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Abstract

System identification deals with the problem of estimating models of dynamical systems
from observed data. In this thesis, we focus on the identification of nonlinear models, and,
in particular, on the situation that occurs when a very large amount of data is available.

Traditional treatments of the estimation problem in statistics and system identification
have mainly focused on global modeling approaches, i.e., the model has been optimized on
basis of the entire data set. However, when the number of observations grows very large,
this approach becomes less attractive to deal with because of the difficulties in specifying
model structure and the complexity of the associated optimization problem. Inspired by
ideas from local modeling and database systems technology, we have taken a conceptually
different point of view. We assume that all available data are stored in a database, and that
models are built “on demand” as the actual need arises. When doing so, the bias/variance
trade-off inherent to all modeling is optimized locally by adapting the number of data and
their relative weighting. For this concept, the namemodel-on-demandhas been adopted.

In this thesis we have adopted a weighted regression approach for the modeling part,
where a weight sequence is introduced to localize the estimation problem. Two conceptually
different approaches for weight selectionare discussed, where the first is based on traditional
kernel assumptions and the other relies on an explicit optimization stage. Furthermore, two
algorithms corresponding to these approaches are presented and their asymptotic properties
are analyzed. It is concluded that the optimization approach might produce more accurate
predictions, but that it at the same time is more demanding in terms of computational efforts.

Compared to global methods, and advantage with the model-on-demandconcept is that
the models are optimized locally, which might decrease the modeling error. A potential
drawback is the computational complexity, both since we have to search for neighborhoods
in a multidimensional regressor space, and since the derived estimators are quite demanding
in terms of computational resources.

Three important applications for the concept are presented. The first one addresses the
problem of nonlinear time-domain identification. A number of nonlinear model structures
are evaluated from a model-on-demand perspective and it is concluded that the method is
useful for predicting and simulating nonlinear systems provided sufficiently large datasets
are available. It is demonstrated through simulations that the prediction errors are in order
of magnitude directly comparable to more established modeling tools such as artificial
neural nets and fuzzy identification.

The second application addresses the frequency-domain identification problems that
occur when estimating spectra of time series or frequency responses of linear systems.
We show that the model-on-demand approach provides a very good way of estimating
such quantities using automatic, adaptive and frequency-dependent choices of frequency
resolution. This gives several advantages over traditional spectral analysis techniques.

The third application, which is closely related to the first one, is control of nonlinear
processes. Here we utilize the predictive power of the model-on-demand estimator for on-
line optimization of control actions. A particular method, model-free predictive control, is
presented, that combines model-on-demand estimation with established model predictive
control techniques.
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1
Introduction

The problem considered in this thesis is how to derive relationships between inputs and
outputs of a dynamical system when very little a priori knowledge is available. In traditional
system identification literature, this is usually known as black-box modeling. Very rich and
well established theory for black-box modeling of linear systems exists, see for example
Ljung (1999) and Söderström and Stoica (1989). In recent years the interest for nonlinear
system identification has been growing, and the attention has been focused on a number
of nonlinear black-box structures; neural networks, wavelets as to mention some of them
(Sjöberget al., 1995). However, nonlinear identification and function approximation have
been studied for a long time within the statistical community, as instances of the more
general regression problem (Härdle, 1990).

1.1 The Regression Problem

Within many areas of science one often wishes to study the relationship between a number of
variables. The purpose could for example be to predict the outcome of one of the variables,
on the basis of information provided by the others. In the statistical theory this is usually
referred to as theregression problem. The objective is to determine a functional relationship
between a predictor variable (or regression variable)X ∈ Rd and a response variableY ∈ R
(or Y ∈ C), given a set of observations{(X1,Y1), . . . , (XN ,YN)}. Mathematically, the
problem is to find a function ofX, m(X), so that the difference

Y −m(X) (1.1)

1



2 Chapter 1 Introduction

becomes small in some sense. It is a well-known fact that the functionm that minimizes

E(Y −m(X))2 (1.2)

for a fixed pointX = x, is the conditional expectation ofY givenX. That is,

m(x) = E(Y|X = x). (1.3)

This function, the best mean square predictor ofY given X, is often referred to as the
regression functionor the regression ofY on X (Wand and Jones, 1995). Hence it follows
that the observed data usually are modeled as

Yi = m(Xi )+ εi , i = 1, . . . , N (1.4)

where{εi } are identically distributed random variables with zero means, which are inde-
pendent of the predictor data{Xi }. We will assume this to be our canonical model in the
sequel of the thesis.

The task of estimating the regression functionm(x) from observations can be done in
essentially two different ways. The quite commonly usedparametricapproach is to assume
that the functionm(·) has a pre-specified form, for instance a hyperplane with unknown
slope and offset. As an alternative one could try to estimatem(·) non-parametrically
without reference to a specific form.

1.1.1 Parametric Regression

Parametric estimation methods rely on the assumption that the true regression functionm
has a pre-specified functional form, which can be fully described by a finite dimensional
parameter vectorθ ;

m(x) = m(x, θ). (1.5)

The structure of the model is chosen from families that are known to be flexible and
which have been successful in previous applications. This means that the parameters are
not necessarily required to have any physical meaning, they are just tuned to fit the observed
data as well as possible.

It turns out that it is useful to interprete the parameterization (1.5) as an expansion in
terms of basis functionsgi (·), i.e.,

m(x, θ) =
r∑

i=1

αi gi (x, βi , γi ). (1.6)

This formulation allows that the dependence ofm in some of the components ofθ can
be linear while it on others can be nonlinear. This is for instance the situation in some
commonly used special cases of basis functions as summarized in Table 1.1, which will be
more thoroughly described in Chapter 2.
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Modeling Approach gi (x, βi , γi )

Fourier series sin(βi x + γi )

Feedforward neural networks1/(1+ exp(−βT
i x − γi ))

Radial basis functions exp(−‖x − γi ‖2βi
)

Linear regression xi

Table 1.1 Basis functions used in some common modeling approaches.

Once a particular model structure is chosen, the parameters can be estimated from the
observationsby an optimization procedure that minimizes the “size” of the predictionerrors
in a global fashion,

θ̂ = arg min
θ

1

N

N∑
i=1

(Yi −m(Xi , θ))
2 , (1.7a)

m̂(x) = m(x, θ̂). (1.7b)

This optimization problem usually has to be solved using a numeric search routine, except
in the linear regression case where an explicit solution exists. Hence it will typically have
numerous local minima which in general makes the search for the desired global minimum
hard (Cybenko, 1996).

The greatest advantage with parametric models is that they give a very compact de-
scription of the dataset once the parameter vector estimateθ̂ is determined. A drawback,
however, is the required assumption of the imposed parameterization. Sometimes the as-
sumed function family (or model structure) might be too restrictive or too low-dimensional
(i.e., too few parameters) to fit unexpected features in the data.

1.1.2 Nonparametric Regression

The problems with parametric regression methods can be overcome by removing the re-
striction that the regression function belongs to a parametric function family. This leads to
an approach that usually is referred to asnonparametric regression. The basic idea behind
nonparametric methods is that one should let the data decide which function that fits them
best without the restrictions imposed by a parametric model.

There exist several methods for obtaining nonparametric estimates of the functional
relationship, ranging from the simple nearest neighbor method to more advanced smoothing
techniques. A fundamental assumption is that observations located close to each other
are related, so that an estimate at a certain operation pointx can be constructed from
observations in a small neighborhood aroundx.

The simplest nonparametric method is perhaps thenearest neighborapproach. The
estimatem̂(x) is taken as the response variableYi that corresponds to the predictor variable
Xi that is the nearest neighbor ofx, i.e.

m̂(x) = Yi ∗ , i ∗ = arg min
i
‖Xi − x‖ .
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Hence the estimation problem is essentially reduced to a dataset searching problem, rather
than a modeling problem.

Due to its simplicity, the nearest neighbor method suffers from a major drawback.
The observations are almost always corrupted by measurement noise. Hence the nearest
neighbor estimate is in general a very poor and noisy estimate of the true function value.
Significant improvements can therefore be achieved using an interpolation orsmoothing
operation,

m̂(x) =
∑

i

Wi (x)Yi (1.8)

where{Wi (x)} denotes a sequence of weights that may depend on bothx and the predictor
variables. The weights can of course be selected in many ways. A popular and traditionally
used approach in statistics is to select the weights according to akernel function(Härdle,
1990), which explicitly specifies the shape of the weight sequence. A similar approach has
been considered in traditional signal processing applications where the so-called Hamming
window is frequently used for smoothing (Blackman and Tukey, 1958).

In more sophisticated nonparametric techniques likelocal polynomial smoothers(Fan
and Gijbels, 1996) the weightsWi are obtained implicitly by letting the kernel localize the
functional approximation (1.7) aroundx. That is,

θ̂ (x) = arg min
θ

1

N

N∑
i=1

(Yi −m(Xi , θ))
2wi (x), (1.9a)

m̂(x) = m(x, θ̂(x)). (1.9b)

For models that are linear in the parameters (e.g., polynomial models), this results in a
linear smoothing operation analogous to (1.8).

The weights in (1.8) and (1.9) are typically tuned by asmoothing parameterwhich
controls the degree of local averaging, i.e. the size of the neighborhood aroundx. A too
large neighborhood will include observations located far away fromx, whose expected
values may differ significantly fromm(x), and as a result the estimator will produce an
“over-smoothed” orbiasedestimate. When using a too small neighborhood, on the other
hand, only a few number of observations will contribute to the estimate atx, hence making
it “under-smoothed” or noisy. The basic problem in nonparametric methods is thus to find
the optimal choice of the smoothing parameter that will balance the bias error against the
variance error.

The advantage with nonparametric models is theirflexibility, since they allow predic-
tions to be computed without reference to a fixed parametric model. The price that has to
be paid for that is the computational complexity. In general nonparametric methods require
more computations than parametric ones. The convergence rate with respect to sample size
N is also slower than for parametric methods.

1.2 System Identification

System identification is a special case of the regression problem presented in the previous
section. It deals with the problem of determining mathematical models of dynamical
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systems on the basis of observed data from the systems, and can be divided into two main
branches;time-domainandfrequency-domainmethods.

1.2.1 Time-Domain Identification

Having collected a dataset of paired inputs and outputs,

ZN = {(u(1), y(1)), . . . , (u(N), y(N))},
from a system, the goal intime-domain system identificationis to model future system
outputs as a function of past data. It is normally assumed that the system dynamics can be
modeled as

y(t) = m(ϕ(t))+ v(t), t = 1, . . . , N, (1.10)

whereϕ(t) = ϕ(Zt−1) is a so-called regression vector constructed from the elements of
Zt−1, andv(t) is an error term which accounts for the fact that in general it is not possible
to modely(t) as an exact function of past observations. Nevertheless, a requirement must
be that the error term is small or white, so that we can treatm̂(ϕ(t)) as a good prediction
of y(t), that is,

ŷ(t) = ŷ(t|t − 1) = m̂(ϕ(t)). (1.11)

The system identification problem is thus to find a “good” functionm(·) such that the
discrepancy between the true and the predicted outputs, i.e., theprediction error

ε(t) = y(t)− ŷ(t),

is minimized.
The problem of determininĝy(t) from experimental data with poor or no a priori

knowledge of the system is usually referred to asblack-box modeling(Ljung, 1999). It
has traditionally been solved using parametric linear models of different sophistication.
However problems usually occur when encountering highly nonlinear systems that poorly
allow themselves to be approximated by linear models. As a consequence of this, the
interest for nonlinear modeling alternatives like neural networks and radial basis functions
has been growing in recent years (Sjöberget al., 1995; Chenet al., 1990).

In this thesis we will instead apply nonparametric methods of the type described in
Section 1.1.2. This will result in predictors of the form

ŷ(t) =
∑

k

Wk(ϕ(t)) y(k), (1.12)

where the weights typically are tuned so that they give output measurements associated
with regressors located close toϕ(t)more influence than those located far away from it. It
turns out that this is a promising approach for dealing with nonlinear systems modeling, as
the following simple example also illustrates.
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Example 1.1 A simple laboratory-scale tank system

Consider the laboratory-scale tank system shown in Figure 1.1 (a). It has earlier been
investigated by Lindskog (1996) and Stenman (1997). Suppose the modeling aim is to
describe how the water levelh(t) changes with the voltageu(t) that controls the pump,
given a dataset that consists of 1000 observations ofu(t) andh(t). The dataset is plotted
in Figure 1.1 (b).

A reasonable assumption is that the water level at the current time instantt can be expressed
in terms of the water level and the pump voltage at the previous time instantt − 1, i.e.,

ĥ(t) = m(h(t − 1),u(t − 1)).

Assuming that the functionm can be described by a linear regression model,

m(h(t − 1),u(t − 1)) = θ1h(t − 1)+ θ2u(t − 1)+ θ0, (1.13)

the parametersθi can easily be estimated using linear least squares, resulting in

θ̂1 = 0.9063, θ̂2 = 1.2064, and θ̂0 = −5.1611.

The result from a simulation using these values is shown in Figure 1.1 (c). The solid
line represents the measured water level, and the dashed line corresponds to a simulation
using the estimated parameters. As shown, the simulated water level follows the true level
quite well except at levels close to zero, where the linear model produces negative levels.
This indicates that the true system is nonlinear, and that better results could be achieved
using a nonlinear or a nonparametric model. Figure 1.1 (d) shows a simulation using
a nonparametric model obtained from the model structure (1.13) and a local modeling
procedure of the type (1.9)1. The performance of the model is clearly much better at low
water levels in this case. ❏

1.2.2 Frequency-Domain Identification

A traditional application of nonparametric methods in system identification arises in the
frequency domainwhen estimating frequency functions ofdynamical systems. If the system
considered is linear, i.e., if the description (1.10) can be simplified as

y(t) = G(q)u(t)+ v(t), t = 1, . . . , N, (1.14)

an estimate of the frequency functionG(eiω) can be formed as the ratio between the Fourier
transforms of the output and input signals,

ˆ̂G(eiωk ) = Y(ωk)

U(ωk)
=
∑N

t=1 y(t) e−iωkt∑N
t=1 u(t) e−iωkt

. (1.15)

1The simulation has been performed using Algorithm 4.2 in Chapter 4. Consult Stenman (1997) for experi-
mental details.
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This estimate is often called theempirical transfer function estimate, ETFE (Ljung, 1999).
It is well-known that the ETFE is a very crude and noisy estimate of the true frequency
response. In particular, for sufficiently largeN, the ETFE can be modeled as

ˆ̂G(eiωk ) = G(eiωk)+ εk,
whereεk is a complex-valued disturbance with zero mean and variance proportional to the
noise to input signal ratio. Since this model fits into the general regression formulation
(1.4), the frequency function value at the frequencyω can be estimated in a nonparametric
fashion

Ĝ(eiω) =
∑

k

Wk(ω)
ˆ̂G(eiωk), (1.16)

where the weights again are selected so that a good trade-off between bias and variance is
achieved.

Frequency response estimation is closely related tospectral analysis. This is easily
realized by noting that (1.15) can be rewritten as

ˆ̂G(eiωk ) = Y(ωk)

U(ωk)
=

1
N Y(ωk)U∗(ωk)

1
N |U(ωk)|2

=
ˆ̂8yu(ωk)

ˆ̂8u(ωk)
, (1.17)

Here ˆ̂8u(ω) and ˆ̂8yu(ω) are referred to as theperiodogramof u(t) andcross-periodogram
betweeny(t) andu(t) respectively (Brockwell and Davis, 1987). The periodograms can
similar to the ETFE be modeled as

ˆ̂8u(ωk) = 8u(ωk)+ ε′k and ˆ̂8yu(ωk) = 8yu(ωk)+ ε′′k .
where8u(ωk) and8yu(ωk) denote the true spectra, andε′k andε′′k are zero mean dis-
turbances. Thus the corresponding spectrum and cross-spectrum can be estimated in a
nonparametric fashion according to

8̂u(ω) =
∑

k

Wk(ω)
ˆ̂8u(ωk), (1.18a)

8̂yu(ω) =
∑

k

Wk(ω)
ˆ̂8yu(ωk). (1.18b)

This implies that an alternate way of estimating the frequency response is by means of the
ratio

Ĝ(eiω) = 8̂yu(ω)

8̂u(ω)
. (1.19)

1.3 Model-on-Demand

The main contribution in this thesis ismodel-on-demand, MOD, which is another approach
of obtaining nonparametric estimates of nonlinear regression functions on the basis of
observed data. The concept was originally formulated for solving time-domain prediction
problems like (1.12) given large datasets, but it turned out that it also worked out well on
the frequency-domain problems of Section 1.2.2.
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1.3.1 The Basic Ideas

The model-on-demand approach is a “data mining” technology that takes advantage of
the increasing ability of computers to collect and manipulate large amounts of data. The
basic idea behind the concept is that all available observations are stored in a database, and
that models are built “on demand” as the actual need arises. This leads to an estimation
procedure consisting of essentially two parts – a dataset searching procedure and a local
modeling procedure.

For simplicity, it is as in (1.8) assumed that the modeling part is implemented as a
weighted average of the response variables in a neighborhood aroundx,

m̂(x) =
∑

i

Wi Yi , (1.20)

where the weightsWi are tuned in such a way that the pointwise mean square error (MSE)
measure is minimized. We will for this purpose study two different approaches for weight
selection. The first one is based on local polynomial techniques similar to (1.9) and assumes
that the weights are implicitly specified by a kernel. The second approach instead relies
upon a directoptimization schemethat determines the weight sequence explicitly.

Compared to global methods, an advantagewith the MOD approach is that the modeling
is optimized locally, which might improve the performance. A potential drawback is
the computational complexity, as we both have to search for a neighborhood ofx in a
multidimensional space, and as the derived estimator is quite computationally intensive.
In this thesis, however, we will only investigate the properties of the modeling part of the
problem. The searching problem is left as a topic for future research and is only briefly
discussed in the thesis.

1.3.2 Applications

The main applications for the developed smoothing methods are the three identification
problems (1.12), (1.16) and (1.18). There may of course be many reasons and needs for
estimating such models. Some of them may be as follows:

• Based on the observations we have collected so far, we will be able to forecast the
future behavior of the system. This is usually referred to asprediction. Conceptually
speaking, this can be formalized as in Figure 1.2. The predictor/estimator takes a
dataset and an operationpointx as inputs, and uses some suitable modeling approach,
parametric or nonparametric, to produce an estimatem̂(x).

• System analysis and fault detection in general require investigation or monitoring of
certain parameters which may not be directly available through measurements. We
will therefore have to derive their values by means of a model of the system.

• Modern control theory usually requires a model of the process to be controlled. One
example ispredictive controlwhere the control signal from the regulator is optimized
on the basis of predictions of future outputs of the system.
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Figure 1.1 (a) A simple tank system. (b) Experimental data. (c) The result of a
simulation using a linear model. (d) The result of a simulation with a nonparametric
model. The solid lines are the true level signals. The dashed lines are the simulated
signals.
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Figure 1.2 A conceptual view of prediction.
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1.3.3 Related Approaches in the Literature

The idea of local modeling is not new. Various local approaches have been studied for a
long time within the statistical community (Härdle, 1990), although there almost always
seems to have been global assumptions and considerations in some step of the estimation
procedure. However, adaptive methods have gained a significant interest in recent years,
and the development of them still seems to be an open and active research area, see for
instance Fan and Gijbels (1996) and the references therein.

In the domain of machine learning and artificial intelligence, the nonparametric ideas
were rediscovered and developed by Atkeson and Reinkensmeyer (1988), Aha (1989)
and Bottou and Vapnik (1992), and have successfully been used under the nameslazy
learning and least commitment learningfor robot learning and control (Atkesonet al.,
1997a; Atkesonet al., 1997b).

1.4 Thesis Outline

The thesis is divided into six chapters, in addition to the introductory and concluding
chapters. The first two chapters give an overview of existing parametric and nonparametric
methods that relate to the model-on-demand concept, and the last four chapters derive,
analyze and exemplify the proposed methods.

The purpose of Chapter 2 is to give the reader a brief background on parametric es-
timation methods, especially in system identification applications. Examples of some
commonly used linear and nonlinear black-box models are given, along with the two basic
parameter estimation methods.

Chapter 3 serves as an introduction to nonparametric smoothing methods. The chapter
is mainly focused on a special class of so-called kernel estimation methods which is widely
used in statistics. The fundamental ideas and terminology are presented as well as the
statistical and asymptotical properties that are associated with these methods.

Chapter 4 is the core chapter of the thesis. It presents the basic ideas behind the model-
on-demand concept and discusses possible implementations. The chapter is concluded
with a discussion regarding different properties and computational aspects of the methods.

In Chapter 5 the model-on-demand approach is applied to the time domain system
identification problem (1.12). First two simulated examples are considered, and then three
real data applications, a water heating system, a hydraulic robot and a buffer vessel are
successfully simulated by the method.

Chapter 6 presents important applications for the model-on-demand method in the fields
of spectral analysis and frequency response estimation. In particular we try to solve the
smoothing problems (1.16) and (1.18). The chapter starts by a review of the traditional
treatments of the topics, whereafter the model-on-demand modeling concept is modified
to fit into this framework.

Chapter 7 discusses how the local modeling approach can utilized in a control context.
The chapter starts with a brief review of classical approaches such as adaptive control,
whereafter a more thoroughly treatment of different prediction-based control methods is
given. Special attention is payed to themodel predictive controlapproach, and it shown
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through simulations that the model-on-demand approach is a useful alternative to more
traditional modeling approaches in this framework.

Finally, Chapter 8 gives a summary of the thesis and directions for future work.

1.5 Contributions

The contributions of this thesis are mainly the material contained in Chapters 4 to 7. They
can be summarized as follows:

• The concept of model-on-demand models is advocated as a method for modeling
system behaviors given large data volumes.

• Particular implementations of model-on-demand algorithms are proposed, that form
estimates in a nonparametric fashion as a weighted average of the response variables.
Two different approaches for weight selection are studied, where the first is based
on traditional kernel functions and the other relies on an explicit optimization stage.
The performance of the estimator is in both cases optimized locally by adapting the
number of contributing data and their relative weighting.

• An analysis of the asymptotic properties of the optimization approach is outlined. It
is shown that the method produces consistent estimates and that the convergence rate
is in the same order as for nonparametric methods. A comparison to traditional local
polynomial estimators is made, and it is concluded that the optimization approach
may produce more accurate predictions.

• Simulation studies in the time-domain identification setting show that the model-
on-demand method for some applications give smaller prediction errors than other
proposed methods like neural nets and fuzzy identification.

• It is shown that the derived methods are quite efficient in matter of performance for
smoothing frequency response estimates and periodograms. In particular we present
methods that outperform traditional spectral analysis techniques by allowing adaptive
and frequency-dependent choice of frequency resolution.

• It is demonstrated how the time-domain prediction methods can be utilized in a
predictive control framework. By treating the local model obtained at each sample
time as a local linearization, it is possible to reuse tools and concepts from the
linear MPC/GPC framework. Three different variants of the idea, based on local
linearization, linearization along a trajectory and nonlinearoptimization respectively,
are presented. They are all illustrated in numerical simulations.

1.6 Publications

The thesis is based on a number of publications,some of that have been,or will be, presented
at different conferences. These are:



12 Chapter 1 Introduction

Stenman, A. (1997).Just-in-Time Models with Applications to Dynamical Systems. Li-
centiate thesis LIU-TEK-LIC-1997:02. Department of Electrical Engineering, Lin-
köping University. S-581 83 Linköping, Sweden.

Stenman, A., A.V. Nazin and F. Gustafsson (1997). Asymptotic properties of Just-in-
Time models. In:Preprints of the 11th IFAC Symposium on System Identification,
Kitakyushu, Japan(Y. Sawaragi and S. Sagara, Eds.). pp. 1249–1254.

Stenman, A., F. Gustafsson and L. Ljung (1996). Just in time models for dynamical systems.
In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan.
pp. 1115–1120.

Stenman, A., F. Gustafsson, D.E. Rivera, L. Ljung and T. McKelvey (1999). On adaptive
smoothing of empirical transfer function estimates. To be presented at the IFAC
World Congress, July 1999, in Beijing, China.

Rivera, D. E., S. Adusumilli, A. Stenman, F. Gustafsson, T. McKelvey and L. Ljung. (1997).
Just-in-time models for improved identificationand control. In:Proc. American Inst.
of Chemical Engineers (AIChE) Annual Meeting.

Braun, M.W., D.E. Rivera, A. Stenman, W. Foslien and C. Hrenya (1999). Multi-level
pseudo-random signal design and just-in-time estimation applied to nonlinear iden-
tification of a RTP wafer reactor. To be presented at the 1999 American Control
Conference, San Diego, California.

Stenman, A. and F. Gustafsson (1999). Adaptive smoothingmethods for frequency-domain
identification. Submitted to Automatica.

Stenman, A. (1999). Model-free predictive control. Submitted to CDC ’99.



2
Parametric Methods

This chapter gives a brief review of parametric estimation methods, which quite often
are considered when solving the regression problem described in Chapter 1. The basic
concept of parametric regression methods is given in Section 2.1. Section 2.2 gives some
examples of common black-box models, both linear and nonlinear, that are frequently used
in system identification. Section 2.3 describes the two basic parameter estimation methods
used when a certain model class is chosen. Section 2.4, finally, briefly states the basic
asymptotic properties associated with parametric models.

2.1 Parametric Regression Models

A very commonly used way of estimating the regression functionm in a regression rela-
tionship

Yi = m(Xi )+ εi , (2.1)

on basis of observed data, is theparametricapproach. The basic assumption is thatm
belongs to a family of functions with a pre-specified functional form, and that this family
can be parameterized by a finite-dimensional parameter vectorθ ,

m(Xi , θ). (2.2)

One of the simplest examples, which is very commonly used, is thelinear regression,

m(Xi , θ) = m(Xi , α, β) = α + XT
i β, (2.3)

13
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where it is assumed that the relation between the variables can be described by a hyperplane,
whose offset and slope are controlled by the parametersα andβ. In the general case,
though, a wide range of different nonlinear model structures is possible. The choice of
parameterization depends very much on the situation. Sometimes there are physical reasons
for modelingY as a particular function ofX, while at other times the choice is based on
previous experience with similar datasets.

Once a particular model structure is chosen, the parameter vectorθ can naturally be
assessed by means of the fit between the model and the data set∑

i

` (Yi −m(Xi , θ)) , (2.4)

using a suitable scalar-valued and positive norm`(·). As will be described in Section 2.3,
this fit can be performed in essentially two different ways, depending on which norm that is
used and how the parameter vector appears in the parameterization. When the parameters
enter linearly as in (2.3), they can be easily computed using simple least-squares methods.
In general though, this optimization problem is non-convexand may have a number of local
minima which makes its solution difficult.

An advantage with parametric models is that they give a very compact description
of the data set once the parameter vectorθ is estimated. In some applications, the data
set may occupy several megabytes while the model is represented by only a handful of
parameters. A major drawback, however, is the particular parameterization that must be
imposed. Sometimes the assumed function family might be too restrictive or too low-
dimensional to fit unexpected features in the data.

2.2 Parametric Models in System Identification

System identification is a special case of the regression relationship (2.1) where the mea-
sured variables are related to inputsu(t) and outputsy(t) of dynamical systems. The
systems are almost exclusively considered to be represented indiscretetime (i.e., sampled)
since it is the most natural way of collecting data.

There are mainly two different approaches for modeling dynamical discrete-time sys-
tems:

Thestate-spaceapproach assumes that it possible to model the plant as a system of first
order difference equations,

x(t + 1) = g(x(t),u(t),w(t)) (2.5a)

y(t) = h(x(t),u(t)) + ε(t) (2.5b)

wherex(t) denotes thestatevector that sums up all the dynamical information, andw(t)
andε(t) denote process and measurement noise, respectively.

The input-outputapproach assumes that the system can be modeled as a nonlinear
difference equation

y(t) = m(ϕ(t))+ v(t) (2.6)
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where theregression vector

ϕ(t) = ϕ(Zt−1) (2.7)

is constructed from past measurements,

ZN 1= {(u(1), y(1)), . . . , (u(N), y(N))},
andv(t) is measurement noise (which not necessarily has to be white). The two approaches
are closely related, since the existence of a input-output description like (2.6) follows from
observability of (2.5a) and (2.5b) in a neighborhoodof theorigin of the state space (Narendra
and Li, 1996). In this thesis, though, we shall mainly concentrate on the input-output
description. Over the years, different names and concepts have been proposed, associated
with different parameterizations of the functionm and different noise models. We will in
the following two subsections briefly describe some of the most commonly used ones.

2.2.1 Linear Black-box Models

Linear black-box models have been thoroughly discussed and analyzed in the system iden-
tification literature during the last decades, see for example Ljung (1999) and Söderström
and Stoica (1989). We will here just give a very brief introduction to the subject.

A general linear discrete-time system with an additive noise termv(t) can be described
by the relation

y(t) = G(q)u(t)+ v(t) (2.8)

whereu(t) is the input signal andG(q) is thetransfer functionfrom input to outputy(t).
The noise termv(t) can in general terms be characterized by itsspectrum, i.e., a description
of its frequency components, but it is usually more convenient to describev(t) as being
generated as white noise{ε(t)} filtered through a linear filterH (q),

v(t) = H (q)ε(t). (2.9)

Now, if the transfer functionsG(q) and H (q) in (2.8) and (2.9) are unknown, it is
natural to introduce parametersθ in their descriptions that reflects the lack of knowledge.
A general such parameterization is the black-box family (Ljung, 1999),

A(q−1)y(t) = q−nk
B(q−1)

F(q−1)
u(t)+ C(q−1)

D(q−1)
ε(t), (2.10)

wherenk is the time delay fromu(t) to y(t), and

A(q−1) = 1+ a1q−1+ . . .+ anaq−na

B(q−1) = b1+ b2q−1+ . . .+ bnbq−nb+1

C(q−1) = 1+ c1q−1+ . . .+ cncq
−nc

D(q−1) = 1+ d1q−1+ . . .+ dnd q−nd

F(q−1) = 1+ f1q−1+ . . .+ fn f q−n f
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are polynomials in the backshift operatorq−1 with propertyq−1y(t) = y(t − 1). This
results in the parameter vector

θ = (a1, . . . ,ana , . . . , f1, . . . , fn f

)T
. (2.11)

Well-known and commonly used special cases of the structure (2.10) include the FIR (Finite
Impulse Response) model

y(t) = b1u(t − nk)+ . . .+ bnbu(t − nb − nk + 1)+ ε(t), (2.12)

which corresponds toA(q−1) = C(q−1) = D(q−1) = F(q−1) = 1, and the ARX (Auto
Regressive with eXogeneous input) model,

y(t)+ a1y(t − 1)+ . . .+ ana y(t − na)

= b1u(t − nk)+ . . .+ bnbu(t − nb − nk + 1)+ ε(t) (2.13)

which corresponds toC(q−1) = D(q−1) = F(q−1) = 1. Since both these structures only
depend on measured quantities, they have the nice property of being expressible in terms
of a linear regression,

y(t) = ϕT (t)θ + ε(t),
and hence the parameter vectorθ can be determined using simple and powerful estimation
methods (e.g., least squares), see Section 2.3.1.

Other special cases of the general structure (2.10) include the named structures

AR: B(q−1) = 0, C(q−1) = D(q−1) = 1
ARMA: B(q−1) = 0, D(q−1) = 1

ARMAX: D(q−1) = F(q−1) = 1
OE: A(q−1) = C(q−1) = D(q−1) = 1
BJ: A(q−1) = 1

where the first two are used for time series modeling only. Here the acronyms denote
Auto Regressive, Auto Regressive Moving Average, Auto Regressive Moving Average
with eXogeneous input, Output-Error and Box-Jenkins, respectively. As shown by Ljung
and Wahlberg (1992), the ARX model (2.13) is capable of describing any linear system
provided sufficiently large model orders are allowed. The reason for considering other
more complex models, like the ARMAX or BJ models, is that they provide more flexible
parameterizations so that an equally good fit can be obtained using fewer parameters.

In general, the predictor associated with (2.10) can at least be written inpseudo-linear
regressionform

ŷ(t|θ) = ϕT (t, θ)θ. (2.14)

Some of the regressors, i.e., the components ofϕ(t, θ), may in this case be dependent of
previous model outputs, and are given by

• Outputs,y(t − k), associated with theA-polynomial.
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• Inputs,u(t − k), associated with theB-polynomial.

• Prediction errors,ε(t−k) = y(t−k)− ŷ(t−k|θ), associated with theC-polynomial.

• Simulated outputs from past inputs,ŷu(t − k|θ), associated with theF-polynomial.

• Simulation errors,εu(t − k) = y(t − k) − ŷu(t − k|θ), associated with theD-
polynomial.

2.2.2 Nonlinear Black-box Models

When turning into nonlinear modeling, things in general become much more complicated.
The reason for this is that almost nothing is excluded, and that a wide range of possible
model parameterizations exists. To reduce the complexity though, it is natural to think of
the parameterization (2.2) as a function expansion (Sjöberget al., 1995),

m(ϕ(t), θ) =
r∑

k=1

αkgk(ϕ(t), βk, γk). (2.15)

The functionsgk(·) are usually referred to asbasis functions, because the role they play in
(2.15) is very similar to that of a functional space basis in mathematical sense. Typically, the
basis functions are constructed from a simple scalar “mother” basis function,κ(·), which
is scaled and translated according to the parametersβk andγk.

Using scalar basis functions, there are essentially three basic methods of expanding
them into higher regressor dimensions:

Ridge construction. A ridge basis function has the form

gk(ϕ(t), βk, γk) = κ(βT
k ϕ(t)+ γk), (2.16)

whereκ(·) is a scalar basis function,βk ∈ Rn andγk ∈ R. The ridge function
is constant for allϕ(t) in the direction whereβT

k ϕ(t) is constant. Hence the basis
functions will have unbounded support in this subspace, although the mother basis
functionκ(·) has local support. See Figure 2.1 (a).

Radial construction. In contrast to the ridge construction, the radial basis functions have
true local support as is illustrated in Figure 2.1 (b). The radial support can be obtained
using basis functions of the form

gk(ϕ(t), βk, γk) = κ(‖ϕ(t)− γk‖βk), (2.17)

whereγk ∈ Rn is a center point and‖ · ‖βk denotes a scaled vector norm on the
regressor space. The scaling is often taken as a diagonal matrix.

Composition. A composition is obtained when the ridge and radial constructions are com-
bined when forming the basis functions. A typical example is illustrated in Figure
2.1 (c). In general, the composition can be written as a tensor product

gk(ϕ(t), βk, γk) = gk,1
(
ϕ1(t), βk,1, γk,1

)× · · · × gk,r
(
ϕr (t), βk,r , γk,r

)
, (2.18)

where eachgk,i (·) is either a ridge or a radial function.
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(a) Ridge (b) Radial (c) Composition

Figure 2.1 Three different methods of expanding into higher regressor dimensions.

Using the function expansion (2.15) and the different basis function constructions
(2.16)-(2.18), a number of well-known nonlinear model structures can be formed – for
exampleneural networks, radial basis function networksandwavelets.

