 3 which means
that we always start with the level in the middle.

We actually skipped some details above when we speci�ed L, since we did
not specify the initial state. Nevertheless the language L will be independent of
which initial state in MT we choose, since the set of accepted strings of events
will be independent of the initial state of the tank and an initial value of MI is
not appropriate since the K-language should valid for any initial state of the input
signals to the tank. Therefore (11.8) is a valid de�nition of L independent of the
initial state of the tank. Still, the closed loop system must be initialized properly,
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i.e., we have to start the controller with the middle level in the physical tank, if K
is speci�ed from the initial state q0 = 3.

The language of desired behavior of the tank is the sublanguage K � L accepted
by the FA MK initialized with q0 = 3, i.e.,

K = L(MKjq0=3) \ L (11.11)

Since both L(MK) and L are pre�x closed languages we know from Lemma 11.1
that

K = L(MKjq0=3) \ L (11.12)

which gives K = K, i.e., K is a pre�x closed language. This property of K is essential
if we want to �nd a control law for the tank, [104].

To conclude the modeling of the tank we note that the quadruple

fL; K; �c; �ug (11.13)

speci�es the language of the tank, the objective of the desired behavior, controllable
events and uncontrollable events. From (11.13) it is possible to make synthesis of
a supervisory control law. Note that the �rst thing to do in the synthesis process
is to check whether (11.13) is controllable or not. In fact, in this case we will �nd,
by using the constraint (11.1) in De�nition 11.5, that we need to make some of
the uncontrollable events in �u controllable. This is of course obvious from the
physical system, since we cannot assure our control objectives without using some
sort of security valves added to the system.

11.1.4 Summing Up

By making a model intended for the Ramadge-Wonham approach we get some
understanding of how this modeling correlates with the relational methods used in
Section 8.1. The main di�erence between these approaches depends on the di�er-
ence between signals and events. As we have seen above the e�ect of transforming
a signal model to an event model is that events represents signal changes and there-
fore every signal must be represented with an FA as an event observer. This may
of course increase the number of states rapidly. In the relational framework we
measure the signal values directly without input observers. The complete FA M
for the tank contains 84 states compared to 7 for the relational approach.

If we instead use the relational approach to model a pure event driven system,
we can always keep the number of states the same, i.e., the number of states in
the relational model and in the event driven FA will be equal. In this case the
values of input signals represent the events of the system, and each evaluation of
the relational model corresponds to an occurrence of an event. In this case the
transformation from the relational model to an FA needs no observer FAs of the
input signals, since the signal already represents events. But these characteristics
of the signal are not true for the physical tank model.

A language L(M) of an FA M contains strings of sequential events. If two
events may occur at the same time instant, we have to denote this event couple by



208 Comparative Reviews of the Tank Model

a new event symbol, for the assumption that all events can be ordered sequentially
to hold. For the relational approach it is possible to let di�erent input variables
change values independently of each other. This may in some cases be an advantage
in modeling non-sequential systems.

Neither Ramadge-Wonham nor the relational approaches are intended to be
used without powerful computer tools. But the manual modeling shown here using
FAs is not, at least for the tank, easier to do and to understand compared to the
relational modeling presented in Section 10.1.

11.2 Petri Nets

Petri nets were introduced by Petri in 1962 [98] and have since then been used
for modeling and analysis of DEDS. Petri nets were �rst used to give a theoreti-
cal framework for communication between concurrent systems, e.g., asynchronous
communication between computers, see Holt et al. [67].

Today the theory of Petri nets is used for general types of DEDS systems. Even
DEDS with an in�nite state space can be represented by a �nite number of Petri
net primitives. This is one of the main advantages of Petri nets in modeling.

The notation of Petri nets is often extended to support new types of systems
[97], e.g., Timed-Event-Graphs [5] is a class of Petri nets where time delays are
included in the notation.

Not until recently have Petri nets been used for analysis and synthesis of control
laws for DEDS. Krogh and Holloway [75, 66] have introduced controlled Petri nets
(CPN) which is a Petri net extension, from which they, in the domain of CPNs,
have formulated theories and methods for supervisory control.

As mentioned in Chapter 9 there are many restricted classes of Petri nets de-
signed for di�erent classes of systems and problems. Powerful theoretical results
can often only be derived for these restricted Petri nets and there are few theoretical
tools for general Petri nets.

In this section we will introduce the notion of general Petri nets and then use
these to remodel the tank from Section 8.1. This modeling will be compared to the
modeling performed in Section 10.1 where we used the relational approach.