Neural Networks

The combination of (2.15), the ridge construction (2.16), and the so-calledsigmoidmother
basis function,

κ(x) = σ(x) 1= 1

1+ exp(−x)
, (2.19)

results in the celebratedone hidden layer feedforward neural net. See Figure 2.2. Many
different generalizations of this basic structure is possible. If the outputs of theκ(·) blocks
are weighted, summed and fed through a new layer ofκ(·) blocks, one usually talks about
multi-layer feedforward neural nets. So-calledrecurrentneural networks are obtained if
instead some of the internal signals in the network are fed back to the input layer. See
(Haykin, 1994) for further structural issues. Neural network models are highly nonlinear
in the parameters, and have thus to be estimated through numerical optimization schemes
as will be described in Section 2.3.2. Modeling of dynamical systems using neural nets
have been extensively studied in for instance Sjöberg (1995) and Sjöberget al. (1995).

Radial Basis Networks

A closely related concept to the neural net approach is theradial basis function (RBF)
network(Chenet al., 1990). It is constructed using the expansion (2.15) and the radial
construction (2.17). The radial mother basis functionκ(·) is often taken as a Gaussian
function

κ(x) = exp
(
−x2

)
.

Compared to neural networks, the RBF network has the advantage of being linear in the
parameters (provided that the location parameters are fixed). This makes the estimation
process easier.
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Figure 2.2 A one hidden layer feedforward neural net.

Wavelets

Wavelet decomposition of a function is another example of the parameterization (2.15)
(Daubechies, 1990). A mother basis function (usually referred to as themother wavelet
and denoted byψ(·) rather thanκ(·)) is scaled and translated to form a wavelet basis. The
mother wavelet is usually a small wave (a pulse) with bounded support.

It is common to let the expansion (2.15) be double indexed according to scale and
location. For the scalar case and the specific choicesβ j = 2 j andγk = k, the basis
functions can be written as

gj ,k = 2 j /2κ(2 jϕ(t)− k). (2.20)

Multivariable wavelet functions can be constructed from scalar ones using the composition
method (2.18).

Wavelets havemulti-resolutioncapabilities. Several different scale parameters are
used simultaneously and overlappingly. With a suitable chosen mother wavelet along with
scaling and translation parameters, the wavelet basis can be made orthonormal, which
makes it easy to compute the coordinatesα j ,k in (2.15). See for example Sjöberget al.
(1995) for details.
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Regressors for Nonlinear Black-box Models

As in the linear case we have the same freedom in selecting the regressors. Following the
nomenclature for the linear black-box models, it is natural to use similar names for nonlinear
model structures. According to Sjöberget al. (1995), we can distinguish between:

• NAR models, which usey(t − k) as regressors.

• NFIR models, which useu(t − k) as regressors.

• NARX models, which useu(t − k) andy(t − k) as regressors.

• NARMAX models, which useu(t − k), y(t − k) andε(t − k|θ) as regressors.

• NOE models, which useu(t − k) andŷu(t − k|θ) as regressors.

• NBJ models, which useu(t−k), ŷ(t−k|θ), ε(t−k|θ) andεu(t−k|θ) as regressors.

The last three structures NARMAX, NOE and NBJ use regressors which consist of past
outputs from the model. This is usually referred to asrecurrencyand can be interpreted
as an extension of the pseudo-linear regression concept (2.14). Recurrent structures are in
general much harder to work with than those structures whose regressors only consist of
measured data.

2.3 Parameter Estimation

When a particular model structure, linear or nonlinear, is chosen, the next step is to estimate
the parameters on the basis of the observationsZN . This is usually done by minimizing
the “size” of the prediction errors,

VN(θ, ZN)
1= 1

N

N∑
i=1

`(Yi −m(Xi , θ)), (2.21)

where the norm typically is taken as the quadraticL2 norm, i.e.,̀ (ε) = ε2. The parameter
estimate is then given by the minimizing argument of (2.21). That is,

θ̂N = arg min
θ

VN(θ, ZN). (2.22)

This is a very well established problem formulation known asprediction error minimization
(PEM) methods. Depending on how the parameters appear in the parameterization, this
minimization can be performed either using a linear least squares approach or a nonlinear
least squares approach.



2.4 Asymptotic Properties of the Parametric Model 21

2.3.1 Linear Least Squares

When the predictor is linear in the parameters and a quadratic norm is used, an explicit
solution that minimizes (2.21) exists. The optimal parameter estimate is then simply given
by the ordinary least squares solution

θ̂N =
(

1

N

N∑
i=1

B(Xi )B
T (Xi )

)−1
1

N

N∑
i=1

B(Xi )Yi , (2.23)

provided that the inverse exists. Here, and in the sequel of the thesis,B(Xi ) denotes the
vector of basis functions associated with the parameterization. For instance, for the simple
example (2.3) we have

B(Xi ) =
(

1
Xi

)
.

For numerical reasons the inverse in (2.23) is rarely formed. Instead the estimate is com-
puted using QR- or singular value decomposition (Björck, 1996).

2.3.2 Nonlinear Optimization

When the predictor is nonlinear in the parameters, the minimum of the loss function (2.21)
can normally not be computed analytically. Instead one has to resort to methods that search
for the minimum numerically. A commonly used such optimization method isNewton’s
algorithm(Dennis and Schnabel, 1983),

θ̂
(k+1)
N = θ̂ (k)N − µ

[
V ′′N(θ̂

(k)
N , ZN)

]−1
V ′N(θ̂

(k)
N , ZN), (2.24)

in which V ′N(·) andV ′′N(·) denote the gradient and the Hessian of the loss function (2.21)
with respect toθ . This is an iterative local search procedure where the parameter vector
estimate in each iteration is updated in the negative gradient direction with a step size
related to the inverse of the Hessian.

A problem though with numerical search methods like (2.24) is that they usually run into
problems for highly nonlinear structures whose loss functions have several local minima.
There are in other words no guarantees that the parameter estimate converges to the global
minimum of (2.21). There is no easy solution to this problem, so the choice of initial
valueθ̂ (0)N , i.e., where to start the search is crucial. Otherwise only various global search
strategies remain, such as random search, random restarts and genetic algorithms.

2.4 Asymptotic Properties of the Parametric Model

An interesting question is what properties the estimate resulting from (2.21) will have.
These will naturally depend on the properties of the data setZN . In general it is a difficult
problem to characterize the quality ofθ̂N exactly. Instead one normally investigates the
asymptotic properties of̂θN as the number of data,N, tends to infinity.
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It is an important aspect of the general parameter estimation method (2.21) that the
asymptotic properties of the resulting estimate can be expressed in general terms for arbi-
trary model structures.

The first basic result is the following;

θ̂N → θ∗ as N→∞, (2.25)

where

θ∗ = arg min
θ

E(Yi −m(Xi , θ))
2. (2.26)

That is, as more and more data become available, the estimate converges to the valueθ∗,
that would minimize the expected value of the squared prediction errors. This is in a sense
the best possible approximationof the true regression function that is available within the
model structure. The expectation E in (2.26) is taken with respect to all random disturbances
that affect the data and it also includes averaging over the predictor variables.

The second basic result is the following one: If the prediction error

εi (θ
∗) = Yi −m(Xi , θ

∗)

is approximately white noise, then the covariance matrix ofθ̂N is approximately given by

E(θ̂N − θ∗)(θ̂N − θ∗)T ∼ σ 2

N

[
Eψiψ

T
i

]−1
, (2.27)

where

σ 2 = Eε2
i (θ
∗) (2.28)

and

ψi = d

dθ
m(Xi , θ)

∣∣∣∣
θ=θ∗

. (2.29)

That is, the covariance of̂θN decays asN−1.
The results (2.25) through (2.29) are general and hold for all model structures, both

linear and non-linear ones, subject only to some regularity and smoothness conditions. See
Ljung (1999) for more details around this.



3
Nonparametric Methods

In Chapter 2, a brief review of parametric estimation methods was given. It was concluded
that parametric methods offer good modeling alternatives, since a parametric model pro-
vides a high degree of data compression, i.e., the major features of the data are condensed
into a few number of parameters. A problem with the approach, though, is the requirement
of certain parameterizations. Those must be selected so that they match the properties of
the underlying regression function. Otherwise quite poor results are often obtained.

The problem with parametric regression models mentioned above can be solved by
removing the restriction that the regression function belongs to a parametric function family.
This leads to an approach which is usually referred to asnonparametric regression. The
basic idea behind nonparametric methods is that one should let the data decide which
function fits them best without the restrictions imposed by a parametric model.

Local nonparametric regression models have been discussed and analyzed in the statis-
tical literature for a long time. In the context of so-called kernel regression methods, tra-
ditional approaches have involved theNadaraya-Watson estimator(Nadaraya, 1964; Wat-
son, 1964) and some alternative kernel estimators, for example thePriestly-Chaoestimator
(Priestly and Chao, 1972) and theGasser-Müllerestimator (Gasser and Müller, 1979). In
this chapter we give a brief introduction to a special class of such models,local polynomial
estimators(Stone, 1977; Cleveland, 1979; Müller, 1987; Fan, 1992). These estimate the
regression function at a certain point by locally fitting a polynomial of degreep to the
data using weighted regression. The Nadaraya-Watson estimator can be seen as a special
case in this framework since it corresponds to fitting a zero degree polynomial, i.e., a local
constant, to data.

The presentation here is neither formal nor complete. The purpose is just to introduce
concepts and notation used in the statistical literature. More comprehensive treatments of

23
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the topic are given in the books by Härdle (1990), Wand and Jones (1995) and Fan and
Gijbels (1996) upon which this survey is based. Other interesting treatments of the subject
(including descriptions of existing software packages) are given in Cleveland and Grosse
(1991), Clevelandet al. (1992), Cleveland and Loader (1994), Loader (1995) and Loader
(1997).

The outline of the chapter is as follows: Sections 3.1 and 3.2 define the basic smoothing
problem and discuss how it can be solved using the concept of local polynomial estimation.
Section 3.3 summarizes several statistical aspects of local polynomial estimators such as
bias and variance errors as well as asymptotical properties. Section 3.4 reviews possible
solutions to the important problem of bandwidth selection, and Section 3.5 extends the
local polynomial ideas to the local likelihood framework. Sections 3.6 and 3.7 provide
some notes on the selection of the polynomial degree and adaptive smoothing methods.
Section 3.8, finally, extends and generalizes the local polynomial ideas to the multivariable
case.

3.1 The Smoothing Problem

Smoothing of a noisy data set{(Yi , Xi )}Ni=1 concerns the problem of estimating the function
m in the regression relationship

Yi = m(Xi )+ εi , i = 1, . . . , N, (3.1)

without the imposition thatm belongs to a parametric family of functions. Depending on
how the data have been collected, several alternatives exist. If there are multiple observa-
tions at a certain pointx, an estimate ofm(x) can be obtained by just taking the average of
the correspondingY-values. In most cases however, repeated observations at a givenx are
not available, and one has to resort to other solutions that deduce the value ofm(x) using
observations at other positions thanx. In the trivial case where the regression functionm(·)
is constant, estimation ofm(x) reduces to taking the average over the response variablesY.
In general situations, though, it is unlikely that the true regression curve is constant. Rather,
the assumed function is modeled as a smooth continuous function which is nearly constant
in a small neighborhoodaroundx. A natural approach is therefore some sort of mean of the
response variables near the pointx. Thislocal averageshould then be constructed so that it
is defined only from observations in a small neighborhood aroundx. This local averaging
can be seen as the basic idea ofsmoothing.

Almost all smoothing methods can, at least asymptotically, be described as a weighted
average of theYi ’s nearx,

m̂(x) =
N∑

i=1

Wi (x)Yi , (3.2)

where{Wi (x)} is a sequence of weights that may depend onx and the predictor data
{Xi }. An estimator of the type (3.2) is usually called alinear smootherand the result of a
smoothing operation is sometimes called asmooth(Tukey, 1977). A simple estimate can be
obtained by defining the weights as constant over adjacent intervals. In more sophisticated
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methods like kernel estimation and local polynomial regression, the weights are chosen
according to a kernel functionKh(·) of fixed form. Such methods will be described more
in detail in the following section.

The fact that smoothers, by definition, average over observations with considerably
different expected values has been paid special attention in the statistical literature. The
weightsWi are typically tuned by asmoothing parameter(bandwidth) that controls the
degree of local averaging, i.e., the size of the neighborhoodaroundx. A too large neighbor-
hood will include observations located far away fromx, whose expected values may differ
considerably fromm(x), and as a result the estimator will produce an “over-smoothed” or
biasedestimate. On the other hand, when using a too small neighborhood, only a few num-
ber of observations will contribute to the estimate atx, hence making it “under-smoothed”
or noisy. The basic problem in nonparametric methods is thus to find the optimal choice
of smoothing parameter that will balance the bias error against the variance error.

Before going into details about local regression models, we will give some basic termi-
nology and notation. Nonparametric regression is studied in bothfixed designandrandom
designcontexts. In the fixed design case, the predictor variables consist of ordered non-
random numbers. A special case is theequally spaced fixed designwhere the difference
Xi+1 − Xi is constant for alli , for exampleXi = i /N, i = 1, . . . , N. The random
design occurs when the predictor variables instead are independent, identically distributed
random variables. The regression relationship is in both cases assumed to be modeled as in
(3.1), whereεi are independent random variables with zero means and variancesσ 2, which
are independent of{Xi }. The overview is concentrated on the scalar case, because of its
simpler notation. However, the results are generalized to the multivariable case in Section
3.8.

3.2 Local Polynomial Models

Local polynomial estimators form a special class of nonparametric regression models which
was among first discussed by Stone (1977), Cleveland (1979) and Katkovnik (1979). The
basic idea is to estimate the regression functionm(·) (or its derivatives) in (3.1) at a particular
point x, by locally fitting apth degree polynomial

β0+ β1(Xi − x)+ . . .+ βp(Xi − x)p (3.3)

to the data belonging to a neighborhood aroundx. The polynomial is fitted as a weighted
regression problem: Minimize

Vx(β) =
N∑

i=1

`

(
Yi −

p∑
j=0

β j (Xi − x) j

)
Kh(Xi − x), (3.4)

wherè (·) is a scalar-valued,positive norm function,h is abandwidthparameter controlling
the size of the local neighborhood, and

Kh(·) 1= h−1K (·/h) , (3.5)
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with K (·) a kernel function assigning weights to each remote data point according to its
distance fromx. If β̂ j , j = 0, . . . , p, denote the minimizers of (3.4), an estimate of the
derivativem(ν)(x) is given by

m̂(ν)(x,h) = ν!β̂ν . (3.6)

However, our main interest in this thesis will be to estimate the regression function itself,
that is,

m̂(x,h) = β̂0.

The norm`(·) is usually taken as the quadraticL2 norm,`(ε) = ε2, which is convenient
both for computation and analysis. However, demands for robustness against outliers may
sometimes warrant other choices. Unless otherwise stated though, we shall in the sequel
of the thesis assume the quadratic norm as the default choice.

3.2.1 Kernel Functions

The kernel is normally chosen as a function with probability density properties satisfying∫
K (u) du= 1,

∫
uK(u) du= 0. (3.7)

A wide range of different kernel functions is possible in general, but often both practical
and performance theoretic considerations limit the choice. Commonly used kernels include
the Gaussian kernelK (u) = (√2π)−1 exp(−u2/2) and the “symmetric Beta family” (Fan
and Gijbels, 1996);

K (u) = 1

Beta(1/2, γ + 1)

(
1− u2

)γ
+ , γ = 0,1,2, . . .

where(·)+ denotes the positive part. Hereγ = 0 corresponds to theuniform (or boxcar)
kernel, see Figure 3.1 (a). For the choiceγ = 1 the kernel becomes

K (u) = 3

4

(
1− u2

)
+ . (3.8)

This so-calledEpanechnikovkernel (Epanechnikov, 1969), which has been shown to be
optimal in asymptotic mean square error sense (see Section 3.3.5), is depicted in Figure 3.1
(b). An undesirable property of the Beta family kernels in general and the uniform kernel
in particular, though, is that their derivatives are discontinuous. This problem has been
acknowledged for a long time in the domains of signal processing and spectral analysis
(Ljung, 1999; Stoica and Moses, 1997). The uniform kernel has a Fourier transform with
large side lobes, which leads to that high frequency components in the data, i.e., noise, can
leak into the resulting estimate. A remedy is to use a kernel that smoothly descends to zero.
One such example is thetricubekernel,

K (u) = 70

81

(
1− |u|3

)3

+ , (3.9)
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Figure 3.1 (a) The uniform (boxcar) kernel. (b) The Epanechnikov kernel.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u

K
(u
)

Figure 3.2 The tricube kernel.

which is the default choice in the LOWESSand LOESSrobust fitting procedures (Cleveland,
1979; Cleveland and Devlin, 1988) and in the LOCFIT package (Loader, 1997). A plot of
this kernel is shown in Figure 3.2.

It might be worth pointing out that the constant factors in the kernel functions do not
actually affect the local fit – they are merely normalization constants so that the kernels
become density functions, and can be ignored in practical implementations.

3.2.2 The Bandwidth

The selection of the bandwidth parameter is crucial for the performance of the estimator,
since it governs a trade-off between the bias and variance errors. This fact is best illustrated
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with an example, which is adapted from Wand and Jones (1995).

Example 3.1 The role of the bandwidth

Consider the regression function

m(x) = 3 exp
(
−x2/0.32

)
+ 2 exp

(
−(x − 1)2/0.72

)
, x ∈ [0,1], (3.10)

which is represented by the dashed curve in Figure 3.3 (a)–(c). A data set (represented by
circles) was generated according to

Yi = m(Xi )+ εi , i = 1, . . . ,100 (3.11)

whereXi = i /100, andεi are independent Gaussian random variables with zero means
and variances 0.16. The solid lines represent local polynomial estimates withp = 1 using
Epanechnikov kernels and bandwidths 0.011, 1, and 0.15 respectively. ❏

As shown in Example 3.1, if the bandwidthh is small, the local polynomial fitting
depends heavily on the measurements that are close tox, thus producing an estimate that
is very noisy and wiggly. This is shown in Figure 3.3 (a) where the bandwidthh = 0.011
is used. A large bandwidth, on the other hand, tends to weight the measurements more
equally, hence resulting in an estimate that approaches a straight line through the data, i.e.,
a global linear fit. This is illustrated in Figure 3.3 (b), where a bandwidthh = 1 is used.
A good choice of bandwidth is a compromise between these two extremes, as shown in
Figure 3.3 (c) where a bandwidthh = 0.15 is used.

In practice, it is undesirable to have to specify the bandwidth explicitly when performing
the local polynomial fit. A better idea is to make use of the available data set, and on basis
on these dataautomaticallyestimate a good bandwidth. This procedure is usually referred
to as(data-driven) bandwidth selection, and will be described more detailed in Section 3.4.

3.2.3 Computing the Estimate

In order to simplify the notation in the sequel of the chapter, it is convenient to work with
the more compact matrix notation. Let

y 1= (Y1 . . . YN
)T
, β

1= (β0 β1 . . . βp
)T
,

and introduce the Vandermonde typedesign matrixof sizeN × (p+ 1),

X 1=
1 (X1− x) · · · (X1 − x)p

...
...

...

1 (XN − x) · · · (XN − x)p

 =
BT (X1 − x)

...

BT (XN − x)

 .
Further, letW denote theN × N weight matrix,

W 1= diag(Kh(X1− x), . . . , Kh(XN − x)).
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Figure 3.3 Local linear estimates (solid) of the regression function (3.10) based on
the dataset (3.11) (circles) using different bandwidths. The dashed curve represents
the true regression function.

Then, using the quadraticL2-norm,̀ (ε) = ε2, the local polynomial fit (3.4) can be rewritten
in matrix form as

β̂ = arg min
β

(y− Xβ)TW(y − Xβ). (3.12)

Ordinary weighted least squares theory hence gives the solution

β̂ =
(
XT WX

)−1
XT Wy, (3.13)

provided the information matrixXT WX is non-singular.
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The expression for̂m(x,h) = β̂0 in (3.13) is quite complicated in general, but for the
special casesp = 0 andp = 1, simple explicit formulas exist. Withp = 0, i.e., when
fitting a local constant to data, the estimator becomes

m̂(x,h) =
∑N

i=1 Kh(Xi − x)Yi∑N
i=1 Kh(Xi − x)

, (3.14)

which is widely known as theNadaraya-Watsonkernel estimator (Nadaraya, 1964; Watson,
1964). Withp = 1, the estimator is termedlocal linear estimator (Fan, 1992), and can be
explicitly expressed as

m̂(x,h) = 1

N

N∑
i=1

{s2(x,h)− s1(x,h)(Xi − x)} Kh(Xi − x)Yi

s2(x,h)s0(x,h)− s2
1(x,h)

, (3.15)

where

sj (x,h)
1= 1

N

N∑
i=1

(Xi − x) j Kh(Xi − x). (3.16)

The Nadaraya-Watson estimator has been extensively used in the past. Nowadays it has to
some extent fallen into disuse, mainly because of its (as we shall see later) bad boundary
properties.

3.2.4 Nearest Neighbor Estimators

The k-nearest neighbor (k-NN)estimator is a variant of the kernel estimator for local
constant fitting. Thek-NN weight sequence has been introduced by Loftsgaarden and
Quesenberry (1965) in the related density estimation problem, and has been used by Cover
and Hart (1967) for classification purposes. Thek-NN estimator is defined as

m̂k(x) =
N∑

i=1

Wi,k(x)Yi , (3.17)

where the weights are defined through theindex set,

�k(x) = {i : Xi is one of thek nearest neighbors ofx}, (3.18)

such that

Wi,k(x) =
{

1/k, if i ∈ �k(x)

0 otherwise.
(3.19)

More generally, the nearest neighbor estimator can be thought of as a local polynomial
fitting procedure as in (3.4), with weights being generated by a kernel function

Wi,k(x) = Khk(Xi − x), (3.20)
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where the bandwidthhk is the distance betweenx and itskth nearest neighbor,

hk = max
i
|Xi − x|, i ∈ �k(x).

In this context,hk is usually referred to asnearest neighbor bandwidth.
Cleveland and Loader (1994) argue in favor of nearest neighbor bandwidths over fixed

bandwidths. A fixed bandwidth can have large variance in regions with low data density,
and, in extreme cases, empty neighborhoods will lead to undefined estimates. The near-
est neighbor bandwidth approach has been taken in the commonly used LOESSpackage
(Cleveland and Devlin, 1988; Cleveland and Grosse, 1991; Clevelandet al., 1992). Its suc-
cessor LOCFIT (Loader, 1997) allows a mixture of fixed and nearest neighbor components.

3.2.5 Equivalent Weights

As seen from (3.13) the estimate defined by (3.6) is linear in the responsesYi , and can be
written in the linear smoother form (3.2) with weights

wT
ν (x)

1= (W(ν)
1 (x), . . . ,W(ν)

N (x)) = ν!eT
ν+1

(
XT WX

)−1
XT W. (3.21)

whereek denotes thekth column of the identity matrix. The weightsW(ν)
i (x) are usually

referred to asequivalent weightsor weight diagram(Hastie and Loader, 1993; Fan and
Gijbels, 1996). It is easy to show that they satisfy the discrete moment conditions,

N∑
i=1

(Xi − x)qW(ν)
i (x) = δν,q, q = 0, . . . , p, (3.22)

whereδi, j denotes the Kronecker delta. (Recall thatν denotes the derivative order ofm(·)
that we want to determine, but we will usually suppress it as index or superscript in the
caseν = 0). Hence it follows that the finite sample bias when estimating polynomials up
to orderp is zero (Ruppert and Wand, 1994; Fan and Gijbels, 1996).

Figure 3.4 shows examples of equivalent weights for the casesp = 0, p = 1 andp = 2
when estimating the regression function at an interior point of the regressor space using the
Epanechnikov kernel and bandwidthsh = 1. Figure 3.5 illustrates their ability to adapt to
the situation at the left boundary. For higher order fits the weights will depend on both the
design points and the estimation location (see for instance equation (3.15)), and hence adapt
automatically to various design distributions and boundary conditions. Note in particular
in Figure 3.5 (b)–(c) how the weightsWi deform in order to reduce the bias. Traditional
kernel estimators like the Nadaraya-Watson estimator (3.14), i.e., local constant fits, do not
have this property and therefore get larger bias within boundary regions. See Figure 3.5
(a) where the weightsWi have exactly the same shape as for the interior case in Figure 3.4
(a). As a consequence of this bad property they are nowadays seldom used as the default
choice for local regression.

The equivalent weightsw0(x) = w(x) can be used to define the so-calledhat matrix
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Figure 3.4 Equivalent weights for different polynomial orders when estimating
the regression function at an interior point (x = 0) using bandwidthh = 1. The
local constant and local linear weight sequences coincide when the design is equally
spaced andx is located on the grid.

(or smoothing matrix),

H 1=
wT (X1)

...

wT (XN)

 , (3.23)

which maps data to fitted values according to m̂(X1,h)
...

m̂(XN ,h)

 =
wT (X1)

...

wT (XN)

 y = Hy. (3.24)

This definition will be needed later on in this chapter and in Chapter 4.

3.3 Statistical Properties of the Local Fit

It is in general of interest to investigate the performance and the statistical properties of
local polynomial estimators. Typically, this concerns questions regardingconsistency, i.e.,
whether or not the estimate converges to the true regression functionm, andconvergence
rate, i.e., how fast the estimate tends tom with respect to the number of samplesN.
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Figure 3.5 Equivalent weights for different polynomial orders when estimating
the regression function at a left boundary point (x = 0) using bandwidthh = 1.

3.3.1 The MSE and MISE Criteria

When analyzing the performance it is necessary to have some kind of measure that specifies
the accuracy of the estimator. An often used pointwise error measure is themean square
error (MSE),

MSE(m̂(x,h))
1= E

(
m̂(x,h)−m(x)

)2
. (3.25)

The MSE has the nice feature of being decomposable into a squared bias part and a variance
error part,

MSE(m̂(x,h)) = (E m̂(x,h)−m(x)
)2︸ ︷︷ ︸

bias2

+Var
(
m̂(x,h)

)︸ ︷︷ ︸
variance

. (3.26)
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where the variance error typically decreases and the bias error increases with increasingh.
As we shall see in Section 3.3.5, this implies that a good choice of bandwidth is one that
balances the bias error versus the variance error.

If one instead is interested in a global error measure, it is natural to integrate the squared
error over allx,and take expectation. This leads to themean integrated square error (MISE)
(Wand and Jones, 1995),

MISE(m̂(x,h))
1= E

∫
{m̂(x,h)−m(x)}2 dx. (3.27)

By changing the order of expectation and integration, (3.27) can be rewritten

MISE(m̂(x,h)) =
∫

E{m̂(x,h)−m(x)}2 dx =
∫

MSE(m̂(x,h)) dx, (3.28)

i.e., the MISE can be obtained by integrating the MSE over allx.

3.3.2 Bias

The bias error of the linear estimate (3.6) is

b(x,h)
1= E m̂(x,h)−m(x)

=
N∑

i=1

Wi (x)m(Xi )−m(x) =
N∑

i=1

Wi (x) (m(Xi )−m(x)) . (3.29)

Assumingm(x) is p+ 2 times differentiable, a Taylor series expansion aroundx yields,

m(Xi )−m(x) = m′(x)(Xi − x)+ . . .+ m(p)(x)

p! (Xi − x)p

+ m(p+1)(x)

(p+ 1)! (Xi − x)p+1+ m(p+2)(x)

(p+ 2)! (Xi − x)p+2+ . . .

According to (3.22), the moments up to orderp vanish. It is thus possible to write

b(x,h) =
N∑

i=1

Wi (x)(m(Xi )−m(x))

= m(p+1)(x)

(p+ 1)!
N∑

i=1

Wi (x)(Xi − x)p+1

+ m(p+2)(x)

(p+ 2)!
N∑

i=1

Wi (x)(Xi − x)p+2+ . . . (3.30)

Under the assumption that the equivalent weights have bounded support, so thatWi (x) = 0
when|Xi − x| > h, we therefore see that the bias will be of sizeO(hp+1).
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3.3.3 Variance

The variance of the estimate is given by

v(x,h)
1= Var m̂(x,h) = E

(
m̂(x,h)− E m̂(x,h)

)2
= E

(
N∑

i=1

Wi (x)εi

)2

= σ 2
N∑

i=1

W2
i (x) = σ 2wT (x)w(x)

= σ 2eT
1

(
XT WX

)−1
XT W2X

(
XTWX

)−1
e1. (3.31)

A related quantity is theinfluence function(Loader, 1997)

infl(x)
1= eT

1

(
XTWX

)−1
e1Kh(0). (3.32)

It provides an upper bound for the variance,

1

σ 2v(x,h) ≤ infl(x),

since the elements of the diagonal matrixW2 is less than or equal toKh(0)W. Note that
the diagonal elements of the hat matrixH in (3.23) is given byWi (Xi ) = infl(Xi ).

3.3.4 Degrees-of-Freedom

The variance function (3.31) and the influence function (3.32) characterize the degree of
pointwise smoothing. It is also useful to have aglobalmeasure of the amount of smoothing
being performed which corresponds to thedegrees-of-freedommeasure in the parametric
case (i.e., the number of parameters used). One such measure is

tr(H) =
N∑

i=1

infl(Xi ). (3.33)

In case of parametric modeling, this measure reduces to the number of parameters in the
model, since then

tr(H) = tr(I ) = dimθ,

whereθ denotes the parameter vector. It is thus a natural measure of the degrees-of-freedom
for a nonparametric smoother.

3.3.5 Asymptotic MSE Approximations: AMSE

A non-trivial problem with the MSE formula (3.26) is that the bias and variance terms
depend on the bandwidthh in a complicated way, which makes it difficult to analyze
the influence of the bandwidth on the performance of the kernel estimator. One way to
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overcome this problem is to use large sample approximations (i.e., largeN) for the bias
and variance terms. This leads to what is referred to as theasymptotic mean square error,
AMSE (Wand and Jones, 1995).

The basic idea is to assume that the data is equispaced distributed on a bounded interval.
Thus whenN tends to infinity, the sums in (3.30) and (3.31) can be approximated with
integrals. Derivation for a generalp is quite messy in notational sense, since special care is
required in case thatp is even. We therefore choose to only concentrate on the casep = 1
corresponding to the estimator (3.15).

To simplify the notation it turns out that it is convenient to introduce the following
notations;

µk(K )
1=
∫

ukK (u) du, and r (K )
1=
∫

K 2(u) du.

For the estimator (3.15), it then follows from (3.30) and some calculations that the bias
error asymptotically is given by (Wand and Jones, 1995):

b(x,h) ' 1
2h2m′′(x)µ2(K )+ o(h2)+ O(N−1). (3.34)

Equation (3.31) similarly provides the asymptotic variance formula:

v(x,h) ' 1

Nh
r (K )σ 2 + o((Nh)−1). (3.35)

These two expressions can be combined to form the AMSE,

AMSE
(
m̂(x,h)

) = ( 1
2h2m′′(x) µ2(K )

)2+ 1

Nh
r (K )σ 2. (3.36)

Here the trade-off between bias and variance becomes clear. Equation (3.36) shows that
the squared bias error is asymptotically proportional toh4, which means that in order to
decrease the bias error,h has to be small. However, a small value ofh yields that the
variance error part becomes large, since it is asymptotically proportional to(Nh)−1. The
bandwidth must thus be chosen so that the bias is balanced against the variance.

Equation (3.36) also provides information of the convergence rate. Minimizing (3.36)
w.r.t. h results in the lower bound

inf
h>0

AMSE
(
m̂(x,h)

) = 5

4

(
µ2(K ) r

2(K )m′′(x)σ 4
)2/5

N−4/5, (3.37)

which is attained for the asymptotic optimal bandwidth

hAMSE =
(

r (K )σ 2

(m′′(x))2µ2
2(K )

)1/5

N−1/5. (3.38)

From these expressions we see that the mean square error tends to zero as the sample sizeN
tends to infinity. This implies that the kernel estimator converges in probability to the true
regression functionm(x). The best achievable rate of this convergence is of orderN−4/5,



3.4 Bandwidth Selection 37

which is slower than the typical rate of orderN−1 for parametric models as described in
Section 2.4. To obtain the rate ofN−4/5, the bandwidth must be selected in order ofN−1/5.

Determining the corresponding result for the MISE measure (3.27) is straightforward.
Integrating (3.36) over allx yields

AMISE
(
m̂(x,hN)

) = 1

4
h4

Nr (m′′(x)) µ2
2(K )+

1

NhN
r (K )σ 2. (3.39)

Hence the asymptotic global optimal bandwidth is given by

hAMISE =
(

r (K )σ 2

r (m′′(x))µ2
2(K )

)1/5

N−1/5. (3.40)

Example 3.2 Asymptotically optimal bandwidth

Consider again the smoothing problem introduced in Example 3.1. Suppose we are inter-
ested in minimizing the MSE globally for allx ∈ [0,1], i.e., the MISE. The bandwidth that
asymptotically minimizes the MISE is given by (3.40). Since

N = 100, σ2 = 0.16,

r (K ) = 3

5
, µ2(K ) = 1

5
,

and, since we know the true function (3.10),

r (m′′(x)) =
∫ 1

0
(m′′(x))2 dx = 605.916,

we get

hAMISE = 0.13,

which is close to the valueh = 0.15 used in Figure 3.3 (c). ❏

Note that all results stated in this section are valid only if the pointx is an interior point
of the interval. At the boundary the situation in general gets degenerated, which results in
slower convergence rates there.

3.4 Bandwidth Selection

Practical implementations of local polynomial estimators require that the bandwidthh is
specified, and as was shown in Section 3.2, this choice is crucial for the performance of the
estimator. A method that uses the available data set to automatically produce a bandwidth
h is called abandwidth selector(Wand and Jones, 1995). Several methods for doing this
exist. They can be divided into two broad classes (Loader, 1995):
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Classical Methods: Cross-validation, Generalized cross-validation, AIC, FPE, Mallows
Cp and the like, which are straightforward extensions of methods used in paramet-
ric modeling, and which are aimed to minimize estimates of the MSE or similar
measures.

Plug-in Methods: The unknown quantities in the AMSE and AMISE formulas are esti-
mated from data and “plugged in” to compute an asymptotically optimal bandwidth.

3.4.1 Classical Methods

The accuracy of the estimator depends mainly on the bandwidth, the polynomial degree
and the kernel. The classical methods rely on expressing the quality of the estimator as
a function of the bandwidth, and to optimize this measure with respect to the bandwidth
parameter. In order to do so, one needs a criterion with which to assess the performance
of the fit. A natural choice here is the mean squared prediction error distance

P(h) = 1

N

N∑
i=1

(
m(Xi )− m̂(Xi ,h)

)2
, (3.41)

which consists of a squared bias component (increasing inh) and a variance component
(decreasing inh). However, since the true regression function values in (3.41)are unknown,
we have to replace them with measurementsYi to form the so-calledresubstitution estimate
of the prediction error (Härdle, 1990),

P̂(h) = 1

N

N∑
i=1

(
Yi − m̂(Xi ,h)

)2
. (3.42)

Unfortunately, it turns out that this quantity is a biased estimate ofP(h), and P̂(h) is an
increasing function ofh, i.e., the optimal bandwidth will be the smallest one (see Figure 3.6
whereP̂(h) has been computed for the dataset in Example 3.1). The intuitive reason for
this is that observationYi is used inm̂(Xi ,h) to predict itself, which will give the illusion
of a perfect fit as the bandwidth approaches zero. The problem is closely related to the the
concept ofoverfitting in parametric estimation theory. Solutions include to make use of
cross-validationideas similar to those of parametric modeling, or to multiplyP̂(h) with a
penalizing function4(h) so that it imitates the behavior of (3.41).