11.2.1 Introduction to Petri Nets

We begin by a formal introduction to Petri nets, adapting the notation of Peter-
son [97].

De�nition 11.6 Petri Nets
A Petri net (PN) is a four-tuple C = (P; T; I;O).

P = fp1; : : : ; png is a �nite set of places, n � 0.
T = ft1; : : : ; tmg is a �nite set of transitions, m � 0.
The set of places and the set of transitions are disjoint, P \ T = ;. I : T! P1

is the input function, a mapping from transitions to bags3 of places. O : T ! P1

3A bag is a generalization of sets, which allows multiple occurences of elements. The set of all
bags of places is denoted P1.
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is the output function, a mapping from transitions to bags of places. �

A Petri net is a graph where the nodes represent the places, the bars represent
the transitions and the arcs represent the inputs and outputs of the transitions.
The graph is similar as a standard FA (�nite automaton) [68].

Example 11.1 A Petri Net
A switch with two states (on,o�) is represented by the Petri net C1 = (P;T;I; O) shown
in the �gure below.

p1 p2

t1

t2

where P = fp1; p2g and p1; p2 representing \on" and \o�" respectively and T = ft1; t2g

and t1; t2 representing the events \switching o�" and \switching on" respectively. For
the input and output function we get:

I(t1) = fp2g

I(t2) = fp1g

O(t1) = fp1g

O(t2) = fp2g

(11.14)

The state of a PN is given by its marking, which is the distribution of tokens
in the state places. The tokens are used to de�ne the execution of a PN. A token
denoted � can be regarded as an object that jumps from one place to another (or
to the same) by passing through one of the transitions in T.

The marking of a PN gives the number of tokens for every place in the PN.
Formally this is de�ned as

De�nition 11.7 Place Marking
The marking of a place in a PN C = (P; T; I;O) is a function m : P ! N, where
m(p) is the number of tokens in place p. �

De�nition 11.8 Petri Net Marking
The marking of the Petri net C = (P; T; I;O) is a function M : P ! N

n , where
M(P) is the vector [m(p1); : : : ;m(pn)].
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M denotes the set of all markings of a PN. �

Example 11.2 A Marked Petri Net
Initiating the PN C1 of the switch in Example 11.1 with a token like

p1 p2

t1

t2

means that the switch is \on".
The marking of the PN is

M(P) = [1; 0] (11.15)

If the transition t1 �res (\switching o�") then we will have the marking M(P) = [0; 1].

As mentioned in the example above a Petri net changes marking by �ring tran-
sitions. The �ring of a transition corresponds to the occurrence of an event in the
standard DEDS terminology.

A transition in a general Petri net can �re if it is state enabled, which means
that all state places which are inputs to a transition must contain at least as many
tokens as there are arcs between the place and the transition. When a transition
�res, tokens are removed from the input places and added to the output places.

This will be described more formally by the following rules:

(i) A transition t 2 T is state enabled and allowed to �re if

m(p) � #(p; I(t)) for all p 2 I(t) (11.16)

where the function #(p; I(t)) gives the number of occurrences of p in the bag
I(t).

(ii) A �ring of a transition t 2 T will decrease the number of tokens in the input
places as

m 0(p) = m(p) -#(p; I(t)) for all distinct p 2 I(t)

(11.17)

where m 0(p) denotes the new number of tokens in place p.



11.2 Petri Nets 211

(iii) A �ring of a transition t 2 T will increase the number of tokens in output
places as

m 0(p) = m(p) +#(p;O(t)) for all distinct p 2 O(t)

(11.18)

To illustrate executions of Petri nets we use an example.

Example 11.3 Transmitters
Consider two equal transmitters M1 and M2 sharing the same communication channel
using mutual exclusion. The transmitters receive messages and message labels (identi�-
cation of messages) and combine these to a message package that is transmitted on the
channel. To transmit a package the transmitter must have a message, a message label,
and access to the channel. A Petri net model of this system is shown in the �gure below
where the details of the the transmitter M2 are omitted.

t1

p3

p4 p5 M2

M1

t2

t3

t4

t5

p2p1

t6 t7

p1 Arrived messages for M1

p2 Arrived message labels for M1

p3 Packages sent from M1

p4 M1 has access to the channel

p5 The channel is idle

t1 Package sent by M1

t2 M1 allocates the channel

t3 M1 deallocates the channel

t4 M2 allocates the channel

t5 M2 deallocates the channel

t6 A message arrives for M1

t7 A message label arrives M1
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The Petri net is initialized with 2 messages and 3 message labels at M1, and the channel
is initialized to idle.

A place can contain any number of tokens in a Petri net. As shown in the
previous example this can be used to model, e.g., bu�ering of an arbitrary amount
of objects (in this case messages). This means that the state space need not be
�nite for a Petri net and therefore there are systems that can be modeled by Petri
nets but not by methods using �nite domains like the relational framework.

Still, the description of Petri nets is �nite since it consists of a �nite number of
places and transitions. This means that we can use relational models to represent
the Petri net, instead of representing the behavior of the system modeled by the
Petri net. By doing this it is possible to formulate algorithms for Petri net graphs
in an algebraic framework and thereby gain computational advantages. There are
other algebraic approaches for Petri nets or for extended Petri nets, e.g., Max-Plus
algebra [5].

In Example 11.3 above we modeled the incoming of messages and message labels
with transitions without input places. Such transitions can in a sense be regarded
as the input of events to the system modeled by the Petri net. This construction
of system inputs described in [97] will be used consequently in the modeling of the
tank later in this section.

We make the following de�nition.

De�nition 11.9 Source & Sink

(i) A source transition tu 2 T is a transition such that I(tu) = ;, i.e., tu does
not have any input places.

(ii) A sink transition ty 2 T is a transition such that O(ty) = ;, i.e., ty does not
have any output transitions.

�

Example 11.4 Source & Sink
In the �gure below

t1 t2

t1 is a source transition and t2 a sink transition.

With source and sink transitions de�ned we now have all we need to make a
model of the tank in Figure 11.8 using general PN.
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u1 u2

u3 u4

x=0

x=6

w

d

Figure 11.8: The tank

11.2.2 The Petri Net Model of the Tank

We will make a Petri net model of the tank from Section 8.1 shown in Figure 11.8.

As in the modeling presented in Section 11.1.2 we will exclude the valves rep-
resented by the signals u2, u3 and u4, since these are emergency actuators which
should be included as a consequence of control law synthesis.

In analogy with previous modeling of the tank we will start by the modeling
the increase and decrease of the water level.

Since a Petri net place can model accumulating bu�ers as described above, we
will try to model the tank as in Figure 11.9 where � is the event of an inow of one

�

�

Figure 11.9: PN model of in�nite tank.
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�

�

x x

Figure 11.10: PN model of a �nite tank.

unit (one token) and � is the event of an outow of one unit. Figure 11.9 above
indicates that the level is initiated to 2. The dashed arrows indicate the connection
with the rest of the PN model, which will be discussed later.

The Petri net in the �gure above gives a model of a tank which can accumulate
an in�nite amount of water. But since the level of the tank has an upper limit, we
must �nd a way to maximize the number of possible tokens in the PN to 6. The
inspiration to the solution can be found in Example 11.3.

The tokens in the place representing the channel can be viewed as the number
of available channel resources, i.e., if we instead have n channels we simply initiate
the place with n tokens to get an appropriate PN model. With the same reasoning
for the tank we can use a place representing the available volume in the tank. The
PN is now as in Figure 11.10 which is initiated with the level 2 (m(x) = 2) and
with 4 available units (m(x) = 4) in the tank. By this construction we get a model
with the maximum level 6 which corresponds to the tank in Figure 11.8.

We have derived a model for the dynamics of the level in the tank. This model
will now be connected to PN models of the pump and the uncontrollable outow
w.

Peterson [97] presents a modeling method for PN. The method concentrates on
two primitive concepts: events and conditions. Events are actions that occur in
the system and the state of the system can be described as a set of conditions. A
model of a system should describe when an event is allowed to occur, i.e., decide the
conditions corresponding to the event. These are the preconditions of the event.
The occurrence of the event may cease the precondition to hold and may cause
other conditions, postconditions to hold. Conditions are associated with places in
a PN and events are associated with transitions.

Given the set of conditions and events for a system, the PN model for the
system can easily be derived. To �nd the appropriate conditions and events for a
system may of course not be that easy.