Cross-Validation

A straightforward solution to the bias problem of the estimate (3.42) is theone leave-out
cross-validationmethod (Härdle, 1990), which is based on estimators,m̂−i (Xi ,h), where
the i th observation is left out when computing the estimate. Across-validationfunction
(Stone, 1974),

CV(h)
1= 1

N

N∑
i=1

(Yi − m̂−i (Xi ,h))
2 (3.43)



3.4 Bandwidth Selection 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

h

P̂
(h
)

Figure 3.6 P̂(h) for the dataset used in Example 3.1.

is then formed, and the bandwidthh is taken as the minimizing argument ofCV(h).

At a first sight theCV score seems quite expensive to compute since the estimate has
to be recomputed for each excluded observation. However, there is a short-cut,

CV(h) = 1

N

N∑
i=1

(
Yi − m̂(Xi ,h)

1− infl(Xi )

)2

. (3.44)

HenceCV(h) can be computed without recalculating the fit for each excluded point.

Generalized Cross-Validation

A simplified variant of theCV criterion (3.44) isgeneralized cross-validation, which was
first introduced in the context of smoothing splines by Craven and Wahba (1979). Here the
influence values infl(Xi ) are replaced by their average values tr(H)/N, whereH is the hat
matrix defined in (3.23). That is,

GCV(h)
1= N

∑N
i=1(Yi − m̂(x,h))2

(N − tr(H))2
. (3.45)

TheGCV criterion can thus be seen as a penalizing approach with

4(h) =
(

1

1− tr(H)/N

)2

.
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Akaike Information Criteria: AIC, FPE

For parametric models, a commonly used penalizing approach for model structure selection
is Akaike’s information criterion (Akaike, 1973);

AIC(θ) = 1

N

N∑
i=1

(Yi − m̂(Xi , θ))
2 · exp

(
2 dimθ

N

)
, (3.46)

which is an unbiased estimate of the expected Kullback-Leibler information (Kullback and
Leibler, 1951). However, for nonparametric models it is not directly meaningful to think
of number of parameters. A more useful approach is instead to replace this quantity with
the degrees-of-freedom measure tr(H) introduced in (3.33). That is,

AIC(h)
1= 1

N

N∑
i=1

(Yi − m̂(Xi ,h))
2 · exp

(
2 tr(H)

N

)
. (3.47)

Recall here that tr(H) increases with decreasing bandwidth. However, it is well known that
AIC results in a quite small penalty. An enhanced version of (3.47) is thecorrectedAIC
(Hurwichet al., 1998);

AICC(h)
1= 1

N

N∑
i=1

(Yi − m̂(Xi ,h))
2 · exp

(
1+ 2(tr(H)+ 1)

N − tr(H)− 2

)
. (3.48)

Another closely related variant is Akaike’sFinal Prediction Error,

FPE(h)
1= 1

N

N∑
i=1

(Yi − m̂(Xi ,h))
2 · 1+ tr(H)/N

1− tr(H)/N
. (3.49)

Cp Estimate of Risk

A slightly different approach compared to the above methods is to consider therisk function,

R(h) = 1

Nσ 2

N∑
i=1

E
(
m̂(Xi ,h)−m(Xi )

)2
, (3.50)

which is a measure of theestimation error. A bias-variance decomposition of this quantity
yields

R(h) = 1

Nσ 2

N∑
i=1

b2(Xi ,h)+ 1

Nσ 2

N∑
i=1

v(Xi ,h)

= 1

Nσ 2

N∑
i=1

b2(Xi ,h)+ 1

N
tr
(
HH T

)
. (3.51)
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The expected value of (3.42) can be decomposed into bias and variance components ac-
cording to

E
1

N

N∑
i=1

(
Yi − m̂(Xi ,h)

)2 = 1

N

N∑
i=1

b2(Xi ,h)+ 1

N

N∑
i=1

Var
(
Yi − m̂(Xi ,h)

)
= 1

N

N∑
i=1

b2(Xi ,h)+ σ
2

N
tr
(
(I − H)(I − H)T

)
. (3.52)

Hence eliminating the squared bias terms from (3.51) and (3.52) and ignoring the expecta-
tion result in the unbiased estimate of (3.50),

CP(h)
1= 1

Nσ 2

N∑
i=1

(Yi − m̂(Xi ,h))
2 − 1

N
tr
(
(I − H)(I − H)T

)
+ 1

N
tr(HH T )

= 1

Nσ 2

N∑
i=1

(Yi − m̂(Xi ,h))
2 − 1+ 2

N
tr(H). (3.53)

For parametric methods, this is known as MallowsCp criterion (Mallows, 1973). It was
extended to local regression by Cleveland and Devlin (1988).

Example 3.3 A Comparison

In Figure 3.7,CV(h), GCV(h) andCP(h) functions for the dataset used in Example 3.1 are
depicted. All functions have their minimum ath ≈ 0.17, which indicates that this would
be a good choice of a global bandwidth for this particular example. ❏

3.4.2 Plug-in Methods

The other class of bandwidth selectors, so-calleddirect plug-in methods(Wand and Jones,
1995; Fan and Gijbels, 1996), is based on the simple idea of “plugging in” values ofσ 2

andr (m′′(x)) into the asymptotically optimal bandwidth formula (3.40). This was in fact
what we did in Example 3.2, since we knew both the true regression function and the noise
variance. In practice, however, the values ofr (m′′(x)) andσ 2 are unknown and have to
be estimated from data. Quite often they are estimated on the basis of some preliminary
smoothingstage, which then raises a secondary bandwidthselection problem. For example,
an estimator forr (m′′(x)) is given by

̂r (m′′(x)) = 1

N

N∑
i=1

(m̂′′(Xi , g))
2, (3.54)

and an estimator forσ 2 by

σ̂ 2 = 1

N − 2 tr(H)+ tr(HT H)

N∑
i=1

(Yi − m̂(Xi , l ))
2, (3.55)
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Figure 3.7 The CV(h) criterion (solid), theGCV(h) criterion (dashed), and the
CP(h) criterion (dash-dotted) for the dataset used in Example 3.1.

where the normalization is included in order to make the estimate unbiased (Wand and
Jones, 1995). The unknown quantities in (3.40) have thus to be estimated using two
additional estimatorŝm′′(Xi , g) andm̂(Xi , l ) with auxiliary so-calledpilot bandwidthsg
andl , respectively.

Plug-in methods have been thoroughly studied within the statistical community during
the last decade, and their superior performance in comparison to the classical methods has
been claimed. However, Loader (1995) argues that this has found to be without foundation:
“The plug-in approach is heavily dependent on arbritrary specification of pilot bandwidths;
if these are wrong, the selection is wrong”.

3.5 Local Maximum-Likelihood Models

When it is known that the observationsYi in (3.1) has a non-Gaussian distribution, say
f (y,m), it might be useful that instead of (3.4) consider a nonparametric maximum-
likelihood approach as introduced by Tibshirani and Hastie (1987). Let

l (y,m)
1= log f (y,m). (3.56)

Then forming the local log-likelihood function

Lx(β) =
N∑

i=1

l

(
Yi ,

p∑
j=0

β j (Xi − x) j

)
Kh(Xi − x) (3.57)

and maximizing overβ j will lead a local maximum-likelihoodestimate of the same fashion
as (3.6). Note that this is consistent with (3.4) assuming Gaussian distributed noise with
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standard deviationσ = 1. Maximization of the log-likelihood has typically to be done by
means of numerical search, for instance by using Newton’s algorithm (2.24). This makes
local likelihood even more computationally intensive than the ordinary local polynomial
approach. Nevertheless, an application for local likelihood estimation will be presented in
Chapter 6.

3.5.1 Bandwidth Selectors for Local Likelihood

Bandwidth selections schemes can also be derived for the local likelihood case. However,
in this case it is not so useful to assess the quality of the fit by means of the squared residuals.
A more appropriate measure is thedeviance(Loader, 1997) which is defined as

D(Y, m̂)
1= 2

(
sup
m

l (Y,m)− l (Y, m̂)

)
. (3.58)

It is easy to show that the deviance reduces to the squared residual in the case of Gaussian
distributed noise. The likelihood counterpart to (3.43) is

LCV(h)
1=

N∑
i=1

D(Yi , m̂−i (Xi ,h))

≈ CL − 2

N

N∑
i=1

l (Yi , m̂(Xi ,h))+ 2

N

N∑
i=1

infl(Xi ) ·
[
l̇ (Yi , m̂(Xi ,h))

]2
, (3.59)

where

infl(x) = eT
1

(
XTWVX

)−1
e1Kh(0), (3.60)

is the likelihood influence function and

V = diag(−l̈ (Yi , m̂(Xi ,h)), . . . ,−l̈ (YN , m̂(XN ,h))).

Here l̇ (Y,m) and l̈ (Y,m) denote partial derivatives ofl (·, ·) w.r.t. m. The corresponding
likelihood AIC is obtained by replacing the squared derivative in (3.59) with its expected
value. This is (apart from the constantCL ) consistent with the ordinary AIC definition
(3.47).

3.6 The Degree of the Local Polynomial

An obvious question, which so far has not been paid any attention in this chapter, is how to
choose the orderp of the local polynomial. It is a common fact that fitting higher orders
polynomials leads to a possible reduction of the bias, but at the same time gives an increase
of the variability, since more parameters are introduced. Therefore the polynomial degree
is, like the bandwidth, a bias-variance trade-off.

It can be shown that the asymptotic variance of the estimate only increases when moving
from an odd order approximation to its consecutive even order approximation (Fan and
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Gijbels, 1996). It has therefore been claimed within the statistical literature that estimators
with p−ν odd will performbetter than estimators withp−ν even, since the extra parameter
gives a bias reduction, especially in the boundary regions, but does not cause an increase of
variability. However, Cleveland and Loader (1994) do not agree on that. They argue that
global parametric fitting can be seen as the limiting case of local regression. Therefore,
ruling out fitting with even degrees is no more sensible than ruling out even degrees for
global polynomial fitting.

In some situations, moving from aqth to a(q+1)th order approximation results in a too
dramatic change in the estimate, and one wishes a compromise. A solution is to consider
a linear combination of the two approximations,

m̂p(x,h) = (1− c)m̂q(x,h)+ c m̂q+1(x,h),

where 0≤ c ≤ 1. In such situations,p = q + c is referred to as themixing degree
(Clevelandet al., 1995). The mixing degree can, like the bandwidth, be determined from
data using cross-validation techniques as described in Section 3.4.1.

3.7 Adaptive Methods

Until now we have only considered global bandwidth (and mixing degree) selectors, that
select asinglevalue of the parameter of interest. However, adaptive (or local) methods
that select local values for each estimation point have gained a significant interest in recent
years, and the development of them still seems to be an open and active research area.

Adaptive bandwidth selection will be part of the model-on-demandapproach described
in the following chapter, though, so we will postpone the treatment of such methods to this
part of the thesis.

3.8 Extensions to the Multivariable Case

The theory for local polynomial estimation can rather easily be extended to the multivariable
case whereXi ∈ Rd andYi ∈ R. The multivariable local linear estimator is for instance
given by

m̂(x, H ) = β̂0, (3.61)

whereβ̂ = (β̂0, β̂
T
1 )

T is the solution to the weighted least squares problem

β̂ = arg min
β

N∑
i=1

(
Yi − β0− βT

1 (Xi − x)
)2

K H (Xi − x). (3.62)

Here

K H (u)
1= |H |−1K

(
H−1u

)
, (3.63)
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andK (·) is and-dimensional kernel function satisfying∫
Rd

K (u) du= 1,
∫
Rd

uK (u) du= 0. (3.64)

The symmetric positive definited × d matrix H is called thebandwidth matrix, since it is
the multivariable counterpart to the usual scalar bandwidth parameter.

The kernel function is often taken as and-dimensional probability density function.
There are two common methods for constructing multidimensional kernel functions from
a scalar kernelK (·); theproductconstruction,

K (u) =
d∏

i=1

K (ui ) (3.65)

and theradial construction

K (u) = CK · K
(
(uT u)1/2

)
, (3.66)

whereCK is a normalizing constant so thatK (·) becomes a multivariable density function.
These directly correspond to the parametric construction methods described in Section
2.2.2.

A problem with multidimensional kernel estimators, though, is the large number of
parameters. In general, the bandwidth matrixH has 1

2d(d + 1) independent entries (H
is symmetric), which, even for a quite moderate value ofd, gives a non trivial number
of smoothing parameters to choose. Considerable simplifications can be obtained by re-
stricting H to be a diagonal matrixH = diag(h1, . . . ,hd), which leads to a kernel of the
type

K H (u) =
(

d∏
k=1

hk

)−1

K
(

u1

h1
, . . . ,

ud

hd

)
, (3.67)

or by lettingH be specified by a single bandwidth parameterH = h I , which results in the
symmetric kernel

K H (u) = h−dK (u/h). (3.68)

3.8.1 Asymptotic MSE Approximations

The multivariable fixed design counterpart of the univariate asymptotic MSE in Section
3.3.5 for a local linear smoother is (see Ruppert and Wand (1994))

AMSE(m̂(x, H )) =
(

1

2
µ2(K ) tr

{
H 2Hm(x)

})2

+ N−1σ 2|H |−1r (K ), (3.69)

whereHm(x) denotes the Hessian (i.e., the second order derivative matrix) ofm. Using
the single bandwidth kernel (3.68), this simplifies to

AMSE(m̂(x,h)) =
(

1

2
µ2(K )h2 tr{Hm(x)}

)2

+ N−1σ 2h−dr (K ). (3.70)



46 Chapter 3 Nonparametric Methods

Hence minimizing this expression w.r.t.h gives,

inf
h>0

AMSE(m̂(x,h)) =(
1

4
d4/(d+4) + d−d/(d+4)

)(
µd

2(K )r
2(K ) trd Hm(x)σ

4
)2/(d+4) · N−4/(d+4), (3.71)

with optimal bandwidth

h =
(

d r(K )σ 2

µ2
2(K ) tr2{Hm(x)}

)1/(d+4)

N−1/(d+4). (3.72)

As shown, the convergence rateN−4/(d+4) for the multivariable kernel estimator is slower
than for the correspondingscalar estimator (d = 1). This is a manifestation of the so-called
curse-of-dimensionalitywhich follows from the sparseness of data in higher regressor
dimensions. For example, even with the quite large component-wise distance of 0.1, it
takes ten billions of data points to fill up a unit cube inR10.

3.8.2 Dimensionality Reduction Methods

The curse-of-dimensionality problem discussed above has motivated the derivation of meth-
ods that – in some way or another – try to reduce the dimensionality of the underlying
smoothing problem. One such approach isadditive modelsintroduced by (Hastie and
Tibshirani, 1990).

Additive models assume that the regression surface is an additive function of the com-
ponents of the predictor. For instance, ford = 2 we can consider the model

Yi = m1(Xi,1)+m2(Xi,2)+ εi , i = 1, . . . , N. (3.73)

Estimation of the submodels in (3.73) can be performed using thebackfitting algorithm
which alternates between estimatingm1(x1) from Xi,1 andYi −m2(Xi,2), andm2(x2) from
Xi,2 andYi −m1(Xi,1). If this procedure converges, the resulting estimate is obtained as

m̂(x) = m̂1(x1,h1)+ m̂2(x2,h2).

A variant of the above idea where the data is projected in certain specified directions is
projection pursuits models(Friedman and Stuetzle, 1981). Another dimensionality reduc-
tion approach is to assume the the model is global in some directions. This is referred to
asconditionally parametric modelsand will be discussed further in the next chapter.



4
Model-on-Demand

In this chapter we will present an alternative solution to the nonlinear regression/prediction
problem presented in Chapter 1 which we believe might be useful in situations when very
large datasets are available;model-on-demand. The basic idea is to store all observed data
in a database, and to build local models “on demand” as the actual need arises.

Since the modeling is performed locally, it is in contrast to parametric modeling suf-
ficient to consider rather simple model structures. In particular, it turns out that nonpara-
metric models of the fashion described in Chapter 3 are well suited for this purpose. The
main difference in this chapter, however, is that we will perform the model tuning locally,
independently of the result obtained at other locations.

The organization of the chapter is as follows. The first two parts, Sections 4.1 and
4.2, give an introduction and describes the basic principles behind the model-on-demand
philosophy. Section 4.3 discusses different approaches for how a particular estimator can
be implemented. It turns out that two possible solutions are local polynomial regression
models similar to those of Chapter 3, and a weight optimization approach. These are dis-
cussed further in Sections 4.4 and 4.5 respectively. Section 4.6 compares the two modeling
approaches. Section 4.7 discusses how to obtain approximate confidence bands, Section
4.8 discusses several aspects associated with data management and storage, and Section
4.9, finally, provides some conclusions.

4.1 Introduction

Let us again return to the nonlinear modeling/prediction problem introduced in Chapter 1.
Suppose that we have collected a large set of observations{(Yi , Xi )}Ni=1 which we assume

47
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can be modeled as

Yi = m(Xi )+ εi , i = 1, . . . , N, (4.1)

and that we want to compute an estimate (or prediction) of the nonlinear mappingm(·) at
a certain operating pointx. The observations may for instance relate to the input-output
behavior of a nonlinear dynamic system whose future outputs we want to predict, but we
will in this chapter not restrict ourselves to special classes of data, but rather, allow a more
general function approximation framework. More specialized applications to dynamical
systems will instead be treated later in Chapters 5, 6 and 7.

As outlined in Chapters 2 and 3 the prediction problem has been solved traditionally in
system identification and statistics byglobal modeling methods like nonlinear black-box
models and nonparametric methods. However, when the number of samplesN grows very
large, this approach becomes less attractive to deal with, both from a data management and
strict computational point of view. Situations where one is faced with enormous datasets
has become quite common today within the field of process control. In some applications
it is for instance not unusual that the volumes of data may be in the order of Gigabytes.

As discussed in Chapter 2, the global (parametric) modeling problem is typically as-
sociated with an optimization process which aims at minimizing the “size” of the misfit
between the model and the data;

θ̂ = arg min
θ

∑
i

`(Yi −m(Xi , θ)), (4.2a)

m̂(x) = m(x, θ̂). (4.2b)

Although this approach has the appealing feature of giving a high degree of data compres-
sion once the parameters are tuned to fit the data, it seems both inefficient and unnecessary
to waste a large amount of calculations to optimize a model which is valid over the entire
regressor space, while it in most cases, especially in higher regressor dimensions, is more
likely that we will only visit a very restricted subset of it. Furthermore, the minimization
problem (4.2) is for general model structures typically non-convex and will have a number
of local minima which make the search for the global minimum hard.

4.2 The Model-on-Demand Idea

Inspired by ideas both from local modeling and database systems technology, we have
taken a conceptually different point of view. We assume that all available observations are
stored in a database, and that models are built dynamicallyon demandwhen the actual
need arises. The main idea is as follows: When there is need for a model at (or around)
a certain operating pointx, relevant data is retrieved from the database, and a modeling
operation is performed on that subset, see Figure 4.1. For this concept we have adopted
the namemodel-on-demand, MOD.

The key issue here is of course what to be defined as relevant data. In accordance with
the nonparametric methods in Chapter 3 the most natural choice is to consider the data
belonging to a small neighborhood around the operating point, but it is clear that other
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x m̂(x)MOD-estimator

Database
(Yi , Xi )

Figure 4.1 The model-on-demand idea: A subset of relevant data is retrieved from
the database, and is used to compute an estimate ofm(x).

more arbritrary relevance measures also can be considered. Chapter 5 will give examples
of this.

In earlier contributions (see, for instance, Stenmanet al. (1996), Stenman (1997) and
Stenmanet al. (1997)) we used the namejust-in-time models, a term coined by Cybenko
(1996). However, to avoid confusion with Cybenko’s slightly different approach, we de-
cided to change the name.

Compared to global methods, an advantage with the model-on-demand idea is that the
model tuning is optimized locally at the pointx, and that this optimization is performed
independently of the results obtained at other locations. This increases the flexibility and
might improve the performance. In addition, since the estimation is deferred until query
time, there are neither no problems with adding new observations to the database. This is in
contrast to global modeling approaches, where the model in general has to be recomputed
when new data arrives.

A potential drawback with the approach, though, is the computational complexity, both
since it is required to search for a neighborhood ofx in a multidimensional regressor space,
and since the derived estimator is quite computationally intensive. This follows from
the fact that each demanded prediction in practice gives rise to an independent estimation
problem like (4.2) and that the obtained model information is discarded between subsequent
queries. In this work though, we will mainly focus on the properties of the modeling part
of the problem. Computational issues and data management and storage topics will be just
briefly discussed in the end of the chapter.

Before commencing a more detailed treatment of the model-on-demand concept, we
will introduce some basic assumptions and notations that will be used throughout the
chapter. We assume that the data are generated according to (4.1), whereXi ∈ Rd and
Yi ∈ R, and thatεi denotes independent, identically distributed random variables with zero
means and variancesσ 2

i . We further assume that the true regression functionm(·) is at
least twice differentiable.
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x

�k(x)

Regressor space

Figure 4.2 The data belonging to a local neighborhoodofx are used for estimation.
The shape of the neighborhood�k(x) is depending on which distance function is
used.

4.3 Model-on-Demand Estimators: Possibilities

When performing the localized modeling operation discussed in the preceeding section, it
is clear that this can be done in a quite arbritrary way and that a wide range of solutions
is possible. The simplest approach is perhaps to use a nearest neighbor estimator, but
this normally becomes unsatisfactory because of the presence of noise in the observations.
A natural remedy is to consider a more sophisticated modeling approach like (4.2) and
incorporate aweighting in the criterion so as to localize the functional approximation
aroundx. That is,

β̂ = arg min
β

∑
i∈�k(x)

`(Yi −m(Xi , β))wi (x), (4.3a)

m̂(x) = m(x, β̂). (4.3b)

To be consistent with the notation in Chapter 3, we have here replacedθ with β. Moreover,
wi (x) denotes the weights (which we soon shall return to), and the symbol�k(x) is used
to denote the index set for a neighborhood ofx containingk samples, i.e.,

�k(x)
1= {i1, . . . , i k} = {i : d(Xi , x) ≤ h} (4.4)

for someh ∈ R and some suitable scalar-valued distance functiond(·, ·), see Figure 4.2.
The parameterh can in this context be interpreted as a scalar smoothness or “bandwidth”
parameter, which determines the radius of the neighborhood.

4.3.1 Choice of Local Model Structure

In general, there are no limits on what model structure can be used as local model in (4.3),
and in principle it is possible to adapt all the global modeling approaches from Chapter
2 to the local framework. However, it is well known that models that are linear in the
unknown parameters, such as local polynomials, are easier to estimate than more general
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model structures. Since the parameter estimation cost is a significant part of the total
computational cost for each prediction, this is an important benefit.

In order to get an reasonable trade-off between approximation error and computational
complexity, we shall therefore in the sequel of the chapter mainly concentrate on the local
linear and localquadraticmodel structures. Then, and if the quadraticL2 norm is used,
the localized fitting criterion (4.3) reduces to

β̂ = arg min
β

∑
i∈�k(x)

(
Yi −BT (Xi − x)β

)2
wi (x), (4.5a)

m̂(x) = β̂0, (4.5b)

which can be solved efficiently and explicitly by means of standard weighted least squares.
Here, as in previous chapters,

β = (β0 β1 . . . βp
)T

denotes the parameter vector, andB(Xi − x) will represent the vector of basis functions
for the polynomial model. That is,

B(Xi − x) = (1 (Xi − x)T
)T

for the local linear case wherep = 1+ d, and

B(Xi − x) = (1 (Xi − x)T vechT ((Xi − x)(Xi − x)T
))T

,

for the local quadratic ditto wherep = 1+ d+ d(d+ 1)/2. In the latter case the notation
vech(A) denotes thevector-half of the symmetric matrixA, i.e., the vector obtained by
stacking the columns of the matrixA above each other, and eliminating the above-diagonal
entries (Henderson and Searle, 1979).

If the distribution of the noise termεi is known, it is of course possible to replace
the least-squares estimator (4.5) with a local likelihood counterpart. However, since the
parameter estimation then has to be performed by numerical search methods, this approach
is undesirable for general situations because of the computational complexity.

4.3.2 Selecting the Weights

A very important feature that completely distinguishes the local modeling (4.3) from its
global counterpart (4.2) is the choice of weighting,wi (x). We shall in this chapter study
two different approaches for weight selection. The first one, which will be treated in Section
4.4, is based onlocal polynomialtechniques from Chapter 3 and assumes that the weights
are implicitly specified by a kernel. The second approach, which will be studied in Section
4.5, instead relies upon adirect optimization schemethat determines the weight sequence
explicitly.
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4.3.3 Related Approaches in the Literature

As pointed out in Chapters 1 and 3, the idea of local modeling with polynomial models is
not a new concept. Various local approaches have been studied for a long time within the
statistical community, although there almost always seems to have been global assumptions
and considerations in some step of the estimation procedure. However, adaptive methods
have gained a significant interest in recent years, and the development of them still seems
to be an open and active research area, see for instance Fan and Gijbels (1996) and the
references therein.

In the fields of artificial intelligence and machine learning, similar nonparametric ideas
were rediscovered and developed by Atkeson and Reinkensmeyer (1988), Aha (1989)
and Bottou and Vapnik (1992), and have successfully been used under the nameslazy
learning and least commitment learningfor robot learning and control (Atkesonet al.,
1997a; Atkesonet al., 1997b).

4.4 MOD-estimation using Local Polynomial Regression

As a start of our modeling efforts we will in this section study how the local polynomial
ideas from Chapter 3 can be utilized in the model-on-demand framework. By adapting the
multivariable kernel methods to the local modeling problem, a natural approach is to let the
smoothing weights in (4.5a) be explicitly defined by a multivariable kernel function, that
is,

wi (x) = K H (Xi − x) = 1

|H |K
(

H−1(Xi − x)
)
. (4.6)

The main difference with this approach in theMOD framework as compared to the statistical
setting reviewed in Chapter 3, however, is that we do not want to assign weights globally to
the entire data set, rather just consider the local data belonging to the neighborhood�k(x).
In addition, we would like to perform the weight tuning locally atx without taking into
account estimation results at other locations.

As discussed in Section 3.8, the general kernel approach (4.6) with a full bandwidth
matrix will usually result in a quite large number of smoothing parameters to choose. In
order to reduce the complexity, we will therefore concentrate on the single bandwidth
caseH = h · I , and the radial construction (3.66) but with a more general vector norm.
It is convenient to decompose the weighting scheme that thus follows into two separate
mappings; one that maps the local data to distances,

d(Xi , x) = ‖Xi − x‖M , (4.7)

where‖ · ‖M denotes a scaled vector norm, and another that maps the scaled distances to
weights,

wi (x) = K

(
d(Xi , x)

h

)
, (4.8)
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whereK (·) is a scalar kernel function of the kind described in Section 3.2.1. (We have
here ignored the normalizing constant since it in fact does not affect the fit). In terms of
the general formulation (4.6), this effectively means that we obtain a bandwidth matrix of
the type

H = h ·M−1/2. (4.9)

It turns out that the choice of distance function is a very important design issue. Let us
therefore discuss this topic further.

4.4.1 Distance Functions

Local polynomial regression depends in the multivariable setting critically on the distance
functiond(Xi , x) through the weightingwi (x). The relative importance of the regressor
components in generating the distance measurement depends on how the regressors are
scaled, i.e., how much they are stretched or shrunk. (Note that we here will use the term
scalingfor this concept, since the termweightingin the local modeling setting is reserved
for the contribution of different measurements in the loss function (4.5a)).

In general, there are many ways to define and use distance functions. However,
commonly used choices in the context of local modeling typically include (Atkesonet
al., 1997a):

• Global distance functions: The same distance function is used over the entire
regressor space and is chosen in advance of the queries.

• Local distance functions: Different distance functions are used in different parts of
the regressor space. This type of distance function can be further divided into the
following subclasses:

◦ Query-based distance functions: The scaling that defines the distance func-
tion is set on each demanded prediction by optimizing some goodness-of-fit
measure such as cross-validation. This approach is sometimes referred to as
uniform metricand has been discussed in Stanfill and Waltz (1986).

◦ Point-based distance functions: Each stored data point has associated with it
a distance functiondi (Xi , x). The optimization procedure (4.5a) uses different
distance functions for each pointXi , and they are normally chosen in advance
of the queries and stored together with the data. This is sometimes referred to
asvariable metric(Stanfill and Waltz, 1986).

In case that the distance function is defined according to (4.7), it is entirely determined
by the scaling matrixM . Then altering the elements inM will change the shape and the
orientation of the neighborhood�k(x), which might affect the accuracy of the predic-
tion. Possible choices of distance functions for continuous, real-valued regressor variables
include (Atkesonet al., 1997a):

• Euclidean distance:

d(Xi , x) = ‖Xi − x‖ =
√
(Xi − x)T (Xi − x), (4.10)



54 Chapter 4 Model-on-Demand

whereM is the identity matrix.

• Diagonally scaled Euclidean distance:

d(Xi , x) = ‖Xi − x‖M =
√
(Xi − x)T M (Xi − x), (4.11)

whereM is a diagonal matrix,M = diag(m1,m2, . . . ,md), with mi ≥ 0.

• Fully scaled Euclidean distance:

d(Xi , x) = ‖Xi − x‖M =
√
(Xi − x)T M (Xi − x), (4.12)

where the matrixM is full and positive semidefinite.

The diagonal distance function (4.11) transforms the radially symmetric distance function
(4.10) into an axis parallel ellipse, see Figure 4.3 (a)–(b). By also allowing cross-terms as
in (4.12) it is possible to make the ellipse arbritrary oriented. See Figure 4.3 (c).

(a) (b) (c)

Figure 4.3 Different distance functions. (a) Euclidean distance. (b) Diagonally
scaled Euclidean distance. (c) Fully scaled Euclidean distance.

Selecting the scaling matrixM is very important, especially when the regressor com-
ponents have very different magnitudes. An obvious default choice for a global distance
function (which will be adopted here) is to make it proportional to the inverse covariance of
the regressors. This provides a natural normalization with respect to the standard deviation,
so that each regressor component has roughly the same influence on the distance measure.

Cleveland and Grosse (1991) point out that zeroing out an entire column of the scaling
matrix corresponds to making the model global in a certain direction. They refer to this
as aconditionally parametricmodel. This approach can in some situations be useful
to combat thecurse-of-dimensionalityintroduced in Chapter 3, since the locality of the
function approximation then is reduced.
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4.4.2 Computing the Local Estimate

For notational simplicity in the remainder of the section, it is convenient to introduce local
versions of the matrix quantities defined in Section 3.2.3. Let

yk
1= (Yi1, . . . ,Yik )

T , (4.13)

and introduce the local design matrix of basis functions

Xk
1=
BT (Xi1 − x)

...

BT (Xik − x)

 . (4.14)

Furthermore, letWk denote the local weight matrix,

Wk
1= diag(wi1(x), . . . , wik (x)). (4.15)

The solution to the local polynomial modeling problem (4.5a) is thus (analogous to (3.13))
obtained as the weighted least squares solution

β̂ =
(
XT

k WkXk

)−1
XT

k Wkyk (4.16)

i.e., the local estimate (4.5) can be written in the linear smoother form

m̂(x, k) = wT
k yk, (4.17)

with weights

wT
k
1= (Wi1(x) . . . Wik (x)

) = eT
1

(
XT

k WkXk

)−1
XT

k Wk. (4.18)

The key problem here is of course to determine which data the local estimate should be
based on. However, since we by support of the model-on-demand idea only are interested
in optimizing the predictionlocally at the current operating pointx, it seems natural to aim
at minimizing the pointwise MSE measure of the estimator (4.17) subject to the size (and
possibly also shape) of the local neighborhood�k(x). Recall from Chapter 3 that the MSE
measure is defined by the expression

MSE
(
m̂(x, k)

) = E
(
m̂(x, k)−m(x)

)2 (4.19)

and that it can be decomposed into a squared bias term (increasing ink) and a variance
term (decreasing ink). In a computational sense this raises demand for an “algorithm” of
the following fashion:

Start initially with a small neighborhood, just containing as much data
as the least squares solution (4.16) is well conditioned, and expand it
with more and more observations until a reasonable trade-off between
bias and variance is obtained.

In practice, this can be achieved by means of localized versions of the bandwidth
selection procedures in Section 3.4. This will be described more in detail in Section 4.4.5.
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4.4.3 Regularization

A potential problem that may occur when solving for the weighted least squares estimate
(4.16) is that the data is distributed in such a way that the information matrixXT

k WkXk

is nearly singular. The most common situation involves a discrete regressor variable, so
that the neighborhood only contains data points lying on one or two lines. If there are
not enough neighboring point with non-zero contributions in all directions of the regressor
space, there are not enough equations to solve for the parameters of the local polynomial. A
possible solution isregularizationor ridge regression(Draper and Nostrand, 1979; Draper
and Smith, 1981), which instead of (4.16) uses

β̂ =
(
XT

k WkXk +3
)−1 (

XT
k Wkyk +3β̄

)
(4.20)

when solving for the parameter vectorβ. Here3 is a diagonal matrix with small positive
elementsλ2

i ;

3 = diag(λ2
0, . . . , λ

2
p), (4.21)

andβ̄ is an expectation of the parameter estimate (often taken as a vector of zeros). Since
the least squares solution (4.16) corresponds to solving the over-determined system of
equations

W1/2
k Xkβ ∼=W1/2

k yk.

This is equivalent to adding “fake” observations, i.e.,(
W1/2

k Xk

31/2

)
β ∼=

(
W1/2

k yk

31/2β̄

)
which, in the absence of informative real data, biases the estimate againstβ̄ (Draper and
Smith, 1981; Atkesonet al., 1997a). From a Bayesian estimation perspective, this can
justified if the extra terms added to (4.20) in some way or another reflect the assumeda
priori distributions of the estimated parameters.

Cleveland and Grosse (1991) have considered another approach in their implemen-
tation of the LOESSpackage. They compute the solution to (4.16) using singular value
decomposition (SVD), and set small singular values to zero in the computed inverse. This
“pseudo-inverse” approach is equivalent to eliminating directions with limited data support
from the local model.

4.4.4 Incorporating Variance Information

If the variances of the observations are knowna priori, it is from a maximum-likelihood
viewpoint natural to modify the least squares criterion (4.5) to incorporate the variance
information as an extra weightingvi = 1/σ 2

i . That is,

β̂ = arg min
β

∑
i∈�k(x)

(
Yi −BT (Xi − x)β

)2
wi (x) · vi , (4.22a)

m̂(x) = β̂0. (4.22b)
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The solution to the least squares problem (4.16) is changed accordingly;

β̂ =
(
XT

k WkVkXk

)−1
XT

k WkVkyk, (4.23)

where

Vk
1= diag(vi1, . . . , vik ) = diag

(
1/σ 2

i1, . . . ,1/σ
2
ik

)
. (4.24)

4.4.5 Local Model Assessment

The computational procedureoutlined in the end ofSection 4.4.2 raises the need formethods
that estimate the MSE or similar measures. In Chapter 3,a number of classical goodness-of-
fit criteria for selecting smoothing parameters, such as cross-validation, generalized cross-
validation andCp, were described. A problem with them in their original formulations,
however, is that they are evaluated globally using estimates computed at different locations.
In the model-on-demand framework it is more desirable to perform this assessment locally,
since we would like to keep the estimate atx independent (in a computational sense) of
the estimates at other points. Fortunately, it turns out that this can be achieved by means
of localizedversions of the above mentioned methods.