We will explain this further by modeling the tank outow w, using this method.
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First we make a list of conditions (labeled a; b; : : : ) and events (labeled 1; 2; : : : ).
The conditions for the outow are:

Outow condition

a Outow

b No outow

c Outow requested

d No outow requested

The events for the outow are:

Outow event

1 Outow starts

2 Outow stops

From the lists above we can deduce the preconditions and postconditions for
every event as:

Event Precondition Postcondition

1 b; c a

2 a; d b

By associating each condition with a place and each event with a transition with
input and output places given by the table above, we will get the Petri net graph
in Figure 11.2.2 initiated to the state \no outow".

The PN model in Figure 11.2.2 corresponds to the switch discussed in Exam-
ple 11.2. The main di�erence is that we have a well de�ned input interface to the
model consisting of two source transitions labeled w! 0 and w! 1 and the places
c and d. The labels for the source transitions indicate when the transitions �res,
e.g., the label w! 0 means the event when w goes from 1 to 0.

The modeling method used above will be even more useful when modeling the
pump. The pump is controlled by the binary signal u1, but the pump is also

1 2

w! 0

w! 1

c
b

a

d

Figure 11.11: PN model for the outow.
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disturbed by the three valued signal d. In this case we will have three conditions
for each mode of the disturbance and two conditions corresponding to \pumping"
and \not pumping" when the pump is in a non failure mode. We will also have
request conditions similarly to the PN of the outow w above.

The set of conditions for the pump are:

Pump conditions

e Pump ON

f Pump OFF

g Pump idle

h Pump stuck

i Pump running

j Pump ON request

k Pump OFF request

l Pump idle request

m Pump stuck request

n Pump running request

The events for the pump are:

Pump events

3 Pump turned ON

4 Pump turned OFF

5 Pump is repaired

6 Pump failure stuck

7 Pump failure running

From the lists above we can derive the preconditions and the postconditions for
the pump as:

Event Precondition Postcondition

3 f; j e

4 e; k f

5 (l; h) _ (l; i) g

6 g;m h

7 g; n i

This derivation is similar as for the outow w except for event number 5 that must
be represented by two transitions corresponding to the logical OR-operation. The
OR-operation indicates that the pump can be repaired in two ways, i.e., repaired
from stuck failure mode or repaired from running failure mode.

Figure 11.2.2 shows the Petri net of the pump derived from the table above. As
we can see in this �gure the Petri net is divided into two separate nets. The reason



11.2 Petri Nets 217

u1 ! 1

u1 ! 0

j

e

f

k3 4

d! 1

d! 2

d! 0

l

i

n

m

h

g

7

6

5

Figure 11.12: Two separate PN models. The �rst represent the pump be-
havior of events on the actuator u1. The second represents failure behavior
of the pump.

for this is that we have not modeled the actual inow. We have only considered
the ON and OFF states and the failure modes of the pump. But we have not
connected these conditions to decide for which cases the pump contributes with an
inow into the tank.

We will now perform the modeling of the this inow, and thereby connect the
Petri net models for the tank, the outow and the pump. It seems reasonable that
new conditions and events will not be necessary. In fact, one major feature of Petri
nets is that it is easy to combine Petri nets, using the transitions as an interface.

The conditions needed for the modeling of the inow and the outow are:

Conditions

a Outow

e Pump ON

g Pump idle

i Pump running

x Level in tank

x Available in tank

which have previously been de�ned.

The events for the inow and outow are as before:
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Events

� Increasing the level

� Decreasing the level

From the tables above we get the following pre- and postconditions:

Event Precondition Postcondition

� (e; g; x)1 _ (i; x)2 (e; g; x)1j(i; x)2

� a; x a; x

The �-event in the table above is divided in two transitions since we have an
OR-operation. This means that the inow events can be generated in two ways,
i.e., one when the is pump in normal mode and one when the pump is in failure
mode.

Since transitions consume tokens from the input places, we have to include
preconditions that must hold after the event in the set of postconditions. This
means that for the � event in the table above, each precondition in an OR-statement
corresponds to a postcondition. The precondition (e; g; x)1 corresponds to the
postcondition (e; g; x)1 which means that if the �-event was enabled due to that
the pump was ON and idle then the pump remains ON and idle after the �ring of the
�-event. The same is true for i with the precondition (i; x)2 and the corresponding
postcondition (i; x)2.

The �nal Petri net model of the tank system is presented in Figure 11.13 where
two sink transitions are added to represent the output from the state of the system.
The sink transitions indicate if the level increases or decreases.

The same system was modeled using automata (FA) in Section 11.1.2 where
the resulting model included 84 states. The Petri net model in Figure 11.13 has 18
places, but 9 of them correspond to source and sink transitions. The remaining 9
places correspond therefore to the 84 states in the FA model, which we can verify
since the sum of possible markings of these 9 places is 84. This shows the power
of Petri nets in terms of to capturing modularities in systems.