For a fixedx, consider a local polynomial fit usingk neighbors. Let as usualβ̂ = β̂(x)
denote the fitted coefficients, and let

m̄(Xi , k)
1= BT (Xi − x)β̂, i ∈ �k(x), (4.25)

denote the estimated local polynomial within the neighborhood�k(x) centered atx. The
idea is now to replace the separately fitted valuesm̂(Xi , k) in the global methods with the
values of (4.25) when forming the goodness-of-fit functions, and weight their influences
with the smoothing weightswi (x) in order to emphasize the locality (Cleveland and Loader,
1994; Fanet al., 1996).

Let us for the sake of completeness now present localized versions of the methods in
Section 3.4.1. Which is the best is much depending on the application, although some
of them have more appealing properties than others. We will leave this choice as an user
option in the algorithms that follow.

Localized Cross-validation

The localized weighted version of the cross-validation criteria (3.43) is,

CV(x, k)
1=
∑

i∈�k(x) wi (x) (Yi − m̄−i (Xi , k))2∑
i∈�k(x) wi (x)

, (4.26)

wherem̄−i (Xi , k) denotes the leave-i -out local model fitted atx and evaluated atXi , and
wi (x) are the smoothing weights. The weighting (4.26) guarantees that the residuals close
to x receive larger attention in the criterion than those located far away. As in the global
case, there is a short-cut so that the leave-out residuals

ε
(−i )
i

1= Yi − m̄−i (Xi , k) (4.27)
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can be computed from the local residuals,εi = Yi − m̄(Xi , k), without recalculating the
regression parameters for each excluded point. This follows from the relation

ε
(−i )
i = εi

1− infl(x, Xi )
, (4.28)

where thelocal influence function(Loader, 1997) is defined according to

infl(x, Xi )
1= BT (Xi − x)

(
XT

k WkXk

)−1
B(Xi − x)wi (x). (4.29)

We thus end up with the expression

CV(x, k) = 1

tr(Wk)

∑
i∈�k(x)

wi (x)

(
Yi − m̄(Xi , k)

1− infl(x, Xi )

)2

. (4.30)

Localized Generalized Cross-validation

Recall from Chapter 3 that generalized cross-validation was obtained from cross-validation
by replacing the influence function with its mean value. The locally weighted average of
the influence function in equation (4.29) is∑

i∈�k(x) wi (x) infl(x, Xi )∑
i∈�k(x) wi (x)

= 1

tr(Wk)
tr

((
XT

k WkXk

)−1
(XT

k W2
kXk)

)
. (4.31)

By replacing the influence values in (4.30) with this quantity,one obtains a local generalized
cross-validation statistics similar to the global case. That is,

GCV(x, k)
1= tr(Wk)

∑
i∈�k(x) wi (x) (Yi − m̄(Xi , k))2

tr(Wk)− tr
((

XT
k WkXk

)−1
XT

k W2
kXk

)2 . (4.32)

LocalizedCp

A local version of MallowsCp criterion (3.53) can be obtained by considering the localized
risk function

R(x, k) =
∑

i∈�k(x) wi (x)E (m̄(Xi , k)−m(Xi ))
2 /σ 2

i∑
i∈�k(x) wi (x)

. (4.33)

Performing similar manipulations as in Section 3.4.1 and allowing an arbritrary penalty
α ≥ 2 on the variance term to prevent the criterion to find spurious features for small
neighborhoods, one obtains the local generalized MallowsCp with variance penaltyα
(Cleveland and Loader, 1994);

CP(x, k)
1= 1

tr(Wk)

( ∑
i∈�k(x)

wi (x)

σ 2
i

(Yi − m̄(Xi , k))
2 − tr(Wk)

+ α tr
(
(XT

k VkWkXk)
−1XT

k W2
kVkXk

))
, (4.34)
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whereVk as in (4.24) is a diagonal matrix with entries 1/σ 2
i . Note that this criterion requires

that the noise variance is known or estimated from data.

Localized AIC

A localized variant of the AIC criterion in Chapter 3 can be obtained by replacing tr(H)
with a local degrees-of-freedom measure. The local weighted average of the influence
values is given by (4.31). In accordance with (3.47) we hence obtain

AIC(x, k)
1=
∑

i∈�k(x) wi (x)(Yi − m̄(Xi , k))2

tr(Wk)

× exp

α tr
((

XT
k WkXk

)−1
(XT

k W2
kXk)

)
tr(Wk)

 , (4.35)

whereα ≥ 2 similar to (4.34) provides an extra penalty on the variance term.

Localized FPE

As in the global case it is also possible estimate the prediction error using a localizedfinal
prediction errorcriterion

FPE(x, k)
1=
∑

i∈�k(x) wi (x)(Yi − m̄(Xi , k))2

tr(Wk)

×
2 tr(Wk)+ α tr

((
XT

k WkXk
)−1

(XT
k W2

kXk)
)

2 tr(Wk)− α tr
((

XT
k WkXk

)−1
(XT

k W2
kXk)

) . (4.36)

Here the quantity tr(H)/N in (3.49) has been replaced by (4.31).

Hypothesis Test

The methods described above are all variants of the cross-validation and penalizing ideas.
Bontempiet al. (1998) instead consider a hypothesis test approach when determining the
appropriate size of the local neighborhood. By introducing the vector of cross-validation
residuals for a model of sizek,

Ecv
k

1=
(
ε
(−i1)
i1

. . . ε
(−ik)
ik

)T
, (4.37)

they formulate the null hypothesisH0 that Ecv
k andEcv

k+1 belong to the same distribution.
WhenH0 is rejected is it assumed that the model of sizek + 1 is significantly worse than
the model of sizek, i.e., that a significant increase in modeling bias is detected.

The hypothesis is evaluated using a nonparametric permutation test, which assumes,
for eachi , that the residuals can be assigned to the two vectorsEcv

k and Ecv
k+1 with the

same probability. IfH0 is true, this is equivalent to the assumption that the difference1i
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between residuals at positioni in the two vectors, is to be as likely positive as negative. The
null hypothesisH0 is tested against some alternative hypothesisH1 by computing the value
D = ∑i 1i , and assuming thatD is an instance of a random variableD∗. The sampling
distribution forD∗ is estimated using a randomization procedure similar to the bootstrap
principle (Efron and Tibshirani, 1993), and a one-tailed test determines whether or not the
hypothesis has to be rejected.

In our opinion the hypothesis test seems to be too time-consuming to be a useful
alternative for applications with timing constraints.

4.4.6 Automatic Neighborhood-Size Selection

The localized goodness-of-fit criteria derived in the preceeding subsection provide us with
information of the quality of the fit for a given neighborhood sizek. This enablesadaptive
andautomaticdetermination of the most appropriate degree of smoothing in the following
way: Fit locally atx using a number of different neighborhood sizes,k, and and choose
the optimalk as the one that has the lowest cost for a given goodness-of-fit measure, i.e.,
the one that reflects a good balance between bias and variance. Let us for the sake of
illustrational clarity demonstrate this approach with a scalar example.

Example 4.1 Adaptive smoothing of the Dopler function

To show how the adaptive neighborhood size selection scheme works in practice, we con-
sider estimation of the so-calledDopler function,

m(x) = 20
√

x(1− x) sin

(
2π

1.05

x + 0.05

)
, x ∈ [0, 1],

which earlier has been used by Donoho and Johnstone (1994) in wavelet applications. It
has also been studied by Fan and Gijbels (1996) and Loader (1997).

A dataset{(Yi , Xi )} consisting ofN = 2048 points was generated according to the re-
gression model (4.1). The predictor variables was chosen to be equidistantly distributed
on [0,1] and the correspondingY’s were distorted by additive Gaussian noise with unit
variance. The resulting data are shown in Figure 4.4.

The regression curve was estimated on grid ofx-values using a local quadratic estimator
and the tricube kernel. The bandwidth was selected locally for each estimation point using
the localizedCp criterion (4.34) withσ̂ 2 = 1. The estimated result along with the true
regression curve shown in Figure 4.5 (a). The associated adaptively selected bandwidths
are shown in Figure 4.5 (b).

As expected the localizedCp criterion selects smaller bandwidths where the variability of
the true function is high, i.e., for smallx. For largex the true curve becomes smooth which
enables the possibility of using larger bandwidths there. ❏

A potential problem with the adaptive approach is clearly illustrated here: The selected
bandwidths are usually quite rough regarded as a function ofx. The curve in Figure 4.5
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Figure 4.4 The Dopler function dataset.

(b) represents a quite typical behavior in this context. However, this is the price that has
to be paid for the localization. A smoother, less variable bandwidth functionh(x) can be
achieved by averaging the goodness-of-fit measure over neighboring points in a MISE-like
way, but this will in general increase the computational burden. Another possibility is
to increase the penaltyα on the variance term in the bandwidth selection criteria as was
demonstrated in Section 4.4.5.

4.4.7 Minimizing Goodness-of-Fit Measures

The adaptive method outlined in the preceeding subsection requires that local fits are com-
puted for a number of different neighborhood sizes, and that the one with the lowest
goodness-of-fit cost provides the final choice ofk.

Computing estimates at a large number of neighborhood sizes using a novel implemen-
tation of (4.16) can be a very time consuming task, though. Considerable speedups can
be obtained using updating ideas when computing the estimate or using exponential step
length for the bandwidth as we shall see next.

Uniform or Exponentially Decaying Kernels: RLS

When using auniformor exponentially shapedweighting function, i.e., when consecutive
weights are related through the property

wi (x) = λi · wi−1(x), (4.38)

the parameter estimatêβ following from (4.16) can be efficiently computed for increasing
neighborhood sizes by means of the recursive least squares (RLS) algorithm, see, e.g.,
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Figure 4.5 (a) Estimated function values (circles) and true function (solid) for the
Dopler example. (b) Locally selected bandwidths.

Ljung (1999);

β̂(k) = β̂(k−1) + Lk

(
Yk −BT (Xk − x)β̂(k−1)

)
, (4.39a)

Lk = PkB(Xk − x)

λk +BT (Xk − x)Pk−1B(Xk − x)
, (4.39b)

Pk = 1

λk

(
Pk−1 − Pk−1B(Xk − x)BT (Xk − x)Pk−1

λk +BT (Xk − x)Pk−1B(Xk − x)

)
, (4.39c)

whereβ̂(k) denotes the estimate based onk data. According to Gustafsson (1992, Appendix
B.3), the sum of squared residuals can also be updated incrementally as the neighborhood
grows, since,

k∑
i=1

(
Yi −BT (Xi − x)β̂(k)

)2 + (β − β̂(k))T P−1
0 (β − β̂(k))

=
k∑

i=1

(
Yi −BT (Xi − x)β̂(i−1)

)2

BT (Xi − x)Pi−1B(Xi − x)+ λk
, (4.40)

whereP0 denotes the covariance matrix for the initial estimateβ̂(0).
By utilizing these expressions, both the parameter estimate and the goodness-of-fit

measures described in Section 4.4.5 can be computed rather efficiently for consecutive
neighborhood sizes. However, as already pointed out in Section 3.2.1, the uniform weight-
ing function suffers from some unsuitable properties that motivate avoiding it: As new
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observations are brought into the expanding neighborhood, they are assigned the same
weight as the old, accumulated measurements. This normally results in large variability,
both in the estimate and in the goodness-of-fit measure. However, this variability can be
reduced by using weighting functions that smoothly decay to zero, such as the tricube
kernel (3.9).

General Kernels: Exponential Updating

The updating methodologyworks when the weightingwi (x) is constant or decays exponen-
tially. When using general kernels, the weights typically change with the location of data,
and updating cannot be used. Brute force computation of estimates and goodness-of-fit for
a large number of neighborhood sizes at each prediction pointx using the weighted least
squares formula (4.16) can be very expensive in terms of computational effort. In addi-
tion, the computational cost for this increases drastically as the neighborhood size grows.
A remedy is to update the neighborhood size (or the bandwidth) exponentially during the
minimization stage. In the LOCFIT implementation, Loader (1997) considers the following
approach for local, adaptive bandwidth selection:

Step 1: Fit at a very small bandwidthh0, close to the smallest bandwidth for which a
well defined estimate is obtained.

Step 2: Increase the bandwidth exponentially according to

hi = Ch · hi−1,

whereCh > 1, and compute the corresponding fits. This procedure is repeated
until a goodness-of-fit measure fails at a low significance level.

Step 3: At the bandwidth with lowest goodness-of-fit cost in Step 2, perform a finer
search for the final bandwidth.

Loader (1997) suggests taking

Ch = 1+ 0.3

d
, (4.41)

whered, as usual, denotes the dimension of the regressor space. This results in smaller
updates of the bandwidth as the dimension grows, which seems reasonable.

Example 4.2

Consider again the Dopler dataset treated in Example 4.1. Since the tricube kernel was used
as weighting scheme in this case, we have to resort to the exponential updating approach
outlined above for speeding up the estimation. TheCp-values forx = 0.3 as function of
the bandwidthh is shown in Figure 4.6.

The plot indicates that the minimizing bandwidth is located somewhere aroundh = 0.023
which corresponds to

k = 2 · 0.023· 2048≈ 90

neighboring data points. ❏
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Figure 4.6 Values of theCp criterion when estimating the dopler function in Ex-
ample 4.1 atx = 0.3.

4.4.8 Noise Variance Estimation

In some situations it might be required to estimate the noise variance. A standard estimate
of the noise variance in parametric modeling is (see, e.g., Ljung (1999, Lemma II.1));

σ̂ 2 =
∑

i (Yi −m(Xi , θ))
2

N − dim θ
=

1
N

∑
i (Yi −m(Xi , θ))

2

1− dimθ
N

(4.42)

By replacing the average of the squared residuals and the degrees-of-freedom measure,
dimθ , in (4.42) with their local counterparts, we obtain the local noise variance estimate

σ̂ 2(x) =
∑

i wi (x) (Yi − m̄(Xi ))
2

tr(Wk)− tr
((

XT
k WkXk

)−1
(XT

k W2
kXk)

) , (4.43)

which is also consistent with (3.55). It is easily shown that (4.43) reduces to (4.42) in case
of uniform weighting, i.e., whenwi (x) = 1/N. As noted by Fan and Gijbels (1996), the
expression (4.43) is valid only under the assumption thatm̄(x) is unbiased. This is rarely
the case, so variance estimates are usually computed using small neighborhoods where the
bias is small.

Estimates of the noise variance are useful when using theCp criterion, and when
computing approximate confidence bands as will be discussed in Section 4.7. Another
application that needs this quantity will be presented in the next section.

4.4.9 Summary

To summarize all the different aspects of local polynomial estimation that have been dis-
cussed so far in this chapter, we now propose an algorithm that is possible to use as
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estimation procedure in the model-on-demand context.

ALGORITHM 4.1 Model-on-demand estimator based on local regression

Inputs: A database of observations{(Yi , Xi )}Ni=1, an estimation pointx, and specifications
in terms of polynomial order, kernel, distance functiond(Xi , x) on the regressor space,
and goodness-of-fit measure.
Outputs: An estimatem̂(x), an estimate of its variance, and an estimate of the noise
varianceσ̂ 2(x).

Step 1: Retrieve relevant data from the database and sort them in ascending order ac-
cording to the distance fromx.

Step 2: Perform model fits according to (4.5a) for increasing neighborhoods�k(x) and
record the parameter valuesβ̂(k) along with the corresponding goodness-of-fit
cost. This procedure is repeated until the goodness-of-fit measure fails at a low
level of significance or a maximum neighborhood sizekmax is exceeded. For
general kernels the neighborhood radius is updated in an exponential manner,
otherwise the recursive updating (4.39) is used.

Step 3: Search for the neighborhood sizekopt with lowest cost according to the stored
goodness-of-fit values from Step 2.

Step 4: From the corresponding parameter vector valueβ̂(kopt), extract and return the
estimatem̂(x) as shown in equation (4.5b). The noise varianceσ̂ 2(x) is obtained
from (4.43) using a small neighborhood, and Varm̂(x) = σ̂ 2(x)wT

k wk.

Here the tricube kernel is used as default weighting. A default choice of distance function
is to select the scaling matrix according to the inverse covariance matrix of the regressors.
If variance information is available, a good choice for goodness-of-fit is theCp criterion
(4.34). Otherwise use theAIC or FPE measures defined in (4.35) and (4.36). Here the
penaltyα provides an extra degree of freedom in controlling the variability of the estimates.
The default value isα = 2. Increasing it normally results in a less variable estimate that
however may miss detailed features in data. ❏

Since the estimator is formed using standard local polynomial assumptions, its asymptotic
properties coincides with (3.70)–(3.72).

4.5 MOD-estimation from an Optimization Perspective

In the preceeding section we assumed that the weightswi = wi (x) were explicitly deter-
mined by a kernel function of fixed form and that the fit was tuned by optimizing the size
(and shape) of the local neighborhood. In this section we shall relax these assumptions
and take a completely different point of view. We will instead allow the the weights to be
unknown free variables, and optimize them in order to minimize the local MSE.

Consider again the local modeling procedure (4.3) with a local linear model structure
and a quadratic norm. Using the notations (4.13)–(4.15), the solution to the associated
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weighted least squares problem (4.5a) is given by

β̂ =
(
XT

k WkXk

)−1
XT

k Wkyk

=
( ∑

i∈�k(x)

wi B(Xi − x)BT (Xi − x)

)−1 ∑
i∈�k(x)

wi B(Xi − x)Yi

=
( ∑

i∈�k(x)

wi

(
1 (Xi − x)T

(Xi − x) (Xi − x)(Xi − x)T

))−1 ∑
i∈�k(x)

wi

(
1

Xi − x

)
Yi . (4.44)

If we for a moment assume that the weights satisfy∑
i∈�k(x)

wi = 1, (4.45a)∑
i∈�k(x)

wi (Xi − x) = 0, (4.45b)

this reduces to

β̂ =
(

1 0

0
∑

i∈�k(x) wi (Xi − x)(Xi − x)T

)−1( ∑
i∈�k(x) wi Yi∑

i∈�k(x) wi (Xi − x)Yi

)

=
1 0

0
(∑

i∈�k(x) wi (Xi − x)(Xi − x)T
)−1

( ∑
i∈�k(x) wi Yi∑

i∈�k(x) wi (Xi − x)Yi

)
. (4.46)

That is, the estimate can be written in the linear smoother form

m̂(x) = β̂0 =
∑

i∈�k(x)

wi Yi = wT yk, (4.47)

with

w 1= (wi1 wi2 . . . wik

)T
. (4.48)

The assumptions that were made in (4.45) can hence be justified, since they are consistent
with the property (3.22) for the equivalent weights, i.e., that linearity of the underlying
regression function is preserved.

4.5.1 Optimizing the Weights

As shown above, the local linear model reduces to a weighted average of the observations
belonging to the neighborhood,provided the weight sequence satisfies the conditions (4.45).
However, we have still not said anything about how to construct the actual weight sequence.

Since the prediction will be computed at one particular pointx, it is natural to investigate
the pointwise MSE measure (4.19) as a function of the weights, and on the basis of this
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determine how to choose the weights in order to minimize this measure. The MSE can as
earlier shown, be decomposed into a squared bias term and a variance term according to

MSE
(
m̂(x,w)

) = (b(x,w))2+ v(x,w). (4.49)

Here we have addedw as argument to the estimator (instead of as earlierh), to emphasize
the fact that the weights contained inw now are considered to be free variables.

Bias

Similar to the derivation in Section 3.3.2, the bias error of the linear smoother (4.47) is
given by

b(x,w)
1= E m̂(x,w)−m(x) = E

∑
i∈�k(x)

wi Yi −m(x)

=
∑

i∈�k(x)

wi
(
m(Xi )−m(x)

)
. (4.50)

By assuming thatm(·) is at least two times differentiable everywhere, it can be expanded
in a second order Taylor series expansion aroundx,

m(Xi )−m(x) = DT
m(x)(Xi − x)+ 1

2
(Xi − x)THm(x)(Xi − x)+ . . . , (4.51)

whereDm(·) andHm(·) denote the Jacobian (first order derivative vector) and the Hessian
(second order derivative matrix ofm) respectively. The first order moment ofXi − x
vanishes as a consequence of (4.45b). It thus follows that

b(x,w) ≈ 1

2

∑
i∈�k(x)

wi (Xi − x)THm(x)(Xi − x) = bT w, (4.52)

where

b 1= (Bi1 . . . Bik

)T
= 1

2

(
(Xi1 − x)THm(x)(Xi1 − x) . . . (Xik − x)THm(x)(Xik − x)

)T
. (4.53)

Variance

In analogy with the derivation i Section 3.3.3, the variance of the estimator is

v(x,w)
1= Var m̂(x,w) = E

( ∑
i∈�k(x)

wi εi

)2

= σ 2
∑

i∈�k(x)

w2
i = σ 2wT w. (4.54)
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Optimizing the Weights

When knowing the MSE of the estimator as a function of the weightsw,

MSE
(
m̂(x,w)

) = (bT w
)2 + σ 2wT w = wT (bbT + σ 2I )w, (4.55)

it seems reasonable to try to minimize this expression w.r.t.w under the constraints (4.45).
By means of the notation (4.14) for the local design matrix, the constraints can expressed

in compact form as

XT
k w = e1. (4.56)

We thus have the following optimization problem for the weights;

min
w

wT
(
bbT + σ 2I

)
w

subject to XT
k w − e1 = 0.

(4.57)

This is a quadratic optimization problem with linear constraints, and it can therefore easily
be solved as a linear system of equations. From basic calculus, we have the result that in
order to minimize an object function with respect to a constraint function, the gradients of
the two functions have to be parallel. By introducing so-calledLagrange multipliers,

µ
1= (µ0 µ1 . . . µp

)T
,

the constrained minimization of the MSE expression (4.57) can be stated in matrix form as

(
(bbT + σ 2I ) Xk

XT
k 0

)(
w
µ

)
=
(

0
e1

)
. (4.58)

This is a linear equation system ink+d+1 equations andk+d+1 variables, from which
the weightswi can be uniquely solved. Solving such a large equation system bybrute force
computations might seem to be a quite desperate thing to do. However, since the matrix
in (4.58) has a simple structure, the solution can fortunately be computed more efficiently.
From (4.58) we have (

w
µ

)
=
(

A Xk

XT
k 0

)−1(
0
e1

)
, (4.59)

whereA
1= (bbT +σ 2I ). From the block matrix inversion formula (Kailath, 1980), it then

follows that(
A Xk

XT
k 0

)−1

=
(

A−1− A−1Xk D−1XT
k A−1 A−1Xk D−1

D−1XT
k A−1 D−1

)
, (4.60)

where

D = XT
k A−1Xk. (4.61)
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Hence the weights can be computed as

w = A−1Xk D−1e1 = A−1Xk

(
XT

k A−1Xk

)−1
e1, (4.62)

where

A−1 = (bbT + σ 2I )−1 = 1

σ 2

(
I − bbT

σ 2 + bT b

)
(4.63)

follows from the matrix inversion lemma (Kailath, 1980):

(A+ BC D)−1 = A−1− A−1B(DA−1B + C−1)−1DA−1.

4.5.2 Properties of the Optimized Weight Sequence

It may be of interest to investigate how the second order derivative (Hessian) of the regres-
sion function and the noise variance affect the shape of the optimized weights in (4.62), both
when estimating at interior points and within the boundary regions of the regressor space.
For illustrational ease we will only consider scalar examples. However, generalization to
higher dimensions is straightforward and causes no conceptual difficulties.

Interior Point

In Figure 4.7 (a)–(c), a scalar example is shown, where three weight sequences centered
aboutx = 0 have been computed at 51 equidistantly distributed points, using a fixed noise
variance but with different values of the second order derivativem′′(0).

For a large value ofm′′(0), which corresponds to a regression function with a high
degree of curvature atx = 0, we see that the weight sequence gets narrow (Figure 4.7 (a)),
hence giving the measurements close tox = 0 a larger impact on the resulting estimate
than those far away from this point. On the other hand, for a small value ofm′′(0), which
is equivalent to an approximately linear regression function, the weight sequence tends to
weight all measurements almost equally (Figure 4.7 (c)).

In Figure 4.8 (a)–(c), the same experiment as in Figure 4.7 is repeated using a fixed
second order derivative but with different variances. As shown, a large variance, which
corresponds to a high degree of uncertainty in the measurements, results in a weight se-
quence that pays almost equal attention to all measurements (Figure 4.8 (a)). A smaller
variance, which means that the measurements are a little more reliable, again leads to a
narrow weight sequence that will favour the local measurements (Figure 4.8 (c)).

It is interesting to note that the narrow weight sequences in Figure 4.7 (a) and Figure
4.8 (c) take negative values near the boundary. This is in contrast to the equivalent weights
for the Nadaraya-Watson estimator and the local linear estimator, which always take non-
negative values during estimation at interior points of the regressor space. However, by
investigating the expression (4.62) for the optimized weights further, this can be explained
as follows: Inserting (4.62) into (4.47) yields

m̂(x) = wT yk = eT
1 (X

T
k A−1Xk)

−1XT
k A−1yk, (4.64)
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(b) m′′(0) = 0.1, σ2 = 0.1
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(c) m′′(0) = 0, σ2 = 0.1

Figure 4.7 Optimized weights for fixed noise variance, but using different second
order derivatives.

i.e., the estimate (4.47) can be thought as being given byβ̂0 in the weighted least squares
fitting problem,

β̂ = arg min
β

(yk − Xkβ)
T A−1(yk − Xkβ). (4.65)

The “weight” matrix A−1 given by (4.63) is symmetric and positive definite. Hence its
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(a) m′′(0) = 0.1, σ2 = 1
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(c) m′′(0) = 0.1, σ2 = 0.001

Figure 4.8 Optimized weights for fixed second order derivative, but using different
noise variances.

eigenvalues are real and positive, and its eigenvectors are orthogonal. Since

A−1b = 1

σ 2

(
b− bbT b

σ 2+ bT b

)
= 1

σ 2

(
1− bT b

σ 2 + bT b

)
b

= 1

σ 2

(
σ 2

σ 2+ bT b

)
b, (4.66)

it follows thatb is an eigenvector ofA−1 with eigenvalue

λb = 1

σ 2

(
σ 2

σ 2 + bT b

)
. (4.67)
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Let u ⊥ b denote one of the other eigenvectors ofA−1, and letλu be the corresponding
eigenvalue. Due to the orthogonality we then have

A−1u = 1

σ 2 u = λuu, (4.68)

i.e., sincebT b ≥ 0,

λu > λb. (4.69)

This can be interpreted as that residuals in the “direction”b, i.e., quadratic trends in the
data, will be penalized less than those in other directions. Hence the estimator (4.47) can
be seen as mixture between a local linear and a local quadratic smoother. By comparing the
optimized weights in Figure 4.7 (a) and Figure 4.8 (c) with the equivalent weights shown
in Figure 3.4 on page 32, this seems like a reasonable interpretation.

Boundary

In Figure 4.9 (a)–(c), the same experiment as in Figure 4.7 is repeated at the left boundary
of the regressor space. Similarly to the equivalent weights for the local linear and local
quadratic estimators displayed in Figures 3.5 (b) and 3.5 (c) on page 33, the optimized
weights adapt to eliminate boundary bias effects.

4.5.3 Computing the Weights

Estimation using the optimized weights derived in Section 4.5.1, can be interpreted as a
two-step procedure:

Step 1: Estimate the Hessian and the noise variance from the data belonging to the local
neighborhood�k(x).

Step 2: Compute the weights as the solution (4.62) to the constrained minimization
problem (4.57), and form the estimate as a weighted average of the local re-
sponses.

In the framework of local polynomial regression given in Chapter 3, this is a variant of a
plug-in method. However, in contrast to the methods proposed in the statistical literature,
we do not rely on asymptotic expressions in the estimate.

The Hessian and noise variance estimation in Step 1 can be performed using local
quadratic or local cubic regression in the same fashion as demonstrated in Section 4.4,
and hence we face the same problem of determining the appropriate size for the local
neighborhood�k(x).

4.5.4 An Optimization-based Algorithm

In the optimization framework we are now able to propose a four-step algorithm which can
be summarized as follows:
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(b) m′′(0) = 0.1, σ2 = 0.1
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(c) m′′(0) = 0, σ2 = 0.1

Figure 4.9 Optimized weights at the left boundary for fixed noise variance, but
when using different second order derivatives.

ALGORITHM 4.2 Model-on-demand estimator based on optimization

Inputs: A database{(Yi , Xi )}Ni=1, an operating pointx and a distance functiond(Xi , x)
on the regressor space.
Outputs: An estimatem̂(x), and estimates of its bias and variance.

Step 1: Retrieve relevant data from the database and sort the regressorsXi in ascending
order according to the distance fromx.

Step 2: Estimate the HessianHm(x) and the local noise varianceσ 2(x) from the neigh-
borhood�k(x). This can be achieved by means of Algorithm 4.1 and a local
quadratic model. The entries ofHm(x) is obtained from the lastd(d + 1)/2
elements ofβ̂(kopt), andσ̂ 2(x) follows from (4.43).
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Step 3: Use the result from Step 2 to compute weights

w = AXk

(
XT

k AXk

)−1
e1,

where

A = 1

σ 2

(
I − bbT

σ 2+ bT b

)
.

Step 4: Form the resulting estimate as a weighted average of the corresponding response
variables,

m̂(x) = wT yk.

A bias estimate is obtained from (4.52) and the variance follows from (4.54).

The default values for tuning is the same as for Algorithm 4.1. ❏

In comparison with Algorithm 4.1, Algorithm 4.2 may increase the accuracy even when
the functionm(·) is not purely quadratic. This will be demonstrated in Section 4.6.

4.5.5 Asymptotic Properties of the Optimized Weights

In analogy with the kernel case in Chapter 3, it might be interesting to investigate the
asymptotic properties of the optimization approach as the number of observations tends to
infinity. It turns out that the derivation becomes quite messy in the multivariable case, so
we choose to only perform the analysis for the scalar case. To be able to compare our result
with the corresponding asymptotic result for kernel estimators presented in Section 3.3, we
here consider the same design setting (i.e., fixed and equally spaced). The consistency of
(4.47) and the rate of which the MSE tends to zero as a function of the sample sizeN are
given in the following proposition, which was first stated in Stenman (1997).

PROPOSITION 4.1 Consider the fixed equally spaced design regression model

Yi = m(Xi )+ εi , i = 1, . . . , N

where Xi = i /N and εi are i.i.d. random variables with zero mean and varianceσ 2.
Furthermore, assume that the following hold:

(i) The second order derivativem′′(x) is continuous on[0, 1].
(ii) The neighborhood�k(x) containsk = kN data and is defined as in (4.4) with

d(Xi , x) = |Xi − x|.
(iii) The bandwidth parameterh = hN is a sequence satisfyinghN → 0 andNhN →∞

asN →∞.

(iv) The estimation pointx is located at the grid and is an interior point of the interval,
i.e.,x = l/N for some integerl satisfyinghN N ≤ l ≤ (1− hN)N.
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Letm̂(x) be a linear smoother according to (4.47) with optimized weights satisfying (4.45),
and let the neighborhood size be chosen according to

kN ' 2

(
15σ 2

(m′′(x))2

)1/5

· N4/5. (4.70)

Then

AMSE
(
m̂(x)

) = 3

4

(
(m′′(x))2σ 8

15

)1/5

· N−4/5. (4.71)

Proof Let hN be the bandwidth, i.e., the distance fromx that defines the neighborhood
�k(x). The number of data points belonging to�k(x) is thenk = kN = b2hN Nc.
The MSE was derived in Section 4.5.1 and is given by

MSE
(
m̂(x,w)

) ' (bT w
)2 + σ 2 ·wT w. (4.72)

Here the similarity follows as a consequence of the constraints (4.45) and a second order
Taylor expansion ofm(·) at x. However, the error made in the Taylor expansion vanishes
asymptotically sincehN → 0 asN →∞.

We now want to minimize the right hand side of (4.72) subject to the constraints (4.45).
This can be done by introducing a Lagrange functionL according to

L = 1

2
MSE

(
m̂(x,w)

)+ µ0 · (1Tw − 1)+ µ1 · (αT w) (4.73)

whereµi are Lagrange multipliers,1 denotes a vector consisting of all ones and

α
1= (αi1 . . . αik

)T = (Xi1 − x . . . Xik − x
)T
.

Taking partial derivatives of (4.73) results in

∂L

∂wi
= σ 2wi + (bT w)Bi + µ0+ αiµ1 = 0, ∀i , (4.74)

which is consistent with (4.58). Introduce the short-hand notation

κ = bT w (4.75)

for the bias error term in (4.72). Hence

wi = − 1

σ 2 (κBi + µ0 + αiµ1), (4.76)

and we get the equation system

1T w = − 1

σ 2
(κ · bT 1+ µ0 · kN + µ1 · 1Tα) = 1, (4.77a)

αT w = − 1

σ 2
(κ · bTα + µ0 · 1Tα + µ1 · αTα) = 0, (4.77b)

bT w = − 1

σ 2 (κ · bT b+ µ0 · 1T b+ µ1 · bTα) = κ. (4.77c)
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for κ , µ0 andµ1. The odd moments ofαi in (4.77) vanish asymptotically, since

1Tα =
∑

i∈�k(x)

(Xi − x) = O(kN/N) = O(hN)→ 0, (4.78)

and

bTα = m′′(x)
2

∑
i∈�k(x)

(Xi − x)3 = O(k3
N/N3) = O(h3

N )→ 0, (4.79)

asN→∞. For the even moments ofαi we have

1T b = m′′(x)
2

∑
i∈�k(x)

(Xi − x)2 = m′′(x)
kN/2∑
k=1

(
k

N

)2

' m′′(x)k3
N

24N2
, (4.80)

αTα =
∑

i∈�k(x)

(Xi − x)2 ' k3
N

12N2
, (4.81)

and

bT b = (m′′(x))2

4

∑
i∈�k(x)

(Xi − x)4 = (m′′(x))2

2

kN /2∑
k=1

(
k

N

)4

' (m′′(x))2k5
N

320N4
. (4.82)

See Appendix 4.A for the series formulas. Hence, when inserting equations (4.78)–(4.82)
into (4.77), the following asymptotic solution is obtained

κ = 30m′′(x)k2
Nσ

2 N2

720σ 2 N4 + (m′′(x))2k5
N

(4.83a)

µ0 = −9σ 2
(
(m′′(x))2k5

N + 320σ 2 N4
)

4kN
(
720σ 2 N4 + (m′′(x))2k5

N

) (4.83b)

µ1 = 0 (4.83c)

From (4.76) it now follows that

w = −σ−2(κ · b+ µ0 · 1+ µ1 · α) ' −σ−2(κ · b+ µ0 · 1). (4.84)

The variance error is thus given by

σ 2 · wT w ' −(κ ·wT b+ µ0 · wT 1) = −(κ2+ µ0). (4.85)
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Hence (4.72) gives

inf
w

AMSE
(
m̂(x,w)

) = −µ0 = 9σ 2
(
(m′′(x))2k5

N + 320σ 2 N4
)

4kN
(
720σ 2 N4 + (m′′(x))2k5

N

) . (4.86)

By substitutingkN from (4.70) we thus finally arrive at

inf
w

AMSE
(
m̂(x,w)

) ' 3

4

(
(m′′(x))2σ 8

15

)1/5

N−4/5, (4.87)

and (4.71) is proved. ■

Let us try to interprete the above result. The MSE formula in equation (4.86) is a
decreasing function ofkN , but for the given value (4.70) it has a stationary point. This can
be explained as follows: Ifm(x) is a quadratic function, i.e., the second order derivative
m′′(x) is constant for allx, the Taylor expansion will be valid over the entire interval. The
optimal neighborhood should thus be chosen askN = N. However, the Taylor expansion
is in most cases only valid locally, which requires thatkN < N in order to guarantee that
hN = kN

2N → 0 asN →∞. Thus the stationary point will provide a good choice ofkN .