11.2.3 Petri Net Synthesis

Having a Petri net model for the tank in Figure 11.8 we can hopefully use this model
to synthesize a control law following the speci�cations stated in Section 8.2.1. We
will discuss the possibilities for our model to �t with some of the synthesis methods
in the area of Petri nets. For a tutorial survey see Holloway and Krogh [65].

To be able to apply synthesis methods to Petri nets an extension of Petri nets
has been de�ned called Controlled Petri Nets [69, 75]. For controlled Petri nets the
primitive control place is introduced. Control places are places with two modes:
enable or disable. The modes in control places can be assigned from an external
controller. By this construction the model of the plant is separated from the
controller model which is necessary when doing synthesis.

Transitions which have a control place as an input can only be state enabled if
its control place is enabled. The controller of the system can use control places to
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Figure 11.13: The �nal Petri net model of the tank.

prevent events from occuring. For this type of control to be possible, the control
places must correspond to some actuators of the plant. In the case of the tank
in Figure 11.8 we have two valves u2 and u4 that prevent inow and outow
respectively. The valve u2 corresponds to a control place which would be input to
the transitions �1 and �2 in Figure 11.13, whereas the valve u4 corresponds to a
control place which would be input to the transition �. By adding these control
places to our Petri net model of the tank the model is usable for synthesis.

The area of controlled Petri nets can be divided into two major approaches:
state feedback and event feedback. The state feedback approach assumes that the
marking (state) of a system can be observed and that the controller can compute
a control law which acts on the control places, from these observations. The event
feedback approach assumes that the �rings of transitions are observable as events



220 Comparative Reviews of the Tank Model

of the plant and that it is possible to compute control from these observations [43].
State feedback policies for controlled Petri nets have been investigated by a

number of researchers, see the overview in [65]. One approach to perform super-
visory control of controlled Petri nets is simply to create the equivalent controlled
automaton. This is a matter of generating the reachability graph, i.e., a tree con-
taining all markings reachable from an initial marking. Since the reachability graph
can grow exponentially with respect to the size of the controlled Petri net model
[77], this cannot be done in general. Alternative methods are linear integer pro-
gramming approaches (Giua et al. [44, 45] and Li and Wonham [81, 82]) and path
based algorithms (Krogh et al. [77, 76, 66]).

In [66], Krogh and Holloway present a method for state control for a subclass
of Petri nets, cyclic controlled marked graphs (CMG). CMG are controlled Petri
nets where:

� Each place is the output of exactly one transition and the input of exactly
one transition.

� Every place is contained in a cycle4.

� Every cycle contains at least one marked place.

� Every place is contained within some cycle which has exactly one marked
place.

For this class of Petri nets the method by Krogh and Holloway computes a supervi-
sory control law e�ciently. Unfortunately though, the Petri net model of the tank
in Figure 11.13 is not a CMG and we cannot use this method on the tank.

The generality of Petri nets is an advantage for modeling issues but a disadvan-
tage for analysis and control synthesis. Indeed, it has been shown that controlla-
bility is undecidable for the most general Petri net languages [106]. The Petri net
model of the tank corresponds to the FA model in Section 11.1.2 from which it is
possible to create a supervisory control law using the Ramadge-Wonham approach.
Therefore we draw the conclusion that the control problem of the Petri net model
in Figure 11.13 is decidable in spite that it will not �t into one of the Petri net
subclasses specialized for synthesis.

11.2.4 Summing Up

We have used Petri nets to model the tank system shown in Figure 11.8, by adapting
the modeling method in [97] which uses identi�cation of the events and conditions
in the system to generate a Petri net model of the system. Since Petri nets uses
events as a representation of inputs and outputs an extra modeling e�ort is needed
to convert signals to events, as in in the case of Ramadge-Wonham approach in
Section 11.1.2.

The resulting Petri net model cannot be used for synthesizing a supervisory
control law with the approach introduced by Holloway and Krogh [66]. The reason

4A cycle in a controlled Petri net is a directed graph beginning and ending at the same node
with all nodes in the path occuring only once.
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for this is that the synthesis method is based on a restricted class of Petri nets,
and the �nal Petri net model of the tank cannot be transformed to that class.

11.3 COCOLOG

In 1990 Caines and Wang [20] introduced COCOLOG, a conditional observer and
controller logic for �nite machines. COCOLOG is designed to adaptively compute
control actions from observed outputs and inputs of the system. A COCOLOG
controller can be regarded as an adaptive controller for �nite machines (FA).

In this section we �rst give a brief and informal introduction to COCOLOG.
Then we will focus on the modeling aspect through an example where we make a
COCOLOG model of the tank.

11.3.1 Introduction to the COCOLOG Approach

Consider a �nite state machine M de�ned by the functions f and g as shown in
the �gure below.

yu
x+ = f(x; u)

y = g(x; u)

M

x0 = �

The variables x; y; u are state, output and input variables of M and the initial
state x0 is set to some state �. Assume that we want to control M using state
feedback, and that we have a state feedback function K such that u = K(x) gives
us the desired closed loop behavior.

To use the feedback K(x) we must have access to the state of the system x, i.e.,
we must be able to measure x directly. If x is not directly accessible there will be
problems. But inspired by identi�cation and state estimation methods in the area
of continuous linear systems, we might hope that there is a way to estimate the
current state of the machine. The state estimate x̂ could then be used for control
by using the feedback u = K(x̂).

However, �nite domains in general have no metric that can be used to measure
the distance between two quantities the domain. For the purpose of state estimation
this means that the only reliable state estimate x̂ is the one which ful�lls x̂ = x, i.e.,
the same as to measure x directly. Therefore we will not be able to �nd methods
for �nite systems in analogy with feedback from estimated states in linear systems.

Within the framework of COCOLOG, another approach has been proposed for
feedback control based on the set of observed inputs and outputs denoted U ;Y
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y
x+ = f(x; u)

y = g(x; u)

M

u

X ;U ;Y

Controller

Observer

x0 = ?

Figure 11.14: Structure of a COCOLOG controller.

respectively. COCOLOG considers �nite systems where dynamic and output rela-
tions are known (f; g), but where the initial state x0 is unknown. The COCOLOG
observer of the system computes the set of possible states X in which the present
state of the system is included, from samples of the inputs U , outputs Y and the
model f; g. As the number of observations increase, the set of possible states will in
the generic case decrease. This set of possible states will then be used to compute
a control law. See Figure 11.14.

The COCOLOG control law is a set of mutually exclusive conditions corre-
sponding to control actions (values of u). The set is called the set of conditional
control rules and is of the form

IF C1 THEN u = U1

IF :C1^C2 THEN u = U2

...
...

IF
Vm-1
j=1 :Cj^Cm THEN u = Um

IF
Vm
j=1 :Cj THEN u = U�

where Ui; (0 � i � m) and U� are control actions and Cj; (0 � j � m) are
conditions on X , U and Y . The control action U� is used when no conditions Ci
can be ful�lled.

The conditional control rules are by de�nition mutually exclusive, since they
can be regarded as an algorithm that returns the control action corresponding to
the �rst ful�lled condition, starting from C1. By this construction we will always
get an unambiguous control action from the observed inputs and outputs.
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Figure 11.15: The Tank

By �nding5 the appropriate conditions Cj and control actions Uj that give the
desired closed loop behavior it is possible by the use of COCOLOG to implement a
state feedback control law even though the initial state of the system is unknown.

The COCOLOG Framework

Quantities and relations in COCOLOG are expressed as axioms of �rst order logic,
e.g., the system model, observations, and conditional control rules among others
are expressed as axioms. From these axioms new theorems can be derived and
added to the set of axioms. The set of all theorems that can be derived from the
axioms is called a theory and represents all knowledge that can be derived from
the axioms.

To be more concrete; consider the set of all initially known relations for a
controlled system, i.e., the system model and the conditional control rules. These
relations are the �rst part of the axioms in the initial theory Th0 which in a sense
represents all knowledge of the system before any measurements are done. When
the �rst measurements of the inputs and outputs are made, new axioms are added
to Th0 to derive the new theory Th1. This continues for every step, i.e., for the
time instant k we will have the theory Thk containing the axioms for the observed
data for all time instances up to k. The control action at time instant k is derived
by computing the conditional control rules within the theory Thk.

Since the COCOLOG framework is based on �rst order logic there are axioms
needed in the theories to make the COCOLOG framework complete.

Some of these are:

5This can be a delicate matter of synthesis by hand.
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� Logic axioms, de�ning the standard set of axiom schemata for the �rst order
logic.