From this result we can make the following observations: Equation (4.71) indicates that
the mean square error (MSE) tends to zero as the number of samplesN tends to infinity, i.e.,
the optimized weight sequence is a consistent estimator for the true regression function. It
also shows that the speed of which the MSE decays is in the order ofN−4/5, and that we
thus achieve the same rate of convergence for the optimization approach, as using a local
linear estimator with an Epanechnikov kernel. See Section 3.3.5 for comparison. From
(4.70) we have that in order to obtain this convergence rate, the neighborhood sizekN has
to be chosen in the order ofN4/5.

It is worth to point out that the result of the proposition, as in the kernel regression case,
is valid only whenx is an interior point of the interval. At the boundary the convergence
rate usually gets slower.

Random Design

As discussed in Stenman (1997), it is also possible to motivate that Proposition 4.1 also
holds for the random design case when the regressor variablesXi are uniformly distributed
on the interval[0, 1]. Then the sums in equations (4.78) through (4.82) can be approximated
with expectation according to∑

i∈�k(x)

(Xi − x)k ≈ kN · E(Xi − x)k,
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whereXi − x is uniformly distributed on[−hN, hN ]. From Appendix 4.B, it thus follows
that

kN · E(Xi − x) = 0,

kN · E(Xi − x)2 = kN
h2

N

3
= k3

N

12N2
,

kN · E(Xi − x)3 = 0,

kN · E(Xi − x)4 = kN
h4

N

5
= k5

N

80N4 .

Hence equations (4.78)–(4.82) still hold, which implies that the proposition is valid even
for the uniform random design case. Since all other distributions, at least locally, can be
viewed as uniform distributions, we have that the result to some extent also is applicable
for general random design settings.

Asymptotic Shape of the Weighting

It may be of interest to investigate the shape of the optimal weight sequence in theasymptotic
case. From (4.84) we have the expression

wi ' − 1

σ 2 (κ Bi + µ0) = −µ0

σ 2

(
1+ κ

µ0
Bi

)
= −µ0

σ 2

(
1+ κ m′′(x)

2µ0
(Xi − x)2

)
= Cw

(
1− δ

(
Xi − x

hN

)2
)
. (4.88)

with

δ = −κm′′(x)
2µ0

= 5

3

(m′′(x))2h3
N N

(m′′(x))2h3
N N + 10σ 2/h2

N

.

A plot of this function for the simple valuesCw = hN = 1, δ = 5/3 (corresponding
to σ = 0) andx = 0 is given in Figure 4.10 along with an unnormalized version of
the quadratic Epanechnikov kernel. Both functions are of parabolic shape, but while the
Epanechnikov kernel function is positive for allx in the interval, the optimized weight
sequence takes negative values for

|x| ≥ √ 3/5 ≈ 0.775.

This property is analogous to that of the equivalent weights for a local quadratic smoother
as shown in Section 3.2.5. Kernel functions with such properties are usually referred to as
higher order kernelsin the statistical literature (Fan and Gijbels, 1996). From equations
(4.88)and (3.8) we see thatδ = 1 results in an Epanechnikov-typeweight sequence. In fact,
this choice ofδ directly corresponds to both equation (3.38) evaluated for the Epanechnikov
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Figure 4.10 Asymptotic shape of the optimized weight sequence (solid) and the
Epanechnikov kernel (dashed).

kernel, and the stationary point (4.70). The interpretation is that a requirement of positive
weights results in a convergence rate corresponding to (3.37) and (4.71). A larger value of
kN givesδ > 1, i.e., both positive and negative weights. This will decrease the bias even
more and gives faster convergence. However, determining an exact expression for this rate
will require that higher order derivatives are taken into account in the analysis.

4.5.6 Optimal Norm

As with the weights it is also possible to optimize the norm (or, rather, the scalingM ) that
controls the distance function. Atkesonet al. (1997a) have after simulation studies found
that an optimal choice ofM for estimation at a pointx is proportional to the Hessian ofm:

M ≈ c ·Hm(x). (4.89)

That is, the norm adapts to the quadratic part of the true regression function. This is a quite
natural result.

4.6 Polynomial Regression Versus Optimization

It may be interesting to compare the optimized weights used in Algorithm 4.2 with those
obtained from Algorithm 4.1 or the local polynomial regression methods in Chapter 3. A
very useful tool for doing such comparisons is the concept of equivalent weights introduced
in Section 3.2.5.

Figure 4.11 illustrates the equivalent weights for the optimization approach and the
local linear estimator (3.15) combined with an Epanechnikov kernel, when estimating the
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function

m(x) = sin(2πx) (4.90)

at x = 0.27 using simulated data generated according to the standard model (4.1) with
N = 100, Xi = i /N andεi chosen as Gaussian distributed noise with standard deviation
σ = 0.05. The bandwidth is selected according to the AMISE measure (3.39) which results
in h = 0.1. The optimized weights are represented by the dashed line and the equivalent
local linear weights by the dashed-dotted line. The corresponding estimates are indicated
with a circle and a cross respectively.
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Figure 4.11 A comparison between the optimized weights and the equivalent local
linear weights, when estimating the function (4.90) atx = 0.27. (a) True regression
function (solid), simulated data (dots), optimized estimate (circle) and local linear
estimate (cross). The equivalent weights for the optimized estimator (dashed) and
the local linear estimator (dash-dotted) are also plotted. (b) Magnification of the
plot in (a).

A Monte-Carlo simulation, where the estimates are averaged over 1000 different noise
realizations, is shown in Table 4.1. For comparison a Nadaraya-Watson estimate of the type
(3.14) has also been included. As indicated, the optimized weights give a slightly better
result (about 10%) than the other two methods. We also see that the Nadaraya-Watson and
the local linear estimates coincide. As pointed out in Chapter 3, this will always be the
case when using fixed and equally spaced design, and whenx is an interior point of the
interval.

In Figure 4.12 the same experiment is repeated at the boundary pointx = 0. As shown,
the Nadaraya-Watson estimator results in a large bias error since the weights are always
positive (recall the discussion in Section 3.2.5). The optimized and local linear weights
which are allowed to take negative values give almost equivalent results.

The result of a Monte-Carlo simulation using 1000 iterations is summarized in Table
4.2. As indicated, the optimized and the local linear weights give essentially the same
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Method Absolute error
Optimized weights 0.064

Local linear estimator 0.070
Nadaraya-Watson estimator0.070

Table 4.1 Result of a Monte-Carlo simulation with 1000 iterations when estimating
the function (4.90) from data atx = 0.27.
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Figure 4.12 A comparison between the optimized, local linear, and kernel weights,
when estimating the function (4.90) at the boundary pointx = 0. True regres-
sion function (solid), simulated data (dots), optimized estimate (circle), local linear
estimate (cross), and Nadaraya-Watson estimate (star). The optimized weights
(dashed), the local linear weights (dash-dotted), and the Nadaraya-Watson weights
(dotted) are also plotted.

Method Absolute Error
Optimized weights 0.0091

Local linear estimator 0.0099
Nadaraya-Watson estimator0.178

Table 4.2 Result of a Monte-Carlo simulation with 1000 iterations when estimating
the function (4.90) from data at the boundary pointx = 0.
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prediction error near the boundary.
The conceptual difference between the optimization and kernel approaches can be

illustrated as in Figure 4.13. Here the horizontal axis represents the number of dataN

opt. N →∞

w ∈ RN

N∞

K ∗(·)
kernels


Figure 4.13 The relation between weight optimization and optimal kernels.

and the vertical axis all possible weight sequences. The Epanechnikov kernel represents a
subset of these sequences (represented by the thick line in the figure) and is optimal under
the assumption of an infinite number of data (Fan and Gijbels, 1996). The optimization
approach is performed for a finite number of data (the cross in the figure). However, when
the requirement of positiveness is put on the weights andN tends to infinity, the optimized
weights approach the Epanechnikov kernel. This was shown in Section 4.5.5. The fact that
the optimization is performed for a finite number of data might increase the accuracy. For
instance, for the simple example above we gained about 10%. However, the optimization
might in some situations be too time consumable to be usable in practice. Moreover,
it relies on additional quantities like the Hessian and the noise variance which have to
accurately estimated from data. This could be a problem in higher regressor dimensions
since a quadratic model then implies many parameters to estimate. The conclusion is
therefore that the optimization approach probably is to prefer only for a moderate number
of dimensions.

4.7 Pointwise Confidence Intervals

All estimation methods described in this chapter provide pointwise estimates for each
fitting point x. In certain situations, though, there might also be need for quantifying the
errors associated with each such estimate. A useful diagnostic tool for such purposes is the
concept ofconfidence intervals.

It is rather straightforward to deriveapproximate confidence interval for linear smoothers
like (4.17) and (4.47). From Section 3.3.3 we have that the variance of smoother can be
estimated as

v̂(x) = σ̂ 2(x)wT w = σ̂ 2(x)‖w‖2. (4.91)
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whereσ̂ 2(x) is an estimate of the noise variance obtained from for instance (4.43). Under
normality assumptions it is thus possible to obtain approximate(1− α)100% confidence
bands as

I (x) = (m̂(x)− λα/2 σ̂ (x)‖w‖, m̂(x)+ λα/2 σ̂ (x)‖w‖
)
, (4.92)

whereλα/2 denotes theα/2 quantile of the normal distribution. For the commonly used
requirement of 95% coverage it has the well-known value ofλ0.025= 1.96.

Note that equation (4.92) provides confidence intervals for the expected value Em̂(x).
To obtain true intervals form(x) some bias adjustment is required, see for example Fan
and Gijbels (1996). However, it turns out that it is quite cumbersome to estimate the bias,
so (4.92) provides a reasonable approximation. Consult Sun and Loader (1994) for more
discussion around this.

Example 4.3

Recall the Dopler function introduced in Example 4.1. Figure 4.14 shows the estimated
curve and 95% confidence intervals for a small part of the function. ❏
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Figure 4.14 Estimated Dopler function (solid line) and 95% confidence intervals
(dotted lines). The dashed line is the true function.

Another way of constructing confidence bands is based on thebootstrapprinciple (Efron
and Tibshirani, 1993). The idea is to determine the distribution ofm̂(x) empirically by
utilizing a resampling procedure that generates “fake” datasets with approximately the same
properties as the original data. An algorithm based on these ideas is given in Härdle (1990).
A severe drawback with this approach, however, is that the resampling and associated re-
estimation require large computational resources.
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4.8 Data Management

So far, we have not paid much attention to the dataset searching problem. The model-on-
demand idea relies on that neighboring data points can be retrieved in an easy and efficient
way in order to compute the local prediction. Recent versions of the proposed algorithms
are implemented in MATLAB (MathWorks, 1996) and use a sorting and searching routine
that is essentially equivalent to linear search. For real industrial applications with large
datasets, however, this is not acceptable.

Dataset searching is in general a problem since there are lack of good data structures
that allow nearest neighbors to be retrieved fast and efficiently. The best known searching
methods, such as thek-d tree approach described below, require a search that is exponential
in the dimension of the regressor space, and they effectively reduce tobrute-force, exhaus-
tive searches for dimensionsd greater than 20, on databases that consist of up to several
million samples (Cybenko, 1996). However, research interest for methods that perform
approximate neighborhood searching has been growing in recent years (Sadjadi, 1993).

4.8.1 k-d Trees

Thek-d tree(Bentley, 1975; Samet, 1990) is a particular data structure for storing multidi-
mensional data. The idea is to build up a tree structure by recursively dividing the regressor
space into smaller cells or boxes.

In the termk-d tree, the letterk denotes the dimensionality of the space being repre-
sented. In principle, it is a generalization of a binary search tree (Ahoet al., 1983), with
the distinction that at each level in the tree, different regressor components are compared
when determining in which direction a cut is to be made.

In the originalk-d tree formulation (Bentley, 1975), each data point is represented as
a node in the tree, and the discriminator, i.e., the regressor component to compare at a
certain level in the tree, is chosen cyclically from the regression vector. For instance, in
two dimensions (i.e., a2-d tree), thex1 coordinates are compared at the even levels in the
tree, and thex2 coordinates at the odd levels.

An extension of the above idea is theadaptive k-d tree(Friedmanet al., 1977). Here
the data points are stored only at the leaf nodes. Each interior node in the tree contains the
median of the regressor componentcurrently used as the discriminator. The discriminator is
normally chosen to be the regressor component which currently has the maximum spread.
All data points with values less than or equal to the discriminator are added to the left
subtree, and all data point with values greater than the discriminator are added to the right
subtree. This procedure is repeated recursively until only a few data points remain in each
cell, at which point they are stored as linked lists.

Example 4.4 The construction of an adaptive 2-d tree

Figure 4.15 (a)–(c) shows the construction of an adaptive2-d tree for a two-dimensional
dataset of 100 samples distributed according to the circles. Each dividing line is the median
for the discriminator with the largest spread, and is represented as a node in the tree. The
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(a) First level (b) Second level

(c) Fourth level

Figure 4.15 The construction of a 2-d tree. The data are bounded recursively until
a small number of data points remain in each box.

rectangular boxes obtained after a split represent the contents of the corresponding left and
right subtrees.

When a query for a neighborhood of a pointx occurs, only a subset of the nodes in the
tree need to be inspected, see Figure 4.16 which illustrates neighborhood search in a tree
of depth four. This greatly reduces the look-up time compared to linear search. ❏

Wide-spread software packages for nonparametric regression, such as as LOESSand
LOCFIT (Cleveland and Grosse, 1991; Loader, 1997), utilizek-d trees or similar tree struc-
tures for speeding up the estimation procedure. They essentially compute fits at the vertices
(i.e., corners) of the bounding boxes and interpolate the result at intermediate locations.
However, this approach assumes that the entire dataset is available and knowna priori
before estimation, and is therefore in a sense a global method.
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Moore et al. (1997) have adopted a similar idea for computing predictions more ef-
ficiently. At each node in thek-d tree they also store unweighted versions of the matrix
quantities needed for computing a fit (i.e.,XT

k Xk andXT
k yk) using all the data below the

node. By assuming that the weighting is approximately equal in some cells, they can
then utilize these pre-computed quantities to approximate the general formula (4.16). As
for the LOESSand LOCFIT implementations discussed above, this provides an efficient
way of computing fits, but requires that the entire dataset is processed in advance of the
queries. This requirement follows from the fact that the tree has to be re-balanced if new
measurements are inserted.

Figure 4.16 Only a subset of the leaf nodes need to be inspected in order to find
the nearest neighbors to the query pointx.

4.8.2 Database Systems and Query Languages

When working with huge data volumes, it would be more than desirable to make use of
a database management system, DBMS. In recent years, research on database systems in
the computer science area has resulted in powerful main memory database systems, which
enable very large volumes of data to be stored in the main memory of the computer (Garcia-
Molina and Salem, 1992). Provided underlying efficient data structures are available, parts
of the data can then be very easily retrieved by queries to the database system, formulated
in high level so-calledstructured query languages, SQL (Elmasri and Navathe, 1994).

We close this discussion by mentioning that recent versions of MATLAB provide inter-
faces to several commercial database managers in its so-calledDATABASE TOOLBOX. This
could be an interesting path to explore for future implementations of MOD-like approaches.
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4.9 Conclusions

This chapter has presented the concept ofmodel-on-demand. It is a “data mining” approach
that takes advantage of the ability of modern computers to collect and manipulate large
datasets. All observations are stored in a database and models are built “on demand”
when needed. The bias/variance trade-off inherent to all modeling is optimized locally by
adapting the number of data that contribute to the model and their relative weighting.

The model-on-demand idea provides a very flexible way of computing estimates, that to
some extent reduces the bias problem associated with global parametric fitting. In addition,
it provides the potential for performance rivaling that of global methods, while involving
less a priori knowledge from the user. This will be demonstrated in the following chapters,
where the algorithms are applied to several system identification problems. It is neither no
problems with adding more data: When new observations arrive, just insert them into the
database.

The price that has to be paid for the flexibility, however, is a more expensive lookup
and estimation procedure. For each demanded prediction, relevant data must be retrieved
from the database and a new local model must be formed. This of course limits the rate
at which predictions can be computed. An additional drawback is that desirable properties
like smoothness and statistical analyzability provided by parametric modeling are retained.

The local modeling associated with model-on-demand can be performed quite arbitrar-
ily. However, in order to keep things simple we have here adopted a weighted regression
approach similar to the methods described in Chapter 3. Two conceptually different ap-
proaches for weight selection have been discussed, where the first is based on traditional
kernel functions and the other relies on an explicit optimization stage. Furthermore, two
algorithms corresponding to these approaches have been presented and the asymptotic
properties for the optimization approach have been analyzed. It has been demonstrated
in simulations that the optimization approach might produce more accurate predictions.
However, it is at the same time more demanding in terms of computational efforts. For ap-
plications that require fast predictions, the approach based on ordinary weighted regression
might hence be to prefer.

It is clear the linear smoothing philosophy that the MOD approaches represent is related
to the concept ofradial basis networksdescribed in Section 2.2.2. This is for instance easily
seen by comparing the roles ofκ(·) andwi in equations (2.15), (4.17) and (4.47). The
main conceptual difference however, is that theκ(·) function in the radial basis approach
represents a true basis function that is used to build up the functional approximation. In
the nonparametric regression case, the weights are instead used to localize the function
approximation around the estimation point.

It may be discussed if the approach taken here to keep the data in quite “raw” form
is the best solution. Fast methods like LOESSand the approach of Mooreet al. (1997),
that preprocess the dataset, might be to prefer in order provide faster evaluation of each
prediction. However, this drastically reduces the flexibility since it is harder to include new
measurements. There is no good answer to this question and we leave it open for future
research.
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4.A Some Power Series Formulas

The expressions for the sums

Sk =
n∑

i=1

i k, k = 1, 2, 3, 4,

can be summarized as follows:

S1 =
n∑

i=1

i = n2

2
+ n

2
(4A.1)

S2 =
n∑

i=1

i 2 = n3

3
+ n2

2
+ n

6
(4A.2)

S3 =
n∑

i=1

i 3 = n4

4
+ n3

2
+ n2

4
(4A.3)

S4 =
n∑

i=1

i 4 = n5

5
+ n4

2
+ n3

3
− n

30
(4A.4)

The sums have been computed with the assistance of MAPLE (Charet al., 1991).

4.B Moments of a Uniformly Distributed Random Vari-
able

Suppose that the random variableX is uniformly distributed on the interval[a, b]. Then
the moments are given by the following formula

E Xk = 1

k+ 1
(bk + bk−1a+ . . .+ bak−1+ ak) (4B.1)

See, e.g., Davenport (1975).



5
Applications to Time-domain

Identification

In Chapters 3 and 4 we studied several nonparametric estimation methods from a quite
general function approximation viewpoint. In this chapter we shall apply and specialize
these concepts to the field oftime-domain system identification, which can be seen as a
special application of the general model (1.4), where the measured quantities relate to
inputs and outputs of nonlinear dynamical systems. Identification can of course also be
performed in the frequency domain. Nonparametric methods for such applications will be
treated later in Chapter 6.

The organization of the chapter is as follows. We start in Section 5.1 by giving a
brief review of the nonlinear system identification problem. Sections 5.2 and 5.3 discuss
different model structures and how they can be used in the nonparametric setting. Some
additional relevance aspects in the local framework, like coping with time variability and
outliers, are discussed in Section 5.4. Some user guidelines like the determination of model
orders and choice of input signals are provided in Section 5.5. Section 5.6 compares the
local modeling with the global methods described in Chapter 2. The following two parts,
Sections 5.7 and 5.8, illustrate the ideas in numerical examples, both on simulated and real
data applications. Section 5.9, finally, provides some conclusions.

5.1 Introduction

As stressed several times earlier in the thesis, system identification is a special case of the
general regression relationship (1.4), whereYt = y(t) represents the output from a dynam-
ical system at timet, andXt = ϕ(t) relates to lagged input and output measurements of the
system. We will now try to apply the model-on-demand ideas to this specialized estimation
problem. From a strict statistical point of view, this might introduce a complication since

89
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Yt andXt contrary to our earlier assumptions now becomedependent. However, we shall
initially adopt a more pragmatic standpoint and neglect this fact.

We will in this chapter consider nonlinear, multi-input, single-output (MISO) systems
in discrete time, governed in input-output form by the dynamic relationship

y(t) = m(ϕ(t))+ v(t), (5.1)

where, as before,

ϕ(t) = ϕ(Zt−1) (5.2)

is a regression vector constructed from past measurements;

ZN = {(u(1), y(1)), . . . , (u(N), y(N))},
andv(t) is a noise term (that does not necessarily need to be white). The goal of time-
domain identification is to produce a goodpredictor, i.e., one that estimates

E(y(t)|ϕ(t)) (5.3)

as well as possible, utilizing all the available information contained inϕ(t). As discussed
in Chapter 2, this problem has traditionally been solved by global, parametric black-box
methods such as neural networks. In this chapter we shall instead study how the model-
on-demand approach developed in Chapter 4 can be utilized forpredictionandsimulation
purposes.

5.1.1 Prediction

The main motivation for our modeling aims in the time-domain is of course theprediction
problem. That is, given past measurements of the system in question we will be able to
predict orforecastthe short-term behavior of it. This can conceptually be illustrated as
in Figure 5.1. The predictor can be viewed as a device that takes measured inputsu and

u

y

ŷ

Figure 5.1 Prediction: Measured inputsu and outputsy are used to predict future
outputsŷ.

outputsy as input, and produces predictionsŷ of future outputs.
In terms of the model-on-demand concept introduced in Chapter 4, the assumed scenario

is that a large amount of measurements from the process has been recorded and stored in a
database along with certain quality measures such as on-line estimates of the noise variance.
The best and most flexible way of storing such input-output data is, as discussed earlier,
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an open question and is outside the scope of this thesis. However, in order to make the
problem feasible and enable use of the methods derived in Chapter 4, we assume that the
stored observationsZN are searchable and retrievable from the database as output-regressor
pairs, (

y(k), ϕ(k)
)
, k = 1, . . . , N. (5.4)

Now, if a prediction of the output is needed at time instantt > N, a subset of relevant
pairs are retrieved from the database, and an estimate is computed based on their values.
By reestablishing the nonparametric approach we have adopted earlier in this thesis, this
effectively means that the prediction is formed as a weighted average of the outputsy(k)
belonging to the subset, i.e.,

ŷ(t) = ŷ(t|t − 1) =
N∑

k=1

Wk(ϕ(t))y(k) (5.5)

where the weights – in one form or another – are tuned with the aim at minimizing the
mean square prediction error (MSE)

E
(
y(t)− ŷ(t)

)2
in a pointwise sense. This typically results in that the measurements located close to the
current regression vector (oroperating point) ϕ(t) are getting a larger influence on the
prediction than those located far away from it. Furthermore, the size of the neighborhood
aroundϕ(t) is determined from a bias/variance trade-off.

Again it is worth to emphasize that the optimization associated with the predictor (5.5)
produces a single local estimate corresponding to the current regression vector. To obtain
predictions at other locations in the regressor space, the weights change and new opti-
mization problems have to be solved. That is, the MOD predictor is anon-lineapproach.
However, since the estimator essentially is implemented as a local parametric fitting proce-
dure, it is clear that it also provides a local model that describes the system dynamics in a
small neighborhood aroundϕ(t). This feature will be utilized for the control applications
that follow in Chapter 7, but is normally ignored in the prediction context.

A conceptually different but at the same time relatedoff-lineapproach called “operating
regime based identification” has been proposed by Johansen and Foss (1995). Their idea is
to divide the regressor space into a number of smaller boxes or “regimes”, and use simple
local models to describe the system dynamics within each regime. A global description of
the system dynamics is then obtained by interpolating the local models. A similar approach
was also discussed in Skeppstedtet al. (1992).

The predictor (5.5) will here be referred to as aone-step-aheadpredictor since it predicts
the output one step forward in time. It is rather straightforward to generalize this concept.
By shifting the components of the regression vector, adding the just predicted output and
corresponding input signal value to it and predicting an additional time, atwo-step-ahead
predictor is obtained. Repeating this an arbritrary number of times results in a general
k-step-aheadpredictor. Here the integerk is usually referred to as theprediction horizon.
Thek-step-ahead predictor will be extensively used in the control applications treated in
Chapter 7.
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5.1.2 Simulation

Sometimes it may also be of interest to investigate the long-term behavior of the system
under consideration. The tool for such investigations issimulation. Simulation can be
performed by feeding an arbritrary input sequence

u∗(t), t = 1, . . . ,M

into the predictor device in Figure 5.1 and replacing they(t)-measurements with past
simulated outputsy∗(t), see Figure 5.2. In the light of the just introduced concept of

q−1

u∗ y∗

Figure 5.2 Simulation: An arbritrary signalu∗ is used as input and past predicted
outputs are fed back to the prediction device.

prediction, this can be interpreted as the limiting case ofk-step-ahead prediction ask tends
to infinity. A potential complication with simulation in the local modeling context,however,
is that it is much harder to guarantee boundedness and stability properties of the simulated
output, since the underlyingone-step-ahead predictor will be re-estimated at each time step.
This is in contrast to global models (especially linear ones), where stability rather easily
can be checked.

It might perhaps sound strange that the simulated output can run unbounded since
the associated predictor (as a consequence of (4.17) and (4.47)) is formed as an affine
combination of lagged (and stored) outputs which normally should be bounded. However,
a typical such situation occurs when the underlying system dynamics is unstable, which will
cause the simulated output to grow without limits. Another critical situation, which is quite
typical for the local modeling, occurs when the predictor at one time instant returns a “bad”
estimate, which, when it is included at the following time instant, causes the regression
vector to be located outside the support of the stored data. The estimation process has to
performextrapolationrather than interpolation, which is known to produce bad predictions.

5.2 Model Design Considerations

In order to obtain a local model like (5.5) that is suitable for prediction and/or simulation,
there is a number of design questions which have to be taken into consideration:

1. Which quantities, constructed from past measurementsZN , should be included in
the regression vectorϕ(t)?



5.3 Model Structures for Nonparametric Methods 93

2. Which modeling approach should be used?

3. Which distance function (and other relevance criteria) should be used when deter-
mining relevant data?

The first question is the same for all modeling approaches – linear as well as nonlinear
ones – and, as we soon shall see in Section 5.3, in most situations it turns out that the most
useful choices of regression vectors are to let them be built up by lagged inputs and outputs.

The second question arises in nonlinear black-box modeling too, but then normally
includes a wide range of possible parameterizations (different basis functions, different
number of hidden layers etc). In a local modeling framework, we essentially just have to
decide upon the polynomial degree and the norm for the fit.

The third question is rather unique for the nonparametric problem, because of its local
properties. Nevertheless, it is an important one, since we can emphasize different features
in data with different relevance measures and distance functions (recall the discussion in
Section 4.4.1). We shall consider further aspects of this in Sections 5.4 and 5.5.

5.3 Model Structures for Nonparametric Methods

For parametric black-box models, it is well known that anextra regressor component enables
an increased flexibility (since the degrees-of-freedom are increased), but that this comes to
the price of an increased variance error of the estimate. It is thus often desirable to keep
the dimension of the regression vector as small as possible.

This conclusion still holds and is perhaps even more important in the nonparametric
case. We saw in Chapter 3 that the rate of convergence typically gets slower in higher
regressor dimensions. This was primarily due to the so-calledcurse-of-dimensionality
problem, which followed from the sparseness of data in the multidimensional regressor
space, see Section 3.8. Another, but equally important reason is the dataset searching
problem discussed in the end of Chapter 4. It was concluded that tree structures, likek-d
trees, are most efficient for a moderate number of dimensions.

Now, keeping the number of regressors limited is normally a matter of choosing the
most appropriate model structure for the actual application. However, the special properties
(locality etc) associated with local modeling, here also impose additional restrictions that
have to be taken into consideration. It turns out that both the estimation and associated
dataset searching problems becomesignificantly easierif the components ofϕ(t) only
relate to measured data.

As we shall see later, a possible alternative to restrict the size of the regression vector,
is to impose restrictions on the mappingm(·). One such possibility is to assume that
the regression function is global in certain regressor dimensions. This was referred to as
conditionally parametricmodels in Chapter 4, and can be a useful approach to fight the
curse-of-dimensionality. The local modeling approach also provides the flexibility of using
different sets of regressors (subsets of the elements ofϕ(t)) for modeling at different parts
of the regressor space. In the following though, we will assume that all available regressors
are used and that the actual configuration ofϕ(t) is fixed in advance.
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Let us for the sake of completeness here again review some of the different choices on
model structures that were introduced in Chapter 2, and discuss their ability to be adapted
to the local polynomial framework. Although maybe a bit off-topic, we will start with the
related time-series prediction problem in Subsection 5.3.1. However, the subject for our
main interest,input-output models, will be studied more thoroughly in Subsection 5.3.2.

5.3.1 Time Series

Local polynomial models have been proven quite successful for time series modeling in
previous applications (Weigend, 1996). Among the first to adopt local modeling ideas to
time series prediction were Farmer and Sidorowich (1987) and Farmer and Sidorowich
(1988), who applied local linear models to chaotic data.

NAR Structures

The nonlinear auto regressive, NAR, model for time series modeling is formed according
to

y(t) = m(y(t − 1), . . . , y(t − na))+ ε(t)
= m(ϕy(t))+ ε(t). (5.6)

It can be illustrated as in Figure 5.3 below. Its predictorŷ(t) is obtained by simply deleting

y(t)

y(t − 1)

y(t − na)

...

q−1q−1

6m(·)

ε(t)

Figure 5.3 The NAR model structure.

the noise termε(t) in (5.6). Since it entirely depends on measured data, it is straightforward
to apply the local methods in Chapter 4 to this modeling problem. We will not pursue this
subject any further here, though. We instead close this subsection by mentioning that
the performance of the NAR model as a function of the two most crucial parameters – the
number of neighbors in the local approximationand the model orderna – has been explored
by Casdagli (1991) and Casdagli and Weigend (1994).
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5.3.2 Input-Output Models

Although time series modeling is an important and interesting application,our main concern
in this thesis is modeling of dynamical systems. We shall therefore here again review the
nonlinear input-outputstructures introduced in Chapter 2 and study how they can be utilized
in the model-on-demand context. The overview will be made assuming single-input,single-
output (SISO) systems. Generalization to the multiple-input, single-output (MISO) case is
straightforward though; think ofu(t) as a vector of inputs.

NFIR Structures

In analogy with the linear case, the simplest nonlinear dynamical model is the nonlinear
finite impulse response model, NFIR, which only uses past inputs as regressors,

y(t) = m(u(t − nk), . . . ,u(t − nb − nk + 1))+ ε(t)
= m(ϕu(t))+ ε(t). (5.7)

Herenb andnk denote the number of past inputs and the time delay, respectively. It can be
illustrated as in Figure 5.4. As for the NAR case, the corresponding predictor is obtained

u(t)

u(t − 1)

u(t − nb)

y(t)...

q−1 q−1

6m(·)

ε(t)

Figure 5.4 The NFIR model structure withnk = 1.

by deleting the noise term. That is,

ŷ(t) = m(ϕu(t)). (5.8)

A major advantage with this structure is that it always will generate bounded predictions
(provided, of course, thatm(·) does not have any singularities), since it only depends on
past inputs which are assumed to be bounded. However, in order to achieve accurate
predictions, the NFIR structure normally requires quite large model orders,nb, which, as
discussed earlier in the chapter, is unsuitable for the local modeling approach, both with
respect to the curse-of-dimensionality problem and the dataset searching problem.

NARX Structures

Combining the NAR and the NFIR model structures results in the nonlinear, autoregressive
with exogenous input, NARX, model. As stressed in Chapter 2, the linear FIR and ARX
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models are capable of approximating any linear system provided arbritrary high model
orders are allowed. It is easy to believe that the NARX model will play a similar role for
the nonlinear case. Since (in theory) all the measured data can be made available as inputs
to the NARX model (i.e., an arbritrary sized regression vector), and this information can
be used in the local modeling, it follows that this model structure can approximate any,
sufficiently smooth, nonlinear system well. The most general NARX structure is

y(t) = m(y(t − 1), . . . , y(t − na),u(t − nk), . . . ,u(t − nb − nk + 1))+ ε(t)
= m(ϕ(t))+ ε(t), (5.9)

which was referred to as the NARX1 structure by Sjöberg (1995). Here as before,na

denotes the number of past outputs,nb the number of past inputs, andnk is the time delay
between the input and output signal. In fact it is possible to have an arbitrary delayny

k for
lagged outputs as well, but for simplicity we have here decided to let it be equal to one.

The structure (5.9) can be depicted schematically as in Figure 5.5. The associated

u(t)

u(t − 1)

u(t − nb)

y(t)

y(t − 1)

y(t − na)

...

...

q−1q−1

q−1q−1

6m(·)

ε(t)

Figure 5.5 The NARX model structure withnk = 1.

one-step-ahead predictor is obtained by deleting the noise term. That is,

ŷ(t) = m(ϕ(t)). (5.10)

Similar to its linear counterpart, the NARX model has several nice properties which make
it suitable to work with and hence a default choice for the applications that follow:

• It is general and can describe any nonlinear system well.

• It is not recurrent. That is, the regressors are independent of previous model-related
quantities.

However, its shortcomings are also the same as for the linear ARX model:

• There is no specific noise model. Instead the noise dynamics are modeled together
with the plant dynamics. This is easily seen from Figure 5.5.
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• As a consequence of this, a good approximation ofboth the system and the noise
dynamics may require a high dimension of the regression vectorϕ(t).

A solution to these problems is to include separate noise dynamics in the model as will be
discussed next. An equally good fit can then probably be achieved using fewer number of
regressors.

Structures with Separate Noise Models: NARMAX and NBJ

We saw in Chapter 2 that structures with separate noise models can be constructed by
incorporating past prediction errorsε(t − k) into the regression vector. However, since it
is quite difficult to model the noise in a general nonlinear way, it is natural to impose the
restriction that the model is linear in the prediction errors,ε(t − k) = y(t − k)− ŷ(t − k).
This corresponds to the NARMAX-type structure

y(t) = m(ϕ(t))+ C(q−1)ε(t), (5.11)

whereϕ(t) is constructed as in the NARX case andC(q−1) is assumed to be monic. The
corresponding predictor is

ŷ(t) = m(ϕ(t))+ (C(q−1)− 1)ε(t), (5.12)

which can be interpreted as a conditionally parametric model that is global in theε(t − k)-
directions of the regressor space.

A major problem with this structure in the model-on-demandcontext, is the recurrency,
i.e., that parts of the extended regression vector now depend on past model outputs. Since
a major component of our estimation procedure is dataset searching in the space spanned
by the regressors, this implies that the estimation database has to be builton-lineduring
estimation in order to record old prediction errors. Thus the NARMAX structure is not that
useful in the nonparametric setting.

The same conclusion also holds for the nonlinear Box-Jenkins (NBJ) and output-error
(NOE) structures, since some components of the regression vector in both cases then will
rely on model dependent quantities.