� Equality axioms, de�ning equality and substitution axioms like Eq(t; t 0) !
Eq(t 0; t) which de�nes the symmetric property of equality.

� Finite arithmetic axioms, de�ning arithmetical operations like + and - on a
subset of symbols f0; : : : ; Ng representing the natural numbers.

These axioms are needed to make computation possible in the theories. It is possible
to add any kind of axioms designed for some special purpose, e.g., axioms for
computing the set of reachable states of a model.

The computations in COCOLOG are performed by the automatic theorem
prover Blitzensturm [19] which is a software tool that can prove or refute the-
orems from a set of axioms. In general, theorem proving is very complex, with
computation time proportional to the exponential of the number of axioms. In ad-
dition, a COCOLOG controller must be built upon a theorem prover suitable for
real time use, since the controller actions must be computed by proving conditional
control rules after each data observation.

To reduce the complexity of COCOLOG the Markovian fragment theories are
introduced in [113]. Markovian fragment theories contain the initial theory Th0
and a �nite number of axioms of the most recent observations. This means that
the Markovian fragment theories do not increase the number of included axioms at
every time instant. It can be shown that provided certain conditions are satis�ed,
the Markovian fragment has the same power to make control decisions as the
original COCOLOG, see [113].

11.3.2 Modeling the Tank with COCOLOG

We will in this section model the tank in Figure 11.15 using the COCOLOG ap-
proach.

Before we can state the axioms for the initial theory Th0 we will derive logical
expressions of the dynamics in the tank. Using the notion of increasing � and de-
creasing � stated in the previous sections, we can express the rules of the dynamics
as

IF �^:(x== 6) THEN x+ = x + 1 (11.19)

IF �^:(x== 0) THEN x+ = x- 1 (11.20)

� = u2^((d = 2) _ u1^:(d== 0)) (11.21)

� = u3 _ (u4^w) (11.22)

From the description of the dynamics above we can de�ne the state transition
functions as

�(x; �) = �^:Eq(x; 6)! x+6 1

�(x; �) = �^:Eq(x; 0)! x-6 1
(11.23)

where the operations +6;-6 will be de�ned below.
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The set of state transition axioms are then de�ned as

AXMdyn � fEq(�(x; �); x+);

Eq(�(x; �); x+);

�$ u2^(Eq(d; 2) _ u1^:Eq(d; 0));

�$ u3 _ (u4^w)g

(11.24)

The axioms in (11.24) capture all information in the system and therefore
(11.24) is the complete model in a sense. But, as mentioned above, more axioms
must be de�ned for the initial theory Th0. In this section we will only describe the
set of arithmetic axioms.

The arithmetic axioms are in this case based on the set of integers represented
by the symbols

I6 = f0; 1; 2; : : : ; 5; 6; 6 + 1g (11.25)

where the symbol 6+1 is used as an arithmetic overow indicator. Then the set of
arithmetic axioms by the symbols in (I6;+6;-6) are given by the following addition
and subtraction operations:

a+6 b =

8<
:a+ b if a+ b � 6

6 + 1 if a+ b > 6
(11.26)

a-6 b =

8<
:a- b if a- b � and a 6= 6 + 1 and b 6= 6 + 1

6 + 1 if a- b < 0 or if a = 6 + 1 (11.27)

11.3.3 Summing up

COCOLOG is a framework based on theorem proving in the �rst order logic do-
main. The COCOLOG approach to control is based on a conditional observer and
controller that performs control on �nite systems with unknown initial state.

COCOLOG controllers use theorem provers to compute control actions from
observed input and output signals of the system. This gives general and exible
controllers, but the computational complexity is a problem. To deal with this the
Markovian fragment theories are introduced.

The modeling of the tank was easy to perform in COCOLOG. The disadvan-
tages with the COCOLOG modeling is perhaps the administration in de�ning
axioms for logical, arithmetic operations. However, except for the arithmetic oper-
ations +;-; �; = we must do the same in the relational approach. If we for example
need the conditional relation > de�ned for a set of integers, we will have to de�ne
this operation axiomatically in both COCOLOG and the relational approach.

The most important advantages of the relational approach are the ability of
reducing complexity and that it can be supported by e�cient software tools.
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A Note on Notation

The notation used in this thesis follows the notation from [40], and the standard
in commutative algebra and theory for DEDS.

Symbols

Algebra, Set Theory

k General �eld.

Fq Finite �eld.

B The Boolean values ftrue; falseg.

I, Z Integers

. Z+ Positive integers, > 0.

Zn The n �rst integers 0; : : : ; n- 1.

R Ring.

R Relation.

R Relation set.

I Ideal.

Z Set of variables.

k[Z] General polynomial ring.

Fq [Z] Polynomial over �nite �eld Fq .

Rq [Z] Quotient polynomial ring.

Un Universe of discourse.

[e1; e2; : : : ; en] Element in a set or relation.

227
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The Relational Framework and Applications

x General variable, State variable.

y Output variable.

u Input variable.

z System variable.

z+ Next state variable.

M(z; z+) Relational model.

x+ = f(x; u) Explicit transition function.

R(x+; x; u) Implicit transition relation.

�; : : : ;� Trajectory.

IMAE(f) Inner most atomic expression.

ULoops[M](z) Upper approximation of loops.

hg1; : : : ; gni The ideal generated by g1; : : : ; gn.

� Net ow in the tank system.

J(x) Weighting function.

Ramadge-Wonham

� Set of events (the alphabet).

L Formal language.

L Pre�x closure

� Transition function of �nite automata.

Structured operational semantics, Compiler

� Binding environment.

� Con�guration.

7! Transition.

I Vector space of bit-represented integers
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Operators and Functions

Algebra, Set Theory

[ Union

\ Intersection

S Set complement.

n Set minus

� Cross product.

�S(R) Projection of R on the set S.

�S(R) Embedding, R� S.

^, _ , :, $, ! Relational and logic operators.

9, 8 Existential and universal quanti�cation.

A E k[Z] A is an ideal in the polynomial ring k[Z].

V(I) The variety of the ideal I.

deg Degree of polynomial.

lt Leading term.

p �!
F

r The polynomial p is reduced to r w.r.t.
the polynomial set F.

S(g1; g2) THe S-polynomial of g1 and g2.

�rq(z) The lambda polynomial.

�q The lambda polynomial set.

�! Rule.

The Relational Framework and Applications

Pick(R(x; y); x)
Returns a random solution of R(x; y) for
variable x.

f(x)==g(x)
Returns the relation for the equation
f(x) = g(x).

k
Synchronous product of relational
models.

kA
Asynchronous product of relational
models.

kI Interleaved product of relational models.

Restrict(M(z; z+); R(z)) Restricts the models behavior by R(z).

�+k [M; I]
Forward reachable states model M in k

steps or less form initial set I.

�-k [M; I]
Backward reachable states model M in k

steps or less form initial set I.



230 A Note on Notation

+k [M; I]
Forward reachable states model M in ex-
actly k steps form initial set I.

-k [M; I]
Backward reachable states model M in
exactly k steps form initial set I.

Verify(M; f)(z)
Performs dynamic veri�cation of tempo-
ral logic formula f, on the model M.

EX, AX, EU, AU, EF, AF, EG, AG Temporal logic operators.

GB General Gr�obner basis.

GBq Gr�obner basis over Rq [Z].

ite(F;G;H) The if-then-else operator.

key(F;G;H) Hash function.

BDDTLEvaluate[M(z; z+),f]
Mathematica command implementing
Verify(M(z; z+); f).

Structured operational semantics

[[�(xi)]]
Gives the value of xi from the binding
environment �.

�[xi 7! �i] Sets the value of xi to �i.
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goal, 34
goal problem, 33, 34

reachable, 25
reachable operators, 26

statecharts, 178
static analysis, 24, 144
structural opeartional semantics, see

SOS
subgraph, 57
supervisor, 200
supervisory control, 177
switch element, 190
symmetric relational model, 17
synchronous product, 18

tank
Boolean model, 183
Pascal model, 187
Petri net model, 188
polynomial model, 182

tank system, 160
TEG, 178, 208
temporal logic, 27

real time, 178
veri�cation, 29
veri�cation implementation, 27

term ordering, 83
terminal, 54
theorem prover, 179
theories, 179
tick events, 204
timed event graphs, see TEG
timed transition models, 178
trajectory, 36

illustrating, 37
invariance of illustrating, 38

transition, 131
function, 13
relation, 13, 131
sequence, 128

uncontrollable events, 199
uncontrollable inputs, 32
unique table, 62, 65, 98, 103
universal quanti�er, 9
universe of discourse, 6
UoD, see universe of discourse
upper approximation of loops, 39
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valid area, 165
variable ordering, 59
veri�cation, 29

temporal logic, 27

weighting function, 164
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