NFIR Systems with Colored Noise

So far we have assumed that the noise termε(t) is white. Let us see what happens if we
relax this assumption. Consider an NFIR model with an additive but not necessarily white
noise termv(t),

y(t) = m(ϕu(t))+ v(t). (5.13)

For the noisev(t) we will in general only need a spectral description similar to the linear
case in Section 2.2.1. It can thus be described by

v(t) = H (q) ε(t) (5.14)
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where{ε(t)} is white noise. A predictor for (5.13) is

ŷ(t) = m(ϕu(t))+ (H (q)− 1) ε(t)

= H−1(q)m(ϕu(t))+
(
1− H−1(q)

)
y(t). (5.15)

In the first term, the linear filterH−1(q) can equally well be absorbed into the nonlinear
mappingm(·). The structure (5.13) can thus be viewed as a NFIR structure, accomplished
by a linear term consisting of pasty(t)’s. That is,

ŷ(t) = −a1y(t − 1)− . . .− ana y(t − na)+ m̃(ϕu(t)). (5.16)

See also Figure 5.6. Since this structure has the same regressor configuration as the general

y

ϕu

ŷ
1− A(q−1)

m̃(·)

6

Figure 5.6 A NARX model consisting of a linear part for the past outputs and a
nonlinear part for the past inputs.

NARX1 model (5.9), it was referred to as a NARX2 model by Sjöberg (1995). The fact
that it is not recurrent makes it a very interesting and useful alternative to work with.

In the model-on-demand context, the NARX2 model can similarly to the NARMAX
structure above be interpreted as a conditionally parametric local linear model which is
global in they(t − k)-directions of the regressor space. As outlined in Section 4.4.1, esti-
mation of such models can be performed by zeroing out the corresponding elements of the
scaling matrix which controls the distance function. Another alternative is to start by fitting
a global linear model to they(t − k)-regressors, and use the residuals for nonparametric
modeling in theu(t − k)-directions of the regressor space. This is usually referred to as
semi-parametric modeling.

The NARX2 concept can be generalized to the case where the predictor is a sum of two
nonlinear terms. That is,

ŷ(t) = m1(ϕy(t))+m2(ϕu(t)), (5.17)

whereϕy(t) andϕu(t) are defined as in the NAR and NFIR cases. A model of this type was
referred to as an additive model in Chapter 3, and can (although even more computational
demanding) be estimated using the backfitting algorithm as discussed in Section 3.8.2. In
the work by Sjöberg (1995), a model of the form (5.17) is called a NARX3 model, and
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can be interpreted as a FIR model of the type (5.13) where the noise dynamics is state
dependent, i.e.,

v(t) = H (q, ϕu(t)) ε(t). (5.18)

If the mixing properties between pasty’s andu’s are minor, the NARX3 model could be a
useful alternative to deal with the curse-of-dimensionality.

5.4 Other Relevance Aspects

Relaxing the assumptions (time-invariance, informative data etc) that were made in the
beginning of the chapter may give rise to the need of other relevance measures, which will
be treated and discussed in the following two subsections.

5.4.1 Coping with Time-varying Systems

We have hitherto in this chapter only consideredtime-invariant systems, i.e., systems
whose properties are not changing with time. There might be situations, though, where
this assumption does not hold. However, provided that the database is updated continously
during operation, it turns out that coping with (slowly) time-varying systems is rather
straightforward to do by just keeping track of the time indices.

The simplest solution is perhaps to include the sample timet as an extra regressor
component inϕ(t). That is,

ϕ(t) = (y(t − 1), y(t − 2), . . . ,u(t − nk),u(t − nk − 1), . . . , t)T . (5.19)

Thus, when a prediction is required, the samples located closest inbothspace and time are
retrieved, leading to that the most recent measurements are getting the largest influence on
the estimate. Here the relative importance between spatial and time locality can be traded
off by a proper choice of distance function.

An obvious question is of course whether or not the time component of the extended
regression vector (5.19) should be included in the local modeling or not. If it is included,
we will always perform estimation at the boundary of thet-part of the regressor space,
which might cause problems with bias. A pragmatic approach is therefore to only utilize
the extra time information inϕ(t) while searching for relevant data, and omit it during the
estimation phase.

The above way of coping with time-varying systems can be compared to the traditional,
recursive estimation approach (see, e.g., Ljung (1999)), where the time-variability is dealt
with using an exponential forgetting similar to the RLS algorithm in equation (4.39) but
with k = t. In that case, however, the forgetting factorλ only controls the locality in time,
and spatial locality is neglected. An extension of this concept that fits in our framework,
is to utilize the forgetting mechanism as an extra weighting in a modified least squares
criterion similar to (4.22). That is,

vi = λt−ti , (5.20)



100 Chapter 5 Applications to Time-domain Identification

where the forgetting factor 0< λ ≤ 1 as in the RLS case has to be tuned by the user in
order to trade off noise sensitivity against tracking capabilities.

A third approach is to assume that the dataset search routine provides the ability of
retrieving data belonging to certain time ranges. Then, if we for instance know that the
system properties changed significantly at timet0, we can choose to only retrieve data
(y(τ ), ϕ(τ )) stored at timesτ > t0.

5.4.2 Incorporating Other Quality Measures

Continuing the ideas introduced in the preceeding subsection, it is of course also possible
to associate other attributes with the data than just only the time-stamps, and utilize this
information in the estimation process. A quite natural extension here, is to mark the mea-
surements with some kind of quality measure during data acquisition. Possible candidates
for this will be discussed next.

Noise Variance

The most natural choice of quality measure in the local approach is of course thenoise
variance. For some applications, likeGPS(global positioning system), it turns out that the
variance is knowna priori, while it in others can be estimated by means of different on-line
techniques.

How to utilize this extra information opens up different possibilities. A novel and
straightforward solution is to include the variance information in the regression vector, and
only search for the data that have as low variance as possible.

Another, perhaps more natural approach (which can be justified in the maximum-
likelihood framework) is to incorporate the variance information as aninverse weighting
in the local fitting criterion. That is, the local estimate is computed in a fashion similar to
the modified least squares criterion (4.22).

Both these approaches could be useful to combat the effects ofoutliers, that is, “bad”
and irrelevant data that may affect the estimation result in a bad direction.

Excitation Requirements

Another problem may arise if the data acquisition is made during feedback control. Feed-
back in general introduces dependencies in data, and identifiability can be lost due to
poor excitation. According to Ljung (1999) a necessary condition for excitation for linear
systems is that the spectrum satisfies

8Z(ω) > 0. (5.21)

It would therefore be desirable to mark the data with an on-line estimate of (5.21). Such
estimates can be obtained using FFT:s with forgetting factors or wavelet spectrogram.
However, how to generalize this idea to the nonlinear setting is not completely obvious and
will require further investigations.
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5.5 User Guidelines

We will here present some user guidelines that might be useful when solving predic-
tion/simulation problems using the model-on-demand approach. Some of them have al-
ready been emphasized in earlier sections,but it might anyway be useful to make a summary.

5.5.1 Choice of Model Structure

Different model structures and their advantages and disadvantages in the MOD framework
were discussed at length in Section 5.3. It was concluded that NFIR and NARX models
were the best suited candidates to deal with the properties of this modeling philosophy.
Now the choice between these structures is mainly a matter of how many regressors we can
afford anda priori knowledge of the application. It be guided by the following aspects:

• NFIR models require that the entire dynamics of the system is covered by lagged
inputs. That is, if the response time from input to output isτ and the sampling interval
is Ts, then the number of regressors should be at leastnb = τ/Ts. Even for quite
simple systems, this could be a large number.

• By using NARX models, it is possible to model the same dynamics with significantly
fewer regressors. A disadvantage, though, is that past outputs bring in past distur-
bances into the model which increases the demands on the estimation procedure.
The model output may also run unbounded during simulation.

• If it is known or suspected that the dynamics associated with lagged outputs and
lagged inputs can be separated, it might be useful to try the NARX2 and NARX3
structures. Otherwise the NARX1 model should be considered to be the default
choice for the prediction/simulation problem.

5.5.2 Selecting the Order of the Model

So far we have only been dealing with different structural issues, but we have not addressed
the choice of the model order. It is however inherent from the discussion above that this is
a closely related problem, since a good choice of model structure saves parameters.

The choice of model order is normally very much depending on the particular applica-
tion, and it is hard to give general guidelines. A natural methodology, however, is to try to
get as far as possible with simple linear models, and if that still gives unsatisfactory results,
stick to nonlinear black-box models with the same regressor configurations.

From parametric modeling it is known that a large number of parameters in the model
provides an increased flexibility but also results in larger variance errors. On the other
hand, a small number of parameters gives large bias errors. The main component of order
selection procedure, is thus to handle this trade-off between bias and the variance. Since
the local modeling in fact has associated with it a parametric estimation procedure that is
repeated at each sampling instant, it is clear that this trade-off is applicable also here.

A very natural and commonly used approach in system identification iscross-valida-
tion, which is an approach that we in a slightly different form already have been dealing with
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(recall sections 3.4.1 and 4.4.5). The fundamental idea is the quite natural assumption that
the best model is the one that – in some sense – gives the best performance when applied to
data that are not used when computing the estimate. In practice this is achieved by splitting
the available dataset into two parts,estimation data, which is used for computing estimates
andvalidation data, for which the model is evaluated and some performance measure is
computed. As pointed out by Ljung (1999), cross-validation has an intuitive appeal; we
simple check if the current predictor configuration is capable of “reproducing” data it has
not yet seen. If that works out well, we have some confidence in the current structure.

5.5.3 Choice of Distance Function

The choice of distance function was thoroughly discussed in the general estimation frame-
work in Chapter 4, but it might be worth to reconsider this question also here. Recall from
the definition of distance functions in Chapter 4 that by selecting the scaling matrixM
properly it is possible to emphasize different features in data. The default choice used in
the MOD algorithms was to let it be proportional to the inverse covariance of the regressors.
However, there exist situations where other choices might be useful to consider. Imagine
for instance a simple tank system like the one introduced in Example 1.1. It is well known
that the dynamics of such a system will depend on the water level in the tank. By tuning
the elements of the scaling matrix in an intelligent way so that the regressors associated
with the level measurements get large influence in generating the distance measures, it is
possible to make the locality in water level more important than locality in other regressors.

5.5.4 Choice of Input Signals

The fact that we are dealing witha combination of bothnonlinearsystems andnonparametric
estimators requires some additional attention when designing data acquisition experiments.
Pseudo-random binary sequences (PRBS) have been widely used in identification of linear
systems and have the advantages of providing simple implementations, reproducibility, and
autocorrelation functions similar to white noise.

The PRBS input, however, is not well suited for nonlinear applications. Since the PRBS
consists of only two distinct levels, the resulting data obtained from the process may not
provide sufficient information to reveal nonlinear features in its behavior. Additionally,
the distribution of data on only two lines in theu(t − k)-parts of the regressor space might
make the underlying least-squares problem ill conditioned. Regularization can help in
some situations (recall the discussion in Section 4.4.3) but it is in general more desirable
to choose an input signal that is continously changing over the domain of interest such as
a Gaussian or a uniformly distributed signal. An alternative is multi-level pseudo-random
sequences (m-level PRS) whose usefulness in the model-on-demand context is discussed
in Braunet al. (1999).
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5.6 Comparison with Global Methods

The adoption of local modeling techniques to the system identification field of course also
motivates the need for comparisons with other well established approaches such as neural
nets and wavelets. Since the methods represent quite different paradigms it is clear that they
will have both advantages and disadvantages when evaluated from different viewpoints.

As discussed many times earlier, the greatest advantages with parametric black-box
models is that the model is fitted to data once, which provides a very cheap and efficient
way of obtaining predictions. Furthermore, global methods can deal withrecurrentmodel
structures, although the complexity of the estimation procedure then increases significantly
(Sjöberget al., 1995).

On the other hand, local modeling methods such as model-on-demand are easy and
straightforward to apply. Since the modeling is based on simple polynomial model as-
sumptions, this approach gives the advantage of providing good fits using significantly
simpler models, than the ones required in the global case. A complication, though, is that
the local approach requires quite large datasets, relies heavily on data management routines,
and that the estimation thus requires larger computational resources due to the underlying
searching problem. This can of course be critical for real-time applications with timing
constraints.

5.7 Applications Based on Simulated Data

We will now illustrate the MOD paradigm in a number of numerical simulations. We will
start this section by considering simulated data. The treatment of applications based on
real measured data is postponed to Section 5.8.

5.7.1 A Linear Discrete-Time System

As a start of our investigations, it may be interesting to study whether or not the local
modeling approach degrades the performance compared to global methods if the true system
is linear. In this section the model-on-demand approach is therefore applied to a simulated
linear dynamic system. The system considered is the so-called Åström system, which has
earlier been investigated by Ljung (1999). It is a second order system defined according to

y(t)− 1.5y(t − 1)+ 0.7y(t − 2) = u(t − 1)+ 0.5u(t − 2)+ ε(t), (5.22)

that is, an ARX system withna = nb = 2 andnk = 1. (To simplify the notation, we will
in the following abbreviate this as ARX 221).

In order to generate data, the system was simulated fort = 1,2, . . . ,5000 with{u(t)}
and{ε(t)} selected as independent and Gaussian distributed random sequences with zero
means and unit variances. The data were used to create an estimation database of pairs
(y(t), ϕ(t)) with

ϕ(t) = (y(t − 1), y(t − 2), u(t − 1), u(t − 2))T .
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Using this database, a simulation was made using a third Gaussian random sequence as
input. It turned out that MOD-algorithm 4.2 with default values performed best in this
case. The resulting output is represented by the solid curve in Figure 5.7 (a). The dashed
curve is the true noiseless output obtained from the true system (5.22). For comparison, a
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Figure 5.7 (a) Result of a model-on-demand simulation using an estimation
database consisting of 5000 samples generated from the Åström system (5.22).
(b) Result of a simulation using a linear ARX model with the same regressors. The
solid lines are the simulated outputs, the dashed lines the true output.

linear ARX model with the same regressor configuration was also tried. The result of this
experiment is shown in Figure 5.7 (b). As shown the linear ARX model performs slightly
better, since it in contrast to the model-on-demand approach is optimized over the entire
regressor space. The discrepancy in the model-on-demandsimulation case is due to the fact
that the model-on-demand estimator at someϕ(t)-points adapts to the local properties of
the noise sequenceε(t), i.e., that the localized goodness-of-fit criterion (FPE in this case)
find spurious features in the noise. A possible solution to this problem is to increase the
penaltyα on the noise term for the FPE as demonstrated in Section 4.4.5. However, the
prediction errors are in this case quite small, so the model-on-demand estimator provides
an acceptable result.

5.7.2 A Nonlinear Discrete-Time System

In this section the model-on-demand approach has been applied to a nonlinear benchmark
system proposed by Narendra and Li (1996). The system is defined in state-space form by

x1(t + 1) =
(

x1(t)

1+ x2
1(t)
+ 1

)
sin(x2(t)) (5.23a)
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x2(t + 1) = x2(t) cos(x2(t))+ x1(t) exp

(
−x2

1(t)+ x2
2(t)

8

)

+ u3(t)

1+ u2(t)+ 0.5 cos(x1(t)+ x2(t))
(5.23b)

y(t) = x1(t)

1+ 0.5 sin(x2(t))
+ x2(t)

1+ 0.5 sin(x1(t))
+ ε(t) (5.23c)

Although not present in the original treatment, we have here added a measurement error
term ε(t). The plant (5.23) does not correspond to any real system, and is chosen to
be sufficiently complex and nonlinear so that conventional linear methods will not give
satisfactory performance. Since it has two state variables,x1(t) andx2(t), it is of order
two. The input signalu(t) affectsx2(t + 1)which in turn affectsy(t + 1). Hence the plant
has relative degree (or time delay) one. The objective for our modeling efforts is to model
the system output, given measurements ofu(t) andy(t).

We assume that the states are not measurable, so we have to rely entirely on an input-
output model. Since the order of the system is two, a natural model choice is a NARX 221
structure. However, it turned out that in order to reach an acceptable result in the MOD

case, it was required to increase the model order by one. That is, a NARX 331 structure;

ŷ(t) = m(y(t − 1), y(t − 2), y(t − 3),u(t − 1),u(t − 2),u(t − 3)).

A database consisting ofN = 50 000 samples was generated using a random inputu(t)
which was chosen to be uniformly distributed on the interval[−2.5, 2.5], and a white noise
disturbanceε(t) with variance 0.1. The performance of a model-on-demand simulation
was validated using a test input defined as

u(t) = sin(2π t/10)+ sin(2π t/25), t = 1, . . . ,200.

Note here that|u(t)| ≤ 2 which guarantees that the regression vector will be located within
the support of the stored data.

For this application, MOD-algorithm 4.1 with a local linear model structure performed
best. The result of a simulation is shown in Figure 5.8 (a). The simulated output follows
the true noise-free output reasonably well and the quality of the simulation is at least
comparable with the result reported by Narendra and Li (1996) after using a neural net and
a significantly larger dataset (500 000 samples). For comparison a linear ARX 331 model
was also tried, see Figure 5.8 (b). But as expected the system is too nonlinear in this case
to be modeled accurately by a simple linear model.

5.8 Applications Based on Real Measured Data

We saw in Section 5.7 that the model-on-demand approach turned out be useful in predict-
ing/simulating the artificially constructed examples. Now we will apply the algorithms on
datasets obtained from real physical systems (in fact we have already done so in Example
1.1). They all represent well-known applications that have been thoroughly studied in
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Figure 5.8 (a) Result of a simulation using a NARX 331 model and the model-on-
demand approach. Solid: Simulated output. Dashed: True output. (b) Result of a
simulation using a linear ARX 331 model. Solid: Simulated output. Dashed: True
output.

previous contributions. This has the great advantage of enabling direct comparison with
known and well established identification techniques.

A potential problem for all of them, which motivates some words of caution in advance,
though, is that the sizes of the datasets are rather modest. This might be severe hurdles for
success in the model-on-demand case.

5.8.1 Simulation of a Water Heating Process

In this subsection we consider simulation of a water heating process as depicted in Figure
5.9 (a)1. It has earlier been investigated by Koivisto (1995), Lindskog (1996) and Stenman
(1997). The system setup can be described as follows: Cold water flows into to the heater
with a flow rate ofQin(t), and is heated by a resistor element which is controlled by the
voltageu(t). At the outlet, the water temperatureT(t) is measured. The modeling problem
is to describe the temperatureT(t) as a function of the voltageu(t) under the assumption
that the inlet flow as well as the inlet water temperature are kept constant. The behavior of
the system is nonlinear due to saturation characteristics of the thyristor (Lindskog, 1996).

The dataset consists of 3000 samples, recorded every 3rd second, and originates from
a real time identification run (performed by Koivisto (1995)), where the system was driven
by an input signal of pseudo-random type. The data was divided into an estimation set of
N = 2000 samples, see Figure 5.9 (b), and a validation set of 1000 samples. The time
delay from input to output is between 12 to 15 seconds, (Koivisto, 1995). This yields that
useful regressors stemming from the input areu(t − 4), u(t − 5) and so on.

1The figure has been kindly provided by Peter Lindskog.
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Figure 5.9 (a) The water heating process. (b) Estimation dataset consisting of
2000 samples.

We apply Algorithm 4.2 to the heater data using a NARX 224 model, i.e., we form the
predictor according to

T̂(t) = m(T(t − 1), T(t − 2), u(t − 4), u(t − 5)) . (5.24)

We then let the estimation dataset define our observation database, and use the voltage
signalu(t) in the validation dataset to simulate the corresponding temperatureT(t). The
result from this procedure is shown in Figure 5.10 (a).

Method RMSE
ARX 224 2.082

NARX 224 (MOD) 0.802
NARX 224 (fuzzy) 1.020

Table 5.1 Root mean square errors for the heater simulations.

For comparison we also tried a linear ARX model with the same regressor configuration
as in (5.24). The resulting simulated output is shown in Figure 5.10 (b) and is clearly worse
than the one in Figure 5.10 (a). Root mean square errors (RMSE) for the two experiments
are summarized in Table 5.1. Here we have also included the result achieved by Lindskog
(1996) while using afuzzy modelingapproach. Koivisto (1995) has reported similar results
using neural network modeling.
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Figure 5.10 (a) Result of aMOD simulation of the water heating system using an
estimation database constructed from the dataset in Figure 5.9. Solid: Simulated
output. Dashed: True system output. (b) Result of a simulation using a linear ARX
model. Solid: Simulated output. Dashed: True system output.

5.8.2 Simulation of a Hydraulic Robot Actuator

In this example we shall perform simulation of a hydraulic robot actuator. The application
has previously been investigated by Sjöberget al.(1995) and Gunnarsson and Krus (1990)
and has to some extent become a “benchmark” example for nonlinear black-box modeling.

The system in question is a hydraulic actuator that controls the position of a robot arm.
The arm position is directly coupled to the oil pressure in the actuator and is determined
by a valve that regulates the oil flow into the actuator. The modeling aim is to model the
oil pressure as a function of the valve opening.

The dataset consists of 1024 samples in total and has been split into two equally sized
parts – one for estimation and one for validation. Figure 5.11 shows the estimation part.
The valve opening is here denotedu(t) and the oil pressurep(t). As observed from the
figure, the oil pressure signal has very oscillative settling periods after step changes in the
valve size. This is primarily due to mechanical resonances in the robot arm.

It seems reasonable to start by first considering simple linear black-box models. Exper-
iments performed by Sjöberg (1995) show that a model which predicts the pressurep(t)
using three old values of the pressure and two old values of the valve size signal (i.e., an
ARX 321 model) is appropriate for this particular application. The result of a simulation
on validation data using this configuration is shown in Figure 5.12 (a). The achieved root
mean squared error, RMSE, for the simulated output is 0.925, but it is quite obvious from
visual inspection that it would be possible to enhance this rather poor result by considering
more complex nonlinear models.

A severe problem with this application from a local modeling point-of-view is of course
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Figure 5.11 Measured values of oil pressurep(t) and valve positionu(t).

the sparseness of data (512 data points in a five-dimensional regressor space). However, it
might anyway be interesting to see how far we can get with the model-on-demandapproach.
Similar to the simulated nonlinear system in Subsection 5.7.2 we find that in order to obtain
reasonable results we have to increase the model order by one. That is, we use a NARX
431 predictor,

p̂(t) = m(p(t − 1), p(t − 2), p(t − 3), p(t − 4),u(t − 1),u(t − 2),u(t − 3)).

Figure 5.12 (b) shows a simulation on validation data using MOD-algorithm 4.1 and a local
linear NARX1 model based on the above regressor configuration. The achieved RMSE
is 0.499 and represents a significant enhancement compared to the linear ARX model. It
turns out though that the result can be even more improved by considering a conditionally
global NARX2 model. This can be achieved by altering the scaling matrix according to

M = diag(0, 0, 0, 0, 1, 1, 1).

A simulation with this setup in the model-on-demand framework is shown in Figure 5.12
(c). The RMSE error is now 0.471. Trying the NARX3 model and other choices of model
parameters did not result in any further improvements. However, Sjöberg (1995) obtained
a best value of 0.328 using a complex neural network structure. The conclusion is therefore
that this dataset is too small to produce results directly comparable to the parametric case.
Nevertheless, we have demonstrated how local modeling techniques even for rather small
datasets quite drastically can improve the quality of the simulations compared to traditional
linear black-box modeling.

5.8.3 Simulation of Buffer Vessel Dynamics

The dataset in this example has its origins in a typical process industry problem. It is taken
from STORA’s pulp factory in Skutskär, Sweden, and has previously been investigated by
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Figure 5.12 Simulation of the crane behavior using validation data: (a) ARX
model. (b)NARX1 model. (c)NARX2 model. The solid lines are the simulated
output and the dashed lines are the true system output.

Method RMSE
ARX 321 0.926

NARX 431 (MOD) 0.471
NARX 431 (NN) 0.328

Table 5.2 The best achieved root mean square errors for the hydraulic robot sim-
ulations using different modeling philosophies.
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Figure 5.13 Vessel data from the pulp factory in Skutskär, Sweden. The dataset
consists of 1500 samples recorded every 4th minute.

Andersson and Pucar (1994), and Ljung (1999) (from which this description is taken). The
data describe the dynamics of one particular stage in the manufacturing process where the
pulp is traveling trough a buffer vessel and is the subject for certain manipulations and
operations (such as washing and bleaching).

The process is a multivariable system (MISO) with four channels. Figure 5.13 shows
the recorded time history for each of them. The total number of samples is 1500 and the
sampling intervalTs is 4 minutes. We denote the measurements as follows:

u(t) : Theκ-number of the pulp flowing in,

y(t) : Theκ-number of the pulp flowing out,

f (t) : The output flow,

h(t) : The level of the vessel.

Here theκ-number denotes a quality marker which exact meaning is not that important for
the modeling problem.

The original modeling problem was to estimate the residence time in the vessel. It
turned out that a good way of doing so was to estimate the dynamics fromu(t) to y(t),
since that would give an indication of how long time it takes for a change in the input to
have an effect on the output.

The sampling rate used is too fast, so the data is decimated a factor of 3, giving a
sampling interval of 12 minutes. The resulting dataset is divided into an estimation part of
N = 300 samples and a validation part of 200 samples. Figure 5.14 (a) shows the “best”
ARX model according to Ljung (1999), which is formed using four lagged values ofy(t)
and each of input signals. The time delay fromu(t) to y(t) is twelve samples and the time
delay from f (t) andh(t) is one sample. This clearly does not look good.

Ljung (1999) resolves the problem with a resampling procedure, by realizing that the
approximate time delay in the vessel is proportional to flow divided by level. A simulation
based on resampledy’s andu’s and an ARX 419 model is shown in Figure 5.14 (b). Here,



112 Chapter 5 Applications to Time-domain Identification

though, we decide to use the original but decimated data for brute-force model-on-demand
simulation using Algorithm 4.1 with local linear models.

We found that the important variables to consider in this case is theκ-numbers and
the level measurements. The best result was obtained by a NARX model built up by four
lagged values ofy(t), three lagged values ofu(t) and one lagged value ofh(t). The time-
delay was eight samples fromu(t) and one sample fromh(t). The result of a simulation
is displayed in Figure 5.14 (c). Here the relative importance of the level measurement in
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Figure 5.14 Simulation results for the vessel data: (a) ARX model. (b) Resampled
ARX model. (c) NARX model based on original data. The solid lines represent the
simulated output, and the dashed lines the true system output.

generating the distance measure (i.e., the corresponding element of the scaling matrixM )
has been increased a factor of two. The simulated output follows the true one quite well, at
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least up tot = 90, where it starts to deteriorate a bit. This shows that the model-on-demand
approach provides good support for a straightforward nonlinear modeling where the need
for prior physical knowledge is reduced.

Similar to the hydraulic crane in Subsection 5.8.2, the MOD simulation might have
performed better if more measurements were available. Especially if there had been more
measurements located at low levels in the vessel, since the validation data, as is clear from
Figure 5.13, represent the dynamics around the levelh = 50.

5.9 Conclusions

We have in this chapter demonstrated that the model-on-demand approach is a useful
method for predicting and simulating nonlinear systems when sufficiently large datasets
are available. A number of nonlinear model structures and associated design issues have
been evaluated from a MOD perspective and we have concluded that the different NARX
structures should be considered as the default choice in this context. Furthermore, it has
been demonstrated that the prediction/simulation result in some situations can be enhanced
by tuning certain parameters like the the scaling matrix.

The usefulness of the MOD algorithms has been illustrated in several numerical simula-
tions. For all presented applications we have shown that the prediction errors are in order of
magnitude directly comparable to more established modeling tools such as artificial neural
nets and fuzzy identification. However, we have at the same time shown that the demand
for large datasets is more obvious in the MOD case than for traditional parametric modeling
approaches.
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6
Applications to Frequency-domain

Identification

In Chapter 5 we applied nonparametric methods to the time-domain prediction/identifica-
tion problem. In this chapter we will instead focus our attention on the field of frequency-
domain identification,which traditionally has been a natural area for nonparametricsmooth-
ing methods.

6.1 Introduction

Estimating thespectrumof a measured signal and thefrequency functionof a linear system
are classical problems, see, e.g., Brillinger (1981), Jenkins and Watts (1968), Bendat and
Piersol (1980), Ljung (1999) and Stoica and Moses (1997) . The methods can be divided
into parametricones, which estimate the parameters of an imposed parametric model
(see Chapter 2), and then compute the corresponding frequency-domain counterparts, and
nonparametricones, that essentially smooth initial estimates of the frequency-domain
quantities – in one way or another.

The procedures all involve some parameters that govern the resolution of the estimate.
For parametric methods, the chosen model orders serve as such parameters. For nonpara-
metric methods, the width of some kind of smoothing window (i.e., kernel) has to be chosen
(see Chapters 3 and 4). The selection of such parameters of course reflects a bias-variance
trade-off. With better resolution, (i.e., smaller bias), fewer data points can be involved in
the estimate which lead to higher variance. There are many ways to strike this balance.
Traditional methods have typically relied on subjective methods, like visual inspection of
the estimate, for the final choice.

We shall here apply and extend the adaptive nonparametric methods described in the
earlier chapters to the frequency-domain smoothing problems. This provides two potential

115
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advantages in the choice of resolution parameters:

• We can use bandwidth selection procedures that give automatic choices of the optimal
value.

• We can considerlocal resolution parameters, so that the resolution is allowed to be
frequency-dependent.

The chapter is organized as follows: Section 6.2 reviews the spectral estimation problem
which is a classical application for nonparametric methods. The overview covers both the
traditional setup as well as more recent treatments of the problem. The contributions to
this part are minor, and it is mainly included here for reference and because of its close
relationship to the subsequent material. The main contribution is instead Section 6.3, which
deals with frequency response estimation. The traditional approach is briefly reviewed, and
we show that several enhancements can be made by incorporating ideas and methods from
earlier chapters. Section 6.4 discusses several computational issues associated with the
estimation methods and shows how the special properties of the frequency data can be used
to speedup the estimation. Section 6.5, finally, gives some concluding remarks. Parts of
the material have earlier been published in Stenmanet al. (1999)

6.2 Spectral Estimation

Thespectrum8u(ω) of a stationary signalu(t) is defined as the Fourier transform of its
autocovariance function, i.e.,

8u(ω)
1=

∞∑
τ=−∞

Ru(τ )e
−iωτ , (6.1)

where

Ru(τ )
1= E(u(t)− Eu(t))(u(t − τ )− Eu(t − τ )). (6.2)

The spectrum describes the frequency content in the signal and is useful for detecting
periodicities and cyclic patterns. The concept is closely connected to Fourier techniques,
as seen by the following relationship,

8u(ω) = lim
N→∞E

 1

N

∣∣∣∣∣ N∑
t=1

u(t)e−iωt

∣∣∣∣∣
2
 , (6.3)

which holds providedRu(τ ) decays sufficiently rapidly to zero.
In this section we will consider different frequency-domain-based approaches for esti-

mating the spectrum from afinitedata sequence,

u(t), t = 1, . . . , N.
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The raw material for doing so is either theperiodogram, which is defined as the normed
absolute square of the discrete Fourier transform ofu(t),

ˆ̂8u,p(ω)
1= 1

N

∣∣∣∣∣ N∑
t=1

u(t)e−iωt

∣∣∣∣∣
2

= 1

N
|UN(ω)|2 , (6.4)

or thecorrelogram

ˆ̂8u,c(ω)
1=

N−1∑
τ=−N+1

R̂u(τ )e
−iωτ , (6.5)

whereR̂u(τ ) denotes an estimate of the autocovariance function (6.2). However, it can be
shown (see Stoica and Moses (1997)) that (6.4) and (6.5) will coincide ifR̂u(τ ) is computed
using the so-calledstandard biased autocovariance function estimate,

R̂u(τ ) = 1

N

N∑
t=τ+1

u(t)u(t − τ ), 0 ≤ τ ≤ N − 1, (6.6)

with

R̂u(−τ ) = R̂u(τ ), 0 ≤ τ ≤ N − 1. (6.7)

Hence we will in the following denote both the periodogram and the correlogram with the
unified notation

ˆ̂8u(ω) = ˆ̂8u,p(ω) = ˆ̂8u,c(ω),

and their properties can be investigated simultaneously. Let us first, however, illustrate the
previously introduced concepts with an example, taken from Stoica and Moses (1997).

Example 6.1 Periodogram for a wide-band ARMA process

Consider the ARMA process

u(t) = B(q−1)

A(q−1)
ε(t) = H (q−1)ε(t),

where

A(q−1) = 1− 1.3817q−1+ 1.5632q−2− 0.8843q−3+ 0.4096q−4,

B(q−1) = 1+ 0.3544q−1+ 0.3508q−2+ 0.1736q−3+ 0.2401q−4,

and where{ε(t)} is an independent and Gaussian distributed random sequence with unit
variance. It is straightforward to show that its spectrum is given by

8u(ω) =
∣∣∣H (eiω)

∣∣∣2 .
The spectrum (dashed curve) and the periodogram (solid curve) for a realization of length
N = 512 are depicted in Figure 6.1. ❏
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Figure 6.1 Spectrum (dashed curve) for the ARMA process in Example 6.1 and
the periodogram (solid curve) for a realization of length 512.

6.2.1 Properties of the Periodogram

The periodogram and the correlogram are approximately asymptotically unbiased estimates
of the spectrum. However, they are notconsistentestimates, i.e., their variance do not tend
to zero asN increases. This can for instance be seen from Figure 6.1, which shows that
the periodogram is a very erratic function of frequency, but that its mean is approximately
equal to the true spectrum. The reason for the bad properties of the periodogram could
heuristically be explained as follows:

• The covariance estimatêRu(τ ) will be a poor estimate ofRu(τ ) for large lagsτ ,
since it then is a sum of only a few lag products divided byN. These “bad” estimates
are incorporated in the Fourier transform through the sum in (6.5), thus creating an
overall bad and noisy estimate.

• In addition, the bad covariance estimatesR̂u(τ ) will also cause that̂̂8u(ω) will be
biasedif Ru(τ ) decays slowly to zero. This follows from the fact thatR̂u(τ ) will be
much closer to zero thanRu(τ ) is for large lags, which yields that the bias will be
significant if Ru(τ ) is not close to zero in this region (Stoica and Moses, 1997).

In particular, if

ωk
1= 2πk

N
, k = 0, . . . , N − 1

denotes the grid of Fourier frequencies, it can be shown that the periodogram is asymp-
totically exponentially distributed (or, equivalently,χ2(2) distributed) with mean8u(ωk),
and that the estimates at different frequencies are approximately independent (Brockwell
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and Davis, 1987). That is, the periodogram can be modeled as

ˆ̂8u(ωk) = 8u(ωk) · Vk + rk, (6.8)

whererk → 0 as N → ∞ and theVk’s are independent random variables having the
standard exponential distribution fork = 1, . . . , b(N−1)/2c. Hereb·c denotes the integer
part of the expression. Moreover,V0 andVbN/2c (if N is even) haveχ2

1-distribution. Thus,
and because of the symmetry of the spectrum, it is natural to only consider the periodogram
at the frequencies

ωk, k = 1, . . . ,n,

wheren = b(N − 1)/2c.

6.2.2 Smoothing the Periodogram

Consistent estimates of the spectrum (6.1) can be obtained by smoothing the periodogram.
There are roughly three main approaches for doing so (Fan and Gijbels, 1996). The first
approach, upon which also most of the traditional methods are based, is to smooth the peri-
odogramdirectly. The classical solution here is theBlackman-Tukeyprocedure (Blackman
and Tukey, 1958), which reduces the variability in thetime domainby introducing a weight-
ing when (6.5) is formed, so that covariance estimates for large lag valuesτ receive smaller
weights;

8̂u(ω) =
γ∑

τ=−γ
wγ (τ )R̂u(τ )e

−iωτ . (6.9)

The weightingwγ (k) is usually referred to as thelag windowand it typically decays to zero
with increasing|τ |. The lag window controls the trade-off between frequency resolution
and noise suppression. One of the most commonly used windows in spectral analysis is
theHammingwindow,

wγ (τ) =
{

1
2

(
1+ cosπτ

γ

)
, |τ | < γ,

0, |τ | ≥ γ,
(6.10)

which is depicted in Figure 6.2 (a). Other popular lag windows include theBartlettwindow,

wγ (τ) =
{

1− |τ |
γ
, |τ | < γ,

0, |τ | ≥ γ, (6.11)

and theParzenwindow,

wγ (τ) =


1− 6τ2

γ 2

(
1− |τ |

γ

)
, |τ | < γ

2 ,

2
(
1− |τ |

γ

)3
,

γ
2 ≤ |τ | < γ,

0, |τ | ≥ γ.
(6.12)
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Figure 6.2 (a) The Hamming lag window. (b) Hamming frequency windows of
different widthsγ . Solid: γ = 5, Dashed:γ = 10, Dotted:γ = 3.

In the frequency domain, the Blackman-Tukey procedure (6.9) is equivalent to con-
volving the periodogram with the frequency-domain counterpartWγ (ω) (the so-called
frequency window) of the lag windowwγ (τ), that is,

8̂u(ω) = Wγ ∗ ˆ̂8u(ω) =
∫ π

−π
Wγ (ω − ξ) ˆ̂8u(ξ) dξ. (6.13)

The frequency window is typically designed as a function centered aboutξ = 0 which is
characterized by the properties (Ljung, 1999)∫ π

−π
Wγ (ξ) dξ = 1,

∫ π

−π
ξWγ (ξ) dξ = 0,

∫ π

−π
ξ2Wγ (ξ) dξ = M(γ ), (6.14a)∫ π

−π
W2
γ (ξ) dξ = 1

2π
W̄(γ ),

∫ π

−π
|ξ |3Wγ (ξ) dξ = C3(γ ). (6.14b)

See Section 3.2.1 for a comparison with the corresponding properties for kernel functions.
The Hamming frequency window is given by

2π ·Wγ (ω) = 1

2
Dγ (ω)+ 1

4
Dγ

(
ω − π

γ

)
+ 1

4
Dγ

(
ω + π

γ

)
, (6.15)

where

Dγ (ω)
1=

sin
(
γ + 1

2

)
ω

sinω/2
, (6.16)



6.2 Spectral Estimation 121

and is depicted in Figure 6.2 (b) for different values ofγ .
As seen from (6.13), the Blackman-Tukey method can be interpreted in the frequency

domain as a nonparametric smoother of the same fashion as the methods described in
Chapters 3 and 4. (The integral is in practice implemented as a sum). However, the
smoothing (or resolution) parameterγ has traditionally been tuned byad hocmethods,
usually by visual inspection of the results.

By adapting the nonparametric methods described in earlier chapters to this framework,
we will instead be able to obtain adaptive methods that tune such parameters by automatic
procedures. In addition, if the local adaptive methods are used, a further benefit is that
the tuning can be donelocally, i.e., different resolutions can be used in different frequency
bands.

The direct approach of smoothing the periodogram leads to a regression model of the
standard form (1.4), i.e.,Yk = m(Xk)+ εk, with

Yk = ˆ̂8u(ωk), Xk = ωk, k = 1, . . . ,n.

This provides the spectral estimate

8̂u(ω) = m̂(ω), (6.17)

wherem̂(ω) is computed using some suitable local smoothing approach such as local
polynomials or the model-on-demand methods.

One difficulty, though, which can be seen from (6.8), is that the periodogram is highly
heteroscedastic, i.e., that the variance varies with the amplitude of the spectrum. This
sometimes makes it hard to select the smoothing parameterγ appropriately. The second and
third approaches for smoothing the periodogram is therefore to smooth thelogarithmof the
periodogram, which is considered to have a more homogeneous variance. This can be done
either by direct smoothing of the log-periodogram (Wahba, 1980) or by using a localized
maximum-likelihood smoother (Kooperberget al., 1995; Fan and Kreutzberger, 1998).

6.2.3 Smoothing the Log-periodogram

By taking the logarithm of the periodogram model (6.8), one obtains

log ˆ̂8u(ωk) = log8u(ωk)+ εk + r̃k (6.18)

whereεk = logVk, and

r̃k = log

(
1+ rk

8u(ωk)Vk

)
is an asymptotically negligible term. Since theVk’s asymptotically have the standard
exponential distribution, it follows thatεk is distributed according to

fε(x) = e−ex+x. (6.19)
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Hence it is rather straightforward to show that

Eεk = −C0, and Varεk = π2

6
,

whereC0 ≈ 0.57722 denotes an Euler constant. See, for instance, Davis and Jones (1968).
A straightforward approach is thus to ignore the asymptotically negligible termr̃k in (6.18).
This again leads to a regression model of standard type but with

Yk = log ˆ̂8u(ωk)+ C0, Xk = ωk, k = 1, . . . ,n,

and with a zero mean noise termεk having varianceσ 2
k ≈ 1.6449. Thus the local polynomial

smoothing methods described in earlier chapters can be employed. Since the variance is
known in this case, it might be preferable to use theCp criterion. However, it should work
equally well with other goodness-of-fit criteria such as AIC.

When the log-spectrum has been estimated at a specific frequencyω, the corresponding
spectral estimate is obtained by the inverse transformation of (6.18), that is,

8̂u(ω) = exp{m̂(ω)}. (6.20)

6.2.4 Maximum-likelihood-smoothed Log-periodogram

The approach of local polynomial smoothing of the log-periodogram described in the
previous subsection is not efficient, since the distribution ofεk is non-Gaussian. It has
been shown that the accuracy can be improved by considering a localmaximum-likelihood
estimator for the log-periodogram (Fan and Gijbels, 1996; Fan and Kreutzberger, 1998).
Applying the localized maximum-likelihood ideas from Section 3.5 to the log-periodogram
model (6.18), gives

l (y,m) = −ey−m+ y−m, (6.21)

i.e., we get the localized log-likelihood function

Lω(β) =
n∑

k=1

[
− exp

(
Yk −

p∑
j=0

β j (Xk − ω) j

)

+ Yk −
p∑

j=0

β j (Xk − ω) j

]
Kh(Xk − ω). (6.22)

where

Yk = log ˆ̂8u(ωk), Xk = ωk, k = 1, . . . ,n.

Maximizing overβ then provides the log-spectrum estimate

m̂(ω) = β̂0, (6.23)

whereby the maximum-likelihood estimate of the spectrum follows from (6.20). It has
been shown that the criterion (6.22) is similar to the so-called Whittle likelihood based on
the model (6.8), with the extension that weights are introduced in (6.22) to localize the
approximation (Fan and Kreutzberger, 1998). The likelihood functionLω(β) is a strictly
concave function, so a unique maximizer exists.
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Bandwidth Selectors for the Likelihood Model

Fan and Gijbels (1996) used asymptotics to derive a plug-in bandwidth selector for the like-
lihood model,which is implemented as a simple adjustment of a plug-in bandwidth obtained
from ordinary least-squares smoothing of the log-periodogram. However, it is also possible
to use the classical methods from Section 3.5, despite their rather high computational cost.
For this particular application we have that

l̇ (y,m) = ey−m− 1,

l̈ (y,m) = −ey−m.

It is thus straightforward to implement likelihood cross-validation inaccordancewith (3.59).
For the AIC case we have that

E
[
l̇ (Yk, m̂(Xk))

]2 = ∫ ∞
−∞

(ex − 1)2e−ex+x dx = 1. (6.24)

Hence it follows that

AIC(h) = −2

n

n∑
k=1

l (Yk, m̂(Xk))+ 2

n

n∑
k=1

infl(Xk). (6.25)

where the likelihood influence function follows from equation (3.60).
It is of course also possible to derive local variants of the above bandwidth selection

schemes, that similar to the methods in Section 4.4.5 select separate bandwidths for each
fitting point. This is outside the scope of this overview, though, and we will not explore
this topic any further here.

6.2.5 An Example

Let us illustrate the properties of the described nonparametric spectral estimation methods
in numerical simulations.

Example 6.2 Wide-band ARMA model, cont’d

Consider again the wide-band ARMA model introduced in Example 6.1. Spectrum, peri-
odogram, log-spectrum and log-periodogram for this model are shown in Figure 6.3. Note,
as pointed out earlier, that the periodogram is highly heteroscedastic, while the variance of
log-periodogram is more homogeneous.

We will start by considering constant/global bandwidth selection methods from Chapter
3. In Figure 6.4 the periodogram and log-periodogram have been smoothed using local
quadratic models and tricube kernels. The bandwidths have been tuned automatically
using the corrected AIC for the direct case, AIC for the likelihood case andCp for the
direct log-periodogram smoothing. This has resulted in the global bandwidths 0.57 for the
direct smoother, 0.68 for the direct log-periodogram smoother and 0.64 for the maximum-
likelihood smoother. The obtained mean absolute deviations (ADE) for this particular
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realization are 0.90, 0.72 and 0.55, respectively. The corresponding maximum deviations
are 4.77, 3.75 and 2.84.

It may be of interest to compare the above result with the performance of the adaptive
MOD algorithms from Chapter 4. However, the adaptive algorithms will in most situations
produce unsatisfactory results as a consequence of the large variability of the periodogram
(and log-periodogram). A possible remedy is to estimate the variance from data using a
fixed bandwidth smoother and variance expression (4.42), and utilize this information as
an additional weighting in a final smoothing stage.

Figures 6.5 and 6.6 show adaptively smoothed periodograms and log-periodograms+C0
obtained from Algorithm 4.1 using local quadratic models and tricube kernels. The variance
functions of the periodogram and log-periodogram have been estimated from data using
constant bandwidth smoothers with small bandwidths (h = 0.05), and have been plugged
in as extra weightings in the algorithm. The bandwidths have been selected locally using
the localizedCp criterion. It is clear though that we do not gain that much in this case by
allowing the bandwidth to be selected locally. ❏

Mean ADE Max ADE
direct smoother 0.90 4.77

log-smoother 0.72 3.75
log-likelihood 0.55 2.84

Table 6.1 Mean deviations and maximum deviations for Example 6.2.
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Figure 6.3 (a) Spectrum and periodogram for the wide-band ARMA model in
Example 6.2. (b) Log-spectrum and log-periodogram+C0 for the same model.
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Figure 6.4 Spectral estimates for the ARMA process in Example 6.2 based on
constant bandwidths. Solid thick curve: true spectrum. Solid thin curve: Direct
smoothed periodogram. Dashed curve: Smoothed log-periodogram. Dash-dotted
curve: Maximum-likelihood-smoothed log-periodogram.
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Figure 6.5 (a) Adaptively smoothed periodogram. Solid line: Estimated spectrum.
Dashed line: True spectrum. (b) Selected bandwidths.
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Figure 6.6 (a) Adaptively smoothed log-periodogram. Solid line: Estimated spec-
trum. Dashed line: True spectrum. (b) Selected bandwidths.

6.2.6 Cross-spectrum and Cross-periodogram

Similarly to the definition of spectrum (6.1), thecross-spectrumbetween two signalsu(t)
andy(t) is defined as the Fourier transform of their cross-covariance function, i.e.,

8yu(ω)
1=

∞∑
τ=−∞

Ryu(τ )e
−iωτ (6.26)

where

Ryu(τ )
1= E(y(t)− E y(t))(u(t − τ )− Eu(t − τ )). (6.27)

Note though that since the cross-covariance in general is not symmetric, the cross-spect-
rum will normally be complex-valued. In the same way as (6.4), it is possible to form the
cross-periodogramaccording to

ˆ̂8yu(ω)
1= 1

N
YN(ω)U

∗
N(ω). (6.28)

The cross-spectrum can be estimated using the Blackman-Tukey procedure as follows;

8̂yu(ω) =
∫ π

−π
Wγ (ω − ξ) ˆ̂8yu(ξ) dξ. (6.29)

An alternative is to use a local polynomial smoother and the norm`(ε) = |ε|2. Since
the cross-periodogram is complex-valued it might not be that meaningful to use the log-
periodogram approach in this case.
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6.2.7 Summary

We have in this section presented three nonparametric methods found in the literature for
estimating signal spectra from periodograms. Which method is the best, still seems to be
an open question, however. Fan and Gijbels (1996) claim that the likelihood smoother both
has smaller bias at peak regions and smaller asymptotic variance than the other methods,
and therefore recommend using it as the default spectral estimator. Simulation results that
support this conclusion have been presented in Fan and Kreutzberger (1998).

The large variability of the periodogram makes it hard to apply adaptive methods in
a direct manner. However, we have shown that reasonable results can be obtained if the
variances are estimated in a pre-smoothing stage.

6.3 Frequency Response Estimation

Another traditional and closely related application of nonparametric estimation methods
in the frequency domain, and the main motivation for the work in this chapter, occurs
when estimatingfrequency functionsof linear and time-invariant systems without imposing
parametric models. The methods emanate from spectral estimation techniques as was
described in the previous section, and have been thoroughly used and analyzed within
signal processing and mathematical statistics. Good overviews of the topic are, for instance,
given in Chapter 10 in Jenkins and Watts (1968), in Brillinger (1981), in Chapter 6 in Ljung
(1999), and in Gardner (1988).

The basic setup can be described as follows: Consider a stable system described by the
input-output relation

y(t) =
∞∑

k=1

gku(t − k)+ v(t) = G(q)u(t)+ v(t), (6.30)

where{gk} denotes the impulse response and{v(t)} is a disturbance being a stationary
stochastic process with spectrum8v(ω). Thefrequency function, G(eiω), is then defined
as

G(eiω) =
∞∑

k=1

gke−iωk. (6.31)

Given measurements from the process,

(y(t), u(t)) , t = 1, . . . , N,

the goal is now to get an estimate ofG(eiω) without imposing any parametric model
structure.

Since the input-output relation (6.30) is linear, a natural estimate of the true frequency
function is the ratio

ˆ̂GN(e
iω)

1= YN(ω)

UN(ω)
(6.32)
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where, as before,

YN(ω) =
N∑

t=1

y(t)e−iωt and UN(ω) =
N∑

t=1

u(t)e−iωt

denote the discrete Fourier transform ofy(t) andu(t), respectively. The estimate (6.32)
is often called theempirical transfer function estimate, ETFE, since it is formed directly
from the observations without any other assumptions than linearity of the system (Ljung,
1999).

Example 6.3 Empirical transfer function estimate

Consider the linear system

G(q) = C
(q2− 2r cos(φ +1φ)q+ r 2)(q2− 2r cos(φ −1φ)q+ r 2)

(q − k)(q2− 2r cos(φ)q + r 2)2
, (6.33)

where

r = 0.95, φ = 1.3π

4
, 1φ = 0.03π

4
,

k = 0.5, and C = 0.5.

It is taken from Bodin (1995) and was also treated in Stenman (1997).

A data set was generated according to

y(t) = G(q)u(t)+ ε(t), t = 1, . . . , N, (6.34)

where the input{u(t)} was chosen as a unit PRBS (pseudo-random binary) sequence of
lengthN = 4096, and{ε(t)}was an independent and normally distributed random sequence
with zero mean and standard deviationσε = 0.05.

The amplitude and phase curves of the true frequency function are shown in Figure 6.7 (a).
The amplitude curve has a damped peak around the frequency 1 rad/s. The corresponding
ETFE plots are shown in Figure 6.7 (b). ❏

As seen from Example 6.3, the ETFE is a very crude and noisy estimate of the true
frequency function. This has been known for a long time and is due to the construction of
the estimate using the Fourier transform: We determine as many independent estimates as
we have data points. Or equivalently, we have no compression of data. As a consequence
of this, we have not imposed any relation between the system’s properties at different
frequencies.

6.3.1 Properties of the ETFE

The crudeness of the ETFE is caused by the fact that the observations are corrupted by
measurement noise which propagates to the estimate through the Fourier transform, and
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Figure 6.7 Frequency functions of the system in Example 6.3. (a) The true fre-
quency response. (b) The ETFE.

leakage1 effects. Hence the ETFE can be considered as a random variable with certain
statistical properties. For future use it is useful to specify these properties more in detail.
From Ljung (1999, Lemma 6.1), we have that

E ˆ̂GN(e
iω) = G(eiω)+ R(1)N , (6.35)

E[ ˆ̂GN(e
iω)− G(eiω)][ ˆ̂GN(e

−iξ )− G(e−iξ )]

=


1

|UN(ω)|2 [8v(ω)+ R(2)N ], if ξ = ω

R(2)N

UN(ω)UN(−ξ) , if |ξ − ω| = 2πk
N , k = 1, . . . , N − 1,

(6.36)

where

R(i )N → 0 asN→∞, i = 1,2. (6.37)

From this result we see that the ETFE is an asymptotically unbiased estimate of the true
transfer function, but that the variance does not decay to zero when the number of obser-
vations,N, increases. Instead it approaches the noise-to-signal ratio,8v(ω)/|UN(ω)|2, at
the frequency in question.

1Leakage is an effect of finite data length and means that a single frequency component is "leaking" its energy
to nearby frequencies.
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6.3.2 Smoothing the ETFE

One way to improve the poor properties of the ETFE is to assume that the values of the
true transfer functionG(eiω) at neighboring frequencies are related. The transfer function
estimate at a certain frequencyω can then be obtained similarly to (6.13) as a weighted
average of the neighboring ETFE values,

ĜN(e
iω) =

∫ π

−π
Wγ (ω − ξ) ˆ̂GN(e

iξ ) dξ, (6.38)

whereWγ (ξ) is a frequency window as introduced in Section 6.2. As beforeγ is a pa-
rameter that controls the width of the corresponding lag window, i.e., theinversewidth of
the frequency window. If the frequency window is wide, that is,γ is small, then many
neighboring frequencies will be weighted together in (6.38). This will reduce the variance
of ĜN(eiω). However, a wide window also implies that frequency estimates located far
away fromω, whose expected values may differ significantly fromG(eiω), will have a
great deal of influence on the estimate. This will cause large bias. Thus, the window width
controls the trade-off between the bias and the variance errors.

As pointed out in Chapter 4, when the variances of the observations are known, it
is natural to include the inverse variances as an extra weighting in the smoother (recall
equation (4.22)). According to (6.36), an improved version of the estimator (6.38) is then
given by

ĜN(e
iω) =

∫ π

−π
Wγ (ω − ξ)|UN(ξ)|2 ˆ̂GN(e

iξ ) dξ∫ π

−π
Wγ (ω − ξ)|UN(ξ)|2 dξ

, (6.39)

provided that8v(ω) is approximatelyconstant within the support of the frequencywindow.

6.3.3 Asymptotic Properties of the Estimate

The frequency function estimate (6.39) has been thoroughly investigated in several books
on spectral estimation. See, for example, Chapter 10 of Jenkins and Watts (1968), Chapter
6 of Brillinger (1981) or Chapter 6 of Ljung (1999). From Ljung (1999) we have the
following asymptotic formulas (asymptotic both inN andγ ):

Bias:

E ĜN(e
iω)− G(eiω) = M(γ )

[
1

2
G′′(eiω)+ G′(eiω)

8′u(ω)
8u(ω)

]
+ O(C3(γ ))+ O(1/

√
N), (6.40)

Variance:

Var ĜN(e
iω) = E

∣∣∣ĜN(e
iω)− E ĜN(e

iω)

∣∣∣2 = 1

N
W̄(γ )

8v(ω)

8u(ω)
+ o(W̄(γ )/N). (6.41)
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Here the differentiations are with respect toω. Recall also equation (6.14). Now, by
combining these expressions, the AMSE of the estimate can be written

E |ĜN(e
iω)− G(eiω)|2

' M2(γ )

∣∣∣∣12G′′(eiω)+ G′(eiω)
8′u(ω)
8u(ω)

∣∣∣∣2 + 1

N
W̄(γ )

8v(ω)

8u(ω)
(6.42)

For the windows introduced in Section 6.2.2,M(γ ) andW̄(γ ) can for large values ofγ be
approximated as in Table 6.2 below. Suppose now that it holds thatM(γ ) = M/γ 2 and

M(γ ) W̄(γ )

Hamming π2

2γ 2 0.75γ

Bartlett 2.78
γ 2 0.67γ

Parzen 12
γ 2 0.54γ

Table 6.2 Asymptotic values ofM(γ ) andW̄(γ ) for different frequency windows.
The values are good approximations forγ ≥ 5.

W̄(γ ) = γ · W̄ as in Table 6.2. Then the value ofγ that minimizes (6.42) (and thus gives
a good trade-off between the bias and variance error) is

γopt(ω) =
4M2

∣∣∣1
2G′′(eiω)+ G′(eiω)

8′u(ω)
8u(ω)

∣∣∣28u(ω)

W̄8v(ω)


1/5

· N1/5. (6.43)

Using this value ofγ , the mean square error decays like

MSE
(

ĜN(e
iω)
)
∼ C · N−4/5. (6.44)

This is an expression of a fashion we have already seen earlier in the thesis. However,
this is not surprising, since the frequency response estimator (6.39) is formed in the same
fashion as the kernel estimators reviewed in Chapter 3.

Now, if all quantities in equation (6.43) were known by the user, they could be plugged
into this expression (compare with the plug-in bandwidth selectors in Chapter 3), and the
window widthγ could be allowed to be frequency dependent. In practice though, these
are unknown and the user has to choose a suitable value ofγ manually.

Example 6.4

Consider again the system introduced in Example 6.3. Since we in this case know the true
frequency function, we can compute the optimalγ according to (6.43). Figure 6.8 shows
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the optimal and frequency-dependent width,γopt, for the Hamming lag window, assuming
that8u(ω) = 1 and8v(ω) = 8ε(ω) = σ 2

ε .

In normal situations, though, the true frequency function is not known (since it is the
quantity we want to determine), and the user has to decide upon the right amount of
smoothing manually. In Figure 6.9 (a)–(c), the ETFE has been windowed with a Hamming
window of different widths. In Figure 6.9 (a) a wide frequency window withγ = 32 is
used. The curves are smooth, but the resolution at the peak is quite poor. In Figure 6.9 (b)
a narrower window withγ = 256 is used. The resolution at the peak is now better, but at
other frequencies the curves are noisier. Figure 6.9 (c) shows a compromise with window
width γ = 128. ❏
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Figure 6.8 Asymptotic optimal window width for the system in Example 6.3 when
using the Hamming lag window.

Example 6.4 clearly illustrates the trade-off between resolution (narrow window) and
variance reduction (wide window),which has to be taken into account when using frequency
windows of fixed widths. A typical procedure is to start by takingγ = N/20 and increase
γ until the desired level of details is achieved (Ljung, 1999).

6.3.4 Estimating Frequency Functions by Spectral Analysis

Frequency function estimation is, as mentioned before, closely related to the spectral esti-
mation problem described in Section 6.2. Consider again the system (6.30). It is straight-
forward to show that the cross-spectrum betweeny(t) andu(t) is given by

8yu(ω) = G(eiω)8u(ω) (6.45)
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(b) γ = 256
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(c) γ = 128

Figure 6.9 Windowed frequency responses using Hamming windows of different
widthsγ . Solid: Windowed estimates. Dashed: True frequency response.

providedu(t) andv(t) are uncorrelated. An alternate way of estimatingG(eiω) is thus the
ratio

ĜN(e
iω) = 8̂yu(ω)

8̂u(ω)
(6.46)

where8̂yu(ω) and8̂u(ω) are spectral estimates computed using some methods described
in Section 6.2. In fact, this way of computing the frequency function estimate using the
Blackman-Tukey procedure is one the most commonly used approaches, and is, because it
is implemented in the time domain, the main reason for fixed resolution parameters in the
traditional setting.
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6.3.5 Automatic Smoothing of the ETFE

We saw earlier in this section that a major problem with the classical, Blackman-Tukey-
based approaches for estimating the frequency function is that it is hard to find a global
choice of resolution parameter that gives a satisfactory smoothing result over the entire
span of the frequency axis. In addition, the parameter has to be chosen manually, typically
by visual inspection of the resulting estimate.

A more appealing solution would be to have available procedures that provideautomatic
choices of the optimal value, and that enablelocal parameters so the resolution can be
frequency dependent. Fortunately, though, this was exactly what we were dealing with
in Chapters 3 and 4, and it turns out that the methods described there quite easily can be
extended to the ETFE smoothing case.

A Local Polynomial Approach

From Section 6.3.1, it follows that the ETFE, at least asymptotically, can be modeled as
the standard regression model,Yk = m(Xk)+ εk, with

Yk = ˆ̂G(eiωk) ∈ C, Xk = ωk ∈ R, k = 1, . . . ,n,

where, as before,n = b(N − 1)/2c (since the ETFE is hermitian), and whereεk is a
complex-valued and zero mean disturbance with variance

σ 2
k '

8v(ωk)

|UN(ωk)|2 . (6.47)

It is thus straightforward to apply the local smoothing methods from earlier chapters. The
fact, though, that the regression function now is complex-valued requires some attention
during implementation and computation, but causes in general no additional conceptual
complications. For simplicity we assume a quadratic norm,`(ε) = |ε|2, which yields that
the local regression problems can be solved explicitly using ordinary least squares.

Variance Estimation

In order to use a localized goodness-of-fit criterion, such asCp, and to enhance the quality
of the estimate, it is important to have a good estimate of the variance expression (6.47),
which depends upon the noise spectrum8v(ωk) and the Fourier transform of the input
UN(ωk).

Now the noise termv(t) in (6.30) is in general not measurable so we cannot estimate
8v(ωk) directly. However, if the input-output data are available in addition to the complex
ETFE numbers,v(t) can be approximated by means of the residuals,

v̂(t) = y(t)− Ĝ0(q)u(t), (6.48)

whereĜ0(q) denotes a suitable initial estimate of the transfer function. In the frequency
domain, this is equivalent to forming an estimate of8v(ωk) by smoothing the “residual
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periodogram”,

ˆ̂8v(ωk) = 1

N

∣∣∣YN (ωk)− Ĝ0(e
iωk)UN(ωk)

∣∣∣2 , k = 1, . . . ,n, (6.49)

whereĜ0(eiωk ) denotes an initial frequency response estimate obtained from a presmooth-
ing operation on the ETFE using, for instance, a constant bandwidth. The residual spectrum
can then be estimated from (6.49) using any of the smoothing methods described in Section
6.2. Plugging in this quantity into (6.47) results in the variance estimate

σ̂ 2
k =

8̂v(ωk)

|UN(ωk)|2 . (6.50)

It is of course also possible to obtain local variance estimates directly from the raw ETFE
data, using a non-adaptivesmooth with a small bandwidth. Consult Section 4.4.8 for details
around this.

Example 6.5

Consider again the ETFE from the system introduced in Example 6.3. Figure 6.10 shows
the obtained result after applying Algorithm 4.1 to this dataset using a local quadratic
model and the tricube kernel. The noise variance has been estimated from data using the
procedure above, with an initial estimateĜ0 obtained from the Blackman-Tukey procedure
with γ = 128. The localizedCp was used for bandwidth selection.

The estimated frequency response is shown in Figure 6.10 (a) along with the true curves.
The selected bandwidths are shown in Figure 6.10 (b). As expected, the adaptive approach
results in smaller bandwidths near the peak. The larger bandwidths at the boundaries are
mainly due to neighborhood truncations and the fact that we are using a nearest-neighbor-
type bandwidth.

The corresponding asymptotically optimal width of the Hamming frequency window is
shown in Figure 6.10 (c). Although this quantity is not directly comparable with the
bandwidths in Figure 6.10 (b), we see that the two curves have roughly the same shape.❏

The above example shows that the adaptive bandwidth selection procedure works and
that it gives reasonable choices of bandwidths that very well matches the asymptotically
optimal formula (6.43).

6.3.6 Confidence Bands for the Estimate

The smoothing method described in Subsection 6.3.5 provides point estimates of the fre-
quency function for each frequency. In some situations, though, there might also be need
for quantifying the errors associated with each such estimate. A useful diagnostic tool for
such purposes is the concept ofconfidence intervals.

How to construct approximate pointwise confidence bands for the general smoothing
case was demonstrated in Section 4.7. However, it turns out that this rather easily also can
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Figure 6.10 Result obtained using an adaptive local polynomial smoother. (a)
Adaptively smoothed ETFE. Solid line: Estimate. Dashed line: True frequency
response. (b) Selected bandwidths. (c) Asymptotic optimal width of the frequency
window according to the expression (6.43).

be carried over to the frequency domain. Recall that the frequency response effectively is
estimated by means of a linear smoothing operation,

Ĝ(eiω) =
∑

k

Wk(ω)
ˆ̂GN(e

iωk), (6.51)

where theWk’s are determined either explicitly by the optimization approach, or implicitly
by a kernel and a polynomial fitting procedure. Hence it follows that the variance of (6.51)
is approximately

Var Ĝ(eiω) = σ̂ 2(ω) · ‖w(ω)‖2, (6.52)
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where, as before,̂σ 2(ω) denotes a suitable estimate of the complex noise variance at the
frequencyω, andw(ω) is the vector of smoothing weights. It is thus straightforward to
construct approximate confidence bands forG(eiω) (or more precisely, ÊG(eiω)) similar
to the derivation in Section 4.7.

It can be shown that the real and imaginary parts ofĜ(eiω) are asymptotically uncorre-
lated and jointly normally distributed with variances equal to half the value of (6.52). See,
e.g., Ljung (1999). Since a sum of two squared such variables is exponentially distributed,
or equivalently,χ2-distributed with two degrees of freedom, an approximate(1− α)100%
confidence region for the squared magnitude can be obtained as∣∣∣Ĝ(eiω)− G(eiω)

∣∣∣2 ≤ χ2
α(2) ·

σ̂ 2(ω)

2
· ‖w(ω)‖2 = r 2(ω). (6.53)

whereχ2
α(2) denotes theα quantile of theχ2(2) distribution. For the special case of 95%

coverage it holds thatχ2
0.05(2) = 5.99, so we get the particular value

r (ω) =
√

5.99

2
· σ̂ (ω) · ‖w(ω)‖ = 1.73 · σ̂ (ω) · ‖w(ω)‖. (6.54)

Note that the confidence region (6.53) here represents a circle with radiusr (ω) around
Ĝ(eiω) in the space of complex numbers. In order to make use of this information for Bode
plotting, translation to corresponding amplitude and phase bands is required as indicated
in Figure 6.11. However, from this figure it is easy to realize that

Im

Re

Ĝ

r

φ

Figure 6.11 Confidence region for the frequency response estimate.

φ(ω) = arcsin
r (ω)

|Ĝ(eiω)| , (6.55)

so we end up with the approximate confidence bands

I|G|(ω) =
(
|Ĝ(eiω)| − r (ω), |Ĝ(eiω)| + r (ω)

)
, (6.56a)

IargG(ω) =
(
argĜ(eiω)− φ(ω), argĜ(eiω)+ φ(ω)

)
, (6.56b)
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for the amplitude and phase respectively. Note that these expressions do not provide exact
information of the uncertainty. They merely represent a way of transferring the information
obtained in (6.54) from the complex plane to the Bode plot. To obtain more accurate
confidence bands (especially for the phase), a more detailed analysis of the distributions
of the amplitude and phase must be performed. Different possibilities exist depending on
which quantities we want to display (the magnitude, the logarithm of the magnitude etc).
It might also be possible to utilize numerical methods such as point-mass approaches or
bootstrapping.

6.3.7 Applications

To further establish the usefulness of the proposed smoothing methods, we will here inves-
tigate some additional examples.

Example 6.6 The Åström system revisited

Recall the so-called Åström system, which earlier in Section 5.7.1 was studied in the time-
domain prediction framework. This system has also been considered in a nonparametric
setting by Ljung (1999) using fixed resolution parameters (i.e., using the Blackman-Tukey
procedure). Here we shall instead allow the degree of smoothing tobe frequency-dependent.

The system was simulated using a PRBS input of lengthN = 1024 and a Gaussian noise
sequence{ε(t)} with varianceσ 2 = 1. Figure 6.12 shows the amplitude plot of the ETFE
for this dataset. Figures 6.13 (a) and (b) show the smoothed result and the corresponding
bandwidths after applying an adaptive smoother with the same configuration as in Example
6.5. As expected, the adaptive scheme selects smaller bandwidths near the peak. The
corresponding asymptotic optimal width for the Hamming window is depicted in Figure
6.13 (c) for reference. ❏

Example 6.7 Aircraft Flight Flutter Data

In this section we consider ETFE smoothing of a data set that origins from a real industrial
application. The data set has earlier been investigated by Schoukens and Pintelon (1991)
and Lindskog (1996).

When new aircrafts are developed they are normally evaluated through quite rigorous test
flight programs. Among many other thing it is interesting to examine the mechanical
limitations of the different parts of the aircraft. A commonly used measure of this is the
so-called flight flutter condition in which an aircraft component at a specific airspeed starts
to oscillate.

The experiments are usually performed by attaching special transducers to various points
on the airframe, in this particular case the wings, thereby introducing mechanical vibrations
artificially. Flying at a predetermined and constant speed, data is collected and analyzed
off-line, giving information about whether to allow the the aircraft to fly faster or not. See
Schoukens and Pintelon (1991) for further experimental details.
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Figure 6.12 The amplitude plot of the ETFE for the Åström system.

Data recorded during flight flutter test are normally noisy with a quite low signal to noise
ratio, and for economical reasons only short data sequences are permitted. The data to be
investigated origins from LMS International and was first used by Schoukens and Pintelon
(1991).

Flutter data were obtained using burst swept sine (4–40 Hz) excitations that generated
a force inputu(t) leading to an acceleration response which was taken as the measured
outputy(t). The data was sampled atfs = 100 Hz and consists ofN = 2048 samples.
The resulting excitation signalu(t) and response signaly(t) are shown in Figure 6.14.

The goal was to model the frequencies in the frequency band of 4 to 11 Hz. The ETFE
of the dataset was formed according to (6.32) and is shown as circles in Figure 6.15. The
frequency response was estimated using Algorithm 4.1 in the same way as in the previous
examples. The result is represented by the solid lines in the figure. The dotted lines
represent 95% confidence intervals. A problem with this example similar to other real data
applications, however, is that we do not know the true answer, so it is hard to evaluate the
quality of the result. ❏

6.4 Computational Aspects

The automatic and adaptive smoothing procedures derived in Chapters 3 and 4 are, as we
have seen, very useful in the spectral estimation framework when computing pointwise
estimates. However, estimating the spectrum or the frequency function on a large grid of
frequencies may be a quite time-consuming task, since we at each estimation point have
to solve a number of regression problems for different bandwidths in order to minimize
the chosen bandwidth selection criteria. For the local likelihood estimation approach this
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Figure 6.13 Result after smoothing the ETFE of the Åström system. (a) Solid
line: estimate, Dashed line: true frequency response. (b) Selected bandwidths. (c)
Asymptotic optimal width for a Hamming window.

becomes even more expensive for large sample sizes, since every local optimization has to
be performed using numerical search procedures.

However, the fact that we now are dealing withscalar functions and relatively modest
dataset sizes, enables us to perform certain simplifications. Considerable speedups can for
instance be obtained by considering recursive splitting ideas similar to those of LOCFIT

(Loader, 1997):

• Start initially by computing estimates at the boundary pointsωi andω j of the grid,
which yields the associated bandwidthshi andh j .
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Figure 6.14 Flight flutter data.

• If

|ωi − ω j | ≥ ζ ·min(hi ,h j ),

split the interval into two equally sized pieces, and recursively apply the same pro-
cedure on the two halves.

This will significantly reduce the number of computations. Estimates at intermediate fre-
quency points can be obtained using cubic spline interpolation between the fitted points.
Empirical studies have shown thatζ = 0.7 seems to provide a reasonable trade-off between
accuracy and computational complexity.

Example 6.8

Consider again Example 6.5. In fact the frequency function for this system was estimated
using the recursive scheme outlined above, but both the estimate and the bandwidth curves
were interpolated when illustrated in Figure 6.10. The actual fitting points and selected
bandwidths are shown in Figure 6.16 below.

As shown the recursive splitting approach results in more fitting points where smaller
bandwidths are needed, that is, near the peak. The actual fits are computed at only 32
frequencies (compared to the original 2048 frequency points), which drastically decreases
the computation time. ❏

6.5 Conclusions

In this chapter we have extended the nonparametric smoothing methods from earlier chap-
ters to identification methods, that estimate spectra and frequency functions using au-
tomatic, adaptive, and possibly also frequency-dependent choice of frequency resolution.
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Figure 6.15 Result after smoothing the flight flutter data. The ETFE values are
represented by the circles, the solid lines are the smoothed frequency response, and
the dotted lines represent 95% confidence intervals.
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Figure 6.16 Fitting locations and selected bandwidths for the automatic smoothing
in Example 6.5.
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This gives several advantages over traditional spectral analysis techniques. Many frequency
functions exhibit fine details to different degrees in different frequency bands. The local
polynomial approach thus gives a useful alternative to multi-resolution techniques, based,
e.g., on wavelets. We have also demonstrated how an automated procedure, based on a
local goodness-of-fit criterion, leads to good choice of bandwidths that very well matches
the asymptotically optimal choice.
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7
Applications to Control

7.1 Introduction

A natural application for the local modeling procedures treated in the previous chapters
is control of nonlinear processes. Control theory is a quite general discipline that deals
with the problem of forcing the behavior of dynamical systems to achieve certain goals.
The objective could for instance be to maintain the system outputy(t) at a desired setpoint
regardless of the disturbances that affect the system (regulation), or to follow a given
reference signalr (t) (tracking). The most established and well developed part of control
theory deals with linear, time-invariant systems, and time- and frequency-domain methods
for synthesis and analysis are well established. When turning to the nonlinear domain,
however, few constructive methods exist for a systematic controller design.

In this chapter we shall utilize both linear and nonlinear methods for nonlinear control
design and we will in particular study how the time-domain methods of Chapter 5 can be
used as modeling tools in this context. The intention of the presentation, though, is not
to specify complete and ready-to-use solutions to the nonlinear control problem. Instead
we will just briefly discuss how it can be solved by pointing out different possibilities and
directions for future research.

For simplicity reasons and ease of notation, we will here restrict ourselves to single-
input, single-output (SISO) systems of NARX type as described in Section 5.3.2. That is,
we assume system descriptions of the form

y(t) = m(ϕ(t))+ ε(t), t = 1, . . . , N (7.1)

where as beforem(·) is an unknown nonlinear mapping,ϕ(t) is a regression vector con-
sisting of lagged input-output data, andε(t) is a noise term which typically is modeled as a

145
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sequence of i.i.d. random variables with zero means and variancesσ 2
t . As a default model

for (7.1) we will consider the local linear structure;

m(ϕ(k)) = β0+ βT
1 (ϕ(k)− ϕ(t)), (7.2)

which for each operating pointϕ(t) will be fitted to the data{(y(k), ϕ(k))} belonging to a
neighborhood ofϕ(t). In earlier chapters, when dealing with predictors, we have almost
exclusively utilized the constant termβ0 in this polynomial expansion as an estimate. Here
we will also make use of the input-output linearization aroundϕ(t) that (7.2) provides.

The organization of the chapter is as follows: Section 7.2 considers traditional adaptive
control methods and discusses how local polynomial models can be adopted to this frame-
work. Section 7.3 investigates several prediction-based methods. Section 7.4 generalizes
these ideas to themodel predictive controlframework, and Section 7.5, finally, provides
conclusions and discusses possible extensions of the presented methods.

7.2 Adaptive Control

The problem of controlling dynamical systems where the plant parameters are unknown
or time-varying, has attracted considerable attention over the past 20–30 years, and is
usually referred to asadaptive control(Narendra and Annaswamy, 1989; Åström and
Wittenmark, 1995). Adaptive control algorithms can roughly be divided into two major
classes –direct and indirect algorithms. In anindirect algorithm, it is supposed that the
process model can be thought of as being parameterized by a finite-dimensional parameter
vectorθ ;

m(ϕ(t)) = m(ϕ(t), θ),

and that there is an estimator available that generates a sequence of estimates,{θ̂ (t)}, of
the plant parameters. These are fed to a design procedure

%(t) = χ
(
θ̂ (t)

)
, (7.3)

that given a certain controller structure maps the plant parameters to corresponding con-
troller parameters%(t). The actual controller is then implemented as

u(t) = κ(η(t), %(t)) , (7.4)

whereη(t) is a vector of measurements constructed from past reference signals and input-
output measurements of the process, andu(t) is the resulting controller output, see Figure
7.1.

When usingdirect methods, it is instead assumed that it is possible to reparameterize
the plant in terms of the controller parameters. The controller can then be estimated directly
from data, i.e., the design mappingχ(·) will be the identity. In the following, though, we
will only consider the indirect case above.

In traditional treatments of adaptive control, it has been assumed that the process is
linear andtime-invariantwith unknown parameters, orlinear andtime-variantwith slowly
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Figure 7.1 An indirect adaptive controller.

varying parameters. The standard solution has thus been to estimate the plant parametersθ

using some recursive scheme such as recursive least squares (RLS) with forgetting factor,
see Section 5.4.1.

However, assuming that the process is mildly nonlinear, an useful alternative could be
to replace the recursive estimator with a local polynomial estimator similar to the MOD

algorithms derived in Chapter 4. If then also the time stamps are included in the model
as extra regressor components and the database is updated on-line during operation, this
enables the possibility to use a parameter estimator that is localbothin time and the regressor
space.

The controller design can of course be done in a quite arbritrary way and a wide
range of possibilities exist. In this section, though, we will only consider a simple linear
approach where the design mappingχ(·) is implemented using traditional pole placement
techniques (Åström and Wittenmark, 1990). The idea is to determine a linear controller
that gives desired locations of the closed-loop poles.

7.2.1 Pole Placement

A general linear controller with two degrees of freedom can be written

u(k) = T(q)

R(q)
r (k)− S(q)

R(q)
y(k) (7.5)

whereR(q), S(q) andT(q) are polynomials in the forward time-shift operatorq (Åström
and Wittenmark, 1990). The controller consists of two parts; a feedback filter with transfer
function−S/R and a feed-forward filter with transfer functionT/R, see Figure 7.2. If the
process can be modeled by the linear relation

A(q)y(k) = B(q)u(k), (7.6)
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Figure 7.2 A linear controller with two degrees of freedom.

the closed-loop transfer function from reference to output is given by

y(k) = B(q)T(q)

A(q)R(q)+ B(q)S(q)
r (k) = Bm(q)

Am(q)
r (k) (7.7)

The key idea behind the pole placement design method is now to chooseR(q) andS(q)
so that the closed-loop system gets desired polesAm(q). This can be done by solving the
so-calledDiophantineequation (orAryabhatta’sidentity)

A(q)R(q)+ B(q)S(q) = Am(q)Ao(q). (7.8)

whereAo(q) is a so-calledobserver polynomialthat takes care of possible cancelations be-
tween the numerator and denominator polynomials when the closed-loop transfer function
is formed. The polynomialT(q) then follows from the relation

B(q)T(q) = Bm(q)Ao(q). (7.9)

The remaining problem is of course how to model the system dynamics. The basic
idea in the context of traditional indirect adaptive control has been to estimate the plant
parametersA(q) and B(q) on-line using a recursive estimator, and at each time instant
update the controller parameters so that (7.8) and (7.9) are fulfilled.

It is obvious that this estimation stage could be replaced by a local polynomialestimator.
Adopting the model-on-demand philosophy to this context, however, requires a minor
modification. Since we earlier assumed a local linear model of the type (7.2), the model-
on-demand estimator will at each time instant provide an input-output linearization of the
form

A(q)y(t) = B(q)u(t)+ α (7.10)

whereA(q) and B(q) denote polynomials in the forward time-shift operatorq extracted
from β̂1, and

α = β̂0 − β̂T
1 ϕ(t)

represents an offset term. At a first sight, this seems to require a modification of the
pole placement formulas above. However, it is easily seen from (7.10) that by adding an
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additional termγ to the controller in (7.5), i.e.,

u(t) = T(q)

R(q)
r (t)− S(q)

R(q)
y(t)+ γ, (7.11)

the same closed-loop properties as in (7.7) can be achieved if

γ = − 1

B(1)
α. (7.12)

Hence it is possible to use pole placement design in the same fashion as in the traditional,
recursive estimation case, and we can outline the following algorithm:

ALGORITHM 7.1 MOD-based Pole Placement Control

Given MOD-estimation parameters, database of output/regressor pairs, and controller spe-
cifications in terms of desired closed-loop polesAm, closed-loop zerosBm and observer
polynomialAo:

Step 1: At the current operating pointϕ(t), estimate a local linear model of the form
(7.2). This can be performed using Algorithm 4.1 or Algorithm 4.2 as outlined
in Chapter 4.

Step 2: Extract theA(q) and B(q) polynomials and the offset termα from the local
model.

Step 3: Solve the Diophantine equation (7.8) in order to getR(q) andS(q), and use (7.9)
to determineT(q).

Step 4: Calculateγ from (7.12).

Step 5: Compute the control signal according to (7.11) and apply it to the plant.

The above steps are repeated at each sampling period. ❏

A problem with the pole placement approach is that it sometimes is hard to specify a
closed-loop characteristic polynomial that gives a reasonable trade-off between tracking
and control effort. A remedy is to consider a linear quadratic approach where the locations
of the poles are given indirectly.

7.2.2 LQ Control

In most situations it feels more natural to express the specifications on the controller in
terms of the variability of the tracking error and the control signal, rather than in terms of
locations of the closed-loop poles and zeros. A natural way of doing so is to introduce the
steady-state objective function

J = E
{
(y(k)− r (k))2 + ρ · u2(k)

}
(7.13)
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where E as in earlier chapters denotes mathematical expectation. The control law mini-
mizing (7.13) is usually referred to as thelinear quadraticcontroller. A special case is the
minimum-variancecontroller which corresponds toρ = 0 (Åström and Wittenmark, 1990).

The linear quadratic control problem is usually solved in state-space formulation. How-
ever, it is also possible to solve it using input-output models as follows (providedA(q) and
B(q) do not have common factors): The optimal feedback controller that minimizes (7.13)
has the form of (7.5), whereR(q) andS(q) satisfy the Diophantine equation

A(q)R(q)+ B(q)S(q) = P(q)qna, (7.14)

whereP(q) is the solution to the spectral factorization problem

r P(q)P(q−1) = ρA(q)A(q−1)+ B(q)B(q−1). (7.15)

The correspondingT(q) is given by

T(q) = P(1)

B(1)
qna . (7.16)

See Åström and Wittenmark (1990) for a proof. An adaptive LQ controller based on local
models can therefore be outlined according to the following algorithm:

ALGORITHM 7.2 MOD-based LQ Control

Given MOD-estimation parameters, database of output/regressor pairs, and controller spe-
cification in term of a control penaltyρ:

Step 1: At the current operating pointϕ(t), estimate a local linear model. This can be
performed using either Algorithm 4.1 or Algorithm 4.2.

Step 2: Extract theA(q) and B(q) polynomials and the offset termα from the local
model.

Step 3: Solve the spectral factorization problem (7.15).

Step 4: Solve the Diophantine equation (7.14) in order to getR(q) andS(q), and use
(7.16) to computeT(q).

Step 5: Calculateγ from (7.12).

Step 6: Compute the control signal according to (7.11) and apply it to the plant.

The above steps are repeated at each sampling period. ❏

If A(q) andB(q) indeed do have common factors (especially unstable modes), some
modifications of the above scheme are required. We will not do it here though. Consult
Åström and Wittenmark (1990) for details.

Let us illustrate Algorithm 7.2 with a simple example that will be used throughout the
chapter:
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Example 7.1 System with state-dependent gain

Consider the nonlinear system

ÿ(t) (1+ |y(t)|) = u(t). (7.17)

It has the property that the gain of system decreases as the magnitude of the output signal
increases. The open-loop system is unstable, so a NARX 221 database consisting of 3000
output and regressor pairs was generated using data collected from a closed-loop experiment
using a proportional controller,u(t) = K (r (t) − y(t)), with K = 1 and a band-limited
white noise reference signalr (t) with power 2. The sampling interval was chosen as
Ts = 0.1 seconds.

As a first attempt, we tried a fixed gain LQ controller withρ = 0.01, based on a global
linear ARX model estimated from the dataset. A simulation of the resulting closed loop
system is shown in Figure 7.3. This does not look good. The simulated output is unable to
reach the setpoint.

In Figure 7.4, the “adaptive” LQ controller of Algorithm 7.2 has instead been used. The
system dynamics was estimated locally for each operating pointϕ(t) using MOD-algorithm
4.1 with default values, a local linear model structure and the database above. The control
penalty was chosen as in the fixed gain case, i.e.,ρ = 0.01. In this case the output is able to
reach the setpoint. However, the system response is quite slow, and there are small ripples
in the control. Later in the chapter we will see how the performance can be improved by
considering a model predictive controller. ❏

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

y(
t)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−15

−10

−5

0

5

10

15

20

t

u
(t
)

(b)

Figure 7.3 Step response experiment using a fixed gain LQ controller based on
a global estimated model of the system (7.17). (a) Reference signal (dashed) and
system output (solid). (b) Control signal.
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Figure 7.4 Step response experiment using a local linear estimator and an adaptive
LQ controller. (a) Reference signal (dashed) and system output (solid). (b) Control
signal.

7.2.3 Summary

Combining local modeling with traditional adaptive control techniques is, as has been
shown, straightforward, and might be a useful approach for controlling mildly nonlinear
processes. A classical drawback with recursive estimators in the traditional setup has been
the problem of parameter drift, caused by the lack of excitation in the signals that occurs
when the system output reaches the setpoint. Adaptive controllers that instead use local
estimators like the MOD-algorithms will most likely not have that problem, provided, of
course, that the observations stored in the database are of good quality and sufficiently
informative.

It is worth pointing out that the combination of local polynomial models and traditional
adaptivecontrol techniques presented here is not an entirely new concept. A pole placement
algorithm similar to the one in Algorithm 7.1 has earlier been discussed by Bontempiet al.
(1998). Combinations of LQ control and local models similar to Algorithm 7.2 have been
studied by Tanaka (1995), Atkesonet al. (1997b) and Passino and Yurkovich (1996).

7.3 Prediction-Based Approaches

A very important aspect of a model is its predictive power, i.e., its ability to forecast the
future. Controllers that utilizes this feature of a model for on-line selection of control
actions are usually referred to aspredictive controllersand have become more and more
popular in recent years.

How the control action is selected by the controller is of course a matter of the criterion
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used. A typical design goal for process control applications, though, is to require that a
good control is one that drives the predicted outputk steps ahead close to a given setpoint
r , i.e.,

y(t + k) ∼= r (t + k). (7.18)

Several ways of constructing predictive controllers that achieve (7.18) have been sug-
gested in the literature. See for instance Åström and Wittenmark (1995) for a survey from
an adaptive control viewpoint. In this contribution we will mainly study how local models
can be used in this context. It turns out that there are mainly three different approaches for
incorporating the MOD approach into the predictive control framework:

• Predictive control based on input-output linearization around the current operating
point.

• Predictive control based on linearization along a possible future trajectory.

• Predictive control based on numerical optimization.

They will all be studied in more detail later on in this section. Nevertheless, essential for
each of them is that we have available an explicit expression for the output at future time
instants. The derivation of such expressions will thus be the subject for the next subsection.

7.3.1 Expressions for the Output Prediction

The key idea behind prediction-based control methods is to rewrite the process model to
obtain an explicit expression for the output at future time instants. Fortunately though, it
turns out that this is rather straightforward to do for linear systems on input-output form.

Linear Time-Invariant Systems

We will start initially by making the assumption that the model description (7.10) obtained
at time t will be valid over the nextk samples, i.e., that the linearized model is time-
invariant. This enables the use of established techniques, as found in standard textbooks
on stochastic control. See, for instance, Åström and Wittenmark (1990) or Åström and
Wittenmark (1995).

It turns out that it becomes easier to do the derivation in the backward time-shift operator
q−1. Equation (7.10) can be rewritten as

A(q−1)y(t) = B(q−1)u(t − 1)+ α, (7.19)

where

A(q−1) = 1+ a1q−1+ . . .+ anaq−na,

B(q−1) = b0+ b1q−1+ . . .+ bnbq−nb.

The standard trick is now to introduce the identity

1= A(q−1)Fk(q
−1)+ q−kGk(q

−1), (7.20)
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whereFk(q−1) andGk(q−1) are polynomials of degreesk − 1 andna − 1 respectively.
Substituting (7.20) into the plant model (7.19) yields

y(t) = B(q−1)Fk(q
−1)u(t − 1)+ q−kGk(q

−1)y(t)+ Fk(1)α,

i.e., thek-step-ahead predictor is given by

ŷ(t + k) = B(q−1)Fk(q
−1)u(t + k − 1)+ Gk(q

−1)y(t)+ Fk(1)α. (7.21)

By partitioningB(q−1)Fk(q−1) as

B(q−1)Fk(q
−1) = Sk(q

−1)+ q−kS̃k(q
−1),

where degSk(q−1) = k−1 and deg̃Sk(q−1) = nb−2, equation (7.21) can be rewritten as

ŷ(t + k) = Sk(q
−1)u(t + k− 1)

+ S̃k(q
−1)u(t − 1)+ Gk(q

−1)y(t)+ Fk(1)α. (7.22)

Here the first term depends on future control actionsu(t), . . . ,u(t + k − 1) whereas the
remaining terms depend on known, measured quantities only.

Linear Time-Variant Systems

Let us now consider the linear but time-varying process model

Aτ (q
−1)y(τ ) = Bτ (q

−1)u(τ − 1)+ ατ , τ = t + 1, . . . , t + k, (7.23)

whereAτ (q−1), Bτ (q−1) andατ are changing with time. Predictors for such models can
probably be found in the vast literature on model predictive control, but we have here made
our own derivation.

It turns out that the output predictor associated with the model (7.23) can be found as
follows: Introduce the identity

1= At+k(q
−1)+ f1q−1At+k−1(q

−1)+ . . .+ fk−1q−k+1At+1(q
−1)

+ q−kGt,k(q
−1) (7.24)

which can be interpreted as the time-variant counterpart of (7.20). The coefficients ofFt,k

andGt,k can now be determined using repeated polynomial division. For instance, forf1
we have

q
(
1− At+k(q−1)

)
At+k−1(q−1)

= f1+ f2q−1At+k−2(q−1)+ . . .+ fk−1q−k+2At+1(q−1)+ q−k+1Gt,k(q−1)

At+k−1(q−1)

= f1 + R1(q−1)

At+k−1(q−1)
. (7.25)
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By applying the same procedureon the remainder termsRi (q−1), the rest of the coefficients
of Ft,k(q−1) andGt,k(q−1) can be determined. The correspondingoutput predictor is given
by

ŷ(t + k) =(
Bt+k(q

−1)+ f1q−1Bt+k−1(q
−1)+ . . .+ fk−1q−k+1Bt+1(q

−1)
)

u(t + k − 1)

+ Gt,k(q
−1)y(t)+ Ft,k(q

−1)αt+k. (7.26)

As in (7.22) this expression can be partitioned in one part that depends on future control
moves and one part that depends on past measured data only.

ŷ(t + k) = St,k(q
−1)u(t + k− 1)+ S̃t,k(q

−1)u(t − 1)

+ Gt,k(q
−1)y(t)+ Ft,k(q

−1)αt+k. (7.27)

7.3.2 Constant Future Control

Let us now try to utilize the just derived expressions in the predictive control framework.
However, it is easy to realize from (7.22) and (7.27) that there in general exist infinitely
many ways of achieving (7.18) if no additional constraints are put on the future control
actions. The simplest choice, though, is to assume that all future control signals within the
prediction horizon will remain constant and equal tou(t), i.e.,

u(t) = u(t + 1) = . . . = u(t + k− 1) = ū. (7.28)

This approach is usually referred to asconstant future control. We will in the following
discuss how it can be implemented given the three methods listed in the beginning of the
section.

Constant Future Control Based on Local Linearizations

The simplest implementation of constant future control follows from the assumption of a
time-invariant model description. By assuming that (7.18) holds, we have from (7.22) and
(7.28) that

r (t + k) = Sk(1)ū+ S̃k(q
−1)u(t − 1)+ Gk(q

−1)y(t)+ Fk(1)α.

This gives the control signal

ū = r (t + k)− S̃k(q−1)u(t − 1)− Gk(q−1)y(t)− Fk(1)α

Sk(1)
(7.29)

which is applied to the process. Here we have used thecertainty equivalenceprinciple,
according to which the controlu(t) = ū is determined under the assumption that the model
exactly describes the true system. However, at the next sampling instant, a new local model
and a new predictor are obtained, which together with (7.29) provides a new value of the
control signal. This is an example of the so-calledreceding horizonconcept.
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Constant Future Control Based on Linearizations along a Trajectory

A natural extension of the above method is to apply the control signal obtained from (7.29)
to the process, and make use of the local estimator to obtain a linear but time-varying
model over the prediction horizon. It is then possible to use (7.27) in order to determine
the constant future control sequence that satisfies (7.18). This gives the control law

ū = r (t + k)− S̃t,k(q−1)u(t − 1)− Gt,k(q−1)y(t)− Ft,k(q−1)αt+k

St,k(1)
(7.30)

which similarly to (7.29) is updated according to the receding horizon principle.

Constant Future Control Based on Optimization

A third and conceptually different approach of solving the constant future control problem
follows from the use of a general and nonlineark-step-ahead predictor. However, since we
in the local polynomial modeling framework are unable to obtain a global description of
the plant dynamics, it is not possible to obtain an explicit expression for the prediction as a
function of future controls. Instead we have to resort to numerical optimization approaches.

In order to achieve the control goal (7.18), it is natural to introduce a loss function that
measures the deviation from the desired setpoint. A natural such choice (with desirable
analytical properties) is the quadratic loss

J = (r (t + k)− ŷ(t + k)
)2
. (7.31)

The task is now to choose the constant future control sequence (7.28) so that (7.31) is
minimized. This can be done using a numerical optimization routine that simulates the
system for different choices ofū, and chooses the one that gives the smallest loss value. It
is well known, though, that more accurate results and faster convergence could be obtained if
the optimization routine is provided with derivative information. DifferentiatingJ = J(ū)
with respect tōu gives

∂ J(ū)

∂ ū
= 2

(
ŷ(t + k)− r (t + k))

) · ∂ ŷ(t + k)

∂ ū
. (7.32)

The derivative of the predictor with respect toū can be determined using the expression
for the time-varying predictor. It follows from (7.27) that

∂ ŷ(t + k)

∂ ū
= St,k(1).

Hence the derivative of the loss function can be rewritten

∂ J(ū)

∂ ū
= 2(ŷ(t + k)− r (t + k))St,k(1). (7.33)

The minimization ofJ can thus be carried out using either a gradient-based scheme,

ū(i ) = ū(i−1) − µ∂ J
(
ū(i−1)

)
∂ ū

, (7.34)
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where the derivative (7.33) is estimated from the database by treating the sequence of
linearizations obtained from thek-step-ahead predictor as a linear and time-varying system,
or (if the second order derivative also is computed) a Newton-type scheme

ū(i ) = ū(i−1) − µ
[
∂2J

(
ū(i−1)

)
∂ ū2

]−1
∂ J
(
ū(i−1)

)
∂ ū

. (7.35)

Note though that since the loss function (7.31) in general will have several local minima,
it is important to select the initial valuēu(0) with care. One possibility here is to use the
value obtained from either (7.29) or (7.30).

Combining local modeling with optimization are not new ideas. Similar optimization
approaches for local polynomial models have earlier been investigated by among others
Atkesonet al. (1997b) and Bontempiet al. (1998) using names asdeadbeatandgradient
basedcontrol. However, in their treatments, they have only considered the casek = 1
which in general results in too aggressive controllers.

7.3.3 Minimum Effort Control

An alternative to the constant future control approach discussed in the previous subsection,
is to determine the control law that fulfills (7.18) while minimizing the control effort,

Ju =
k−1∑
l=0

u2(t + l ) (7.36)

over the prediction horizon. This can be solved by regarding (7.18) as a constraint while
minimizing (7.36). This topic will not be explored any further in this text however. The
interested reader is referred to Åström and Wittenmark (1995) for further details in the
linear and time-invariant case.

7.3.4 Summary

Although the predictive-based control approaches are very simple and straightforward they
have some shortcomings. Controllers with short horizonsk will most likely produce ag-
gressive control actions, and will certainly not work for non-minimum phase systems,
whose responses initially will be in the wrong direction. Furthermore, for large horizons,
the closed-loop response will typically be slow. A solution is to form a criterion that takes
into account the output over a sequence of future time instants, and possibly also includes
penalties on the changes in the control signal. This is usually referred to asmodel predictive
control and will described more thoroughly in the next section.

7.4 Model Predictive Control

Model predictive control, MPC, is a family of optimal-control related methods that selects
control actions by on-line minimization of objective functions. It can be viewed as a
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generalization of the prediction-based methods described in Section 7.3. As the name
indicates, the methods assume a model of the controlled process in order to compute
predictions of the future output trajectory. The control action is then optimized so as
to force this trajectory to meet certain control goals. There are many variants of model
predictive control, for instance,dynamic matrix controlandextended horizon control. See
Garcíaet al. (1989) for a survey. If the process model is estimated on-line and updated in
an adaptive control manner, one usually talks aboutgeneralized predictive control, GPC,
(Clarkeet al., 1987a; Clarkeet al., 1987b).

Early formulations of MPC used linear models such as step response, impulse response
or state-space models, and have turned out to be successful in controlling linear and mildly
nonlinear processes. The performance degradation and instability noticed in the presence
of strong nonlinearities, though, soon motivated the use of nonlinear models in the on-line
optimization. However, both the difficulties in obtaining a good model of the nonlinear
process and the excessive computational burden associated with the control optimization
have been serious obstacles to widespread industrial implementations. Various simplifi-
cations and approximations based on linearization of the nonlinear process have therefore
been proposed, see, e.g., Gattu and Zafiriou (1992). In this section we instead present
the concept ofmodel-free predictive control(or, alternatively,model-on-demandpredictive
control, MoDPC), which extends the MPC/GPC ideas to the model-on-demandframework.

7.4.1 The Basic MPC Formulation

The general predictive control problem can be stated as follows (Meadows and Rawlings,
1997): Given knowledge of the current system state, seek a control that minimizes the
objective function

J = φ(ŷ(t + N)) +
N−1∑
k=0

L(ŷ(t + k + 1),u(t + k),1u(t + k)). (7.37)

Of the N future control actions that minimizeJ, only the first one is applied to the con-
trolled process. When new measurements become available, a new optimization problem is
formulated whose solution provides the next control action. This is thus again an instance
of the receding horizon principle. A special feature of the formulation (7.37) is the presence
of the control increment,

1u(t + k) = u(t + k)− u(t + k − 1), (7.38)

in the objective. In some examples, for instance in process control applications, the change
rate of the control action may be restricted. Rather than including the actuator dynamics
in the model, it is instead common practice to include penalties on the control increment.
Another advantage is that it is straightforward to include hard constraints on the control
signal magnitude and the control increment, i.e.,

umin ≤ u(t + k) ≤ umax, (7.39a)

1umin ≤ 1u(t + k) ≤ 1umax. (7.39b)
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The criterion (7.37) is general and may be chosen to meet a wide range of process
objectives such as maximization of profits, minimization of operational costs etc. However,
in the sequel of this section we will focus on the specialized case of regulation to a given
setpointr (t) (i.e., tracking) using a quadratic criterion,

J =
N−1∑
k=0

Qe(k)(r (t + k+ 1)− ŷ(t + k + 1))2

+ Qu(k)u
2(t + k)+ Q1u(k)1u2(t + k) (7.40)

whereQe(k), Qu(k) andQ1u(k) represent weightings on the control error, control signal
and control increment magnitudes respectively. If the process model is linear andQ1u(k) ≡
0, it is clear that this criterion is closely related to the familiar linear-quadratic control
problem (Bitmeadet al., 1990). Note also the striking resemblance with equation (7.13).

Optimization of the objective (7.40) can be quite demanding for large prediction hori-
zons. To decrease the computational complexity it is thus very common to introduce
constraints on the future control signals. A commonly used approach is to assume that the
control increments are zero afterNu ≤ N steps;

1u(t + k− 1) = 0, k > Nu. (7.41)

It is well known that this also has the effect of producing less aggressive controllers
(Meadows and Rawlings, 1997). The quantityNu is usually referred to as thecontrol
horizonin the MPC literature.

7.4.2 Optimization Based on Local Linearizations

The most obvious and straightforward way of incorporating local models into the MPC
formulation, is to optimize the objective based on the current input-output linearization
similar to the approach introduced in Section 7.3. A similar idea was adopted by Gattu
and Zafiriou (1992) using state-space models, but we choose here to remain in the input-
output framework, both since our obtained models are of this form and since we already
have derived predictors for this class of plant models. The derivation will thus follow the
standard approach for input-output models,as found in the standard literature ongeneralized
predictive control, GPC, see, e.g., Clarkeet al.(1987a).

Recall again the expression (7.22) for the output prediction. It showed that the predicted
output’s dependency of future controls can be expressed as

ŷ(t + k) = Sk(q
−1)u(t + k − 1)+ S̃k(q

−1)u(t − 1)+ Gk(q
−1)y(t)+ Fk(1)α

= Sk(q
−1)u(t + k − 1)+ ȳ(t + k),

whereȳ(t + k) is introduced as a term that sums up all known and measured quantities.
By also introducing the notations

ŷ 1= (ŷ(t + 1) . . . ŷ(t + N)
)T
, (7.42a)
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ũ
1= (u(t) . . . u(t + N − 1)

)T
, (7.42b)

ȳ 1= (ȳ(t + 1) . . . ȳ(t + N)
)T
, (7.42c)

S̃
1=


s0 0 · · · 0
s1 s0 · · · 0
...

. . .
...

sN−1 sN−2 · · · s0

 , (7.42d)

wheresi denote the coefficients ofSk(q−1), we have that all theN future output predictions
can be collected in vector form according to

ŷ = ȳ + S̃ũ. (7.43)

However, taking into account that the control horizonNu typically is less than the prediction
horizonN and that (7.41) holds, this can be rewritten as

ŷ = ȳ + Su, (7.44)

where

u 1= (u(t) . . . u(t + Nu − 1)
)T
, (7.45)

and

S
1= S̃3,

with

3
1=


1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

. . .
...

...

0 0 · · · 1 · · · 1


T

.

The control increments (7.38) can also be expressed in vector form

1u = Du − ū (7.46)

by introducing the auxiliary quantities

D 1=


1 0 · · · 0

−1 1
...

0
. . .

. . . 0
0 · · · −1 1

 and ū 1=


u(t − 1)

0
...

0

 .
The objective (7.40) can thus be re-expressed in compact vector form according to

J = J(u) = ∥∥r − ŷ
∥∥2

Qe
+ ‖u‖2Qu

+ ‖1u‖2Q1u
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= ‖r − ȳ − Su‖2Qe
+ ‖u‖2Qu

+ ‖Du− ū‖2Q1u
, (7.47)

where

r
1= (r (t + 1) . . . r (t + N)

)T
denotes the desired (and possibly smoothed) reference trajectory, andQe, Qu andQ1u are
diagonal matrices with entriesQe(k), Qu(k) andQ1u(k) respectively.

Now, for theunconstrainedcase, i.e., when no hard bounds on the control and increment
are present, the minimizing control sequenceu is obtained explicitly as the ordinary least
squares solution;

u =
(
ST QeS+Qu + DT Q1uD

)−1 (
ST Qe(r − ȳ)+ DT Q1uū

)
(7.48)

For theconstrainedcase, the constraints (7.39) can be collected into the vector inequality

Cu ≤ c, (7.49)

where

C 1=


I
−I
D
−D

 and c 1=


umax · 1
−umin · 1

1umax · 1+ ū
−1umin · 1− ū

 .
We thus have the quadratic programming (QP) problem;

min
u

uT
(
ST QeS+Qu + DT Q1uD

)
u− 2

(
(r − ȳ)T QeS+ ūT Q1uD

)
u

subject to Cu ≤ c
(7.50)

which can be efficiently solved using standard numerical optimization software.

Example 7.2

Consider again the nonlinear system introduced in Example 7.1, but assume that the mag-
nitude of the control signal now is limited according to

|u(t + k)| ≤ 15, k = 0, . . . , Nu − 1.

We decided to try a receding horizon MPC controller of the form (7.50) for control, where
the system dynamics at each sampling instant was estimated using MOD-algorithm 4.1 with
default values.

The simulation result obtained after using the same estimation database as in Example 7.1
(i.e., 3000 samples, NARX 221 structure), and controller parameterN = 10, Nu = 7,
Qe = 1, Qu = 0 andQ1u = 0.001 is shown in Figure 7.5. We see that the system output
follows the reference reasonable well apart from a small overshoot. ❏
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Figure 7.5 Step response experiment using a constrained predictive controller
based on fixed linearizations. (a) Reference signal (dashed) and system output
(solid). (b) Control signal.

7.4.3 Optimization Based on Linearization along a Trajectory

A drawback with the method described in the preceeding subsection, is that the predicted
behavior of the process is determined on basis of the input-output linearization delivered
by the estimator at timet. In this way we have implicitly assumed that the linearization is
a valid model along the trajectory we predict.

This assumption will of course not hold in general, since when the currently computed
control action is applied, the process state will most likely move to another point in the
regressor space which might represent completely different dynamical properties.

A straightforward solution to this problem is to make use of anN-step-ahead predictor
of model-on-demand type, and provide it with an input sequenceũ in order to obtain
an approximate time-varying local linear model over the futureN samples. Then the
expressions derived in the end of Section 7.3.1 can be utilized when optimizing the objective
function.

An obvious question is of course which input sequence that should be used when
determining the time-varying model. A straightforward approach here, though, is to take
advantageof the control sequence obtained from the optimization performed at the previous
sampling instant. Another alternative is to use the result from Section 7.4.2 as an initial
value.

The derivation of the optimal control sequence for the time-varyingmodel is completely
analogous to the time-invariant case in Section 7.4.2 and will therefore be omitted here.
Note though, that the matrix̃S in this case will not have as simple (and recursively defined)
structure as before.
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From (7.27) it instead follows that

S̃=


s0,t,1 0 · · · 0
s1,t,2 s0,t,2 · · · 0
...

. . .
...

sN−1,t,N sN−2,t,N · · · s0,t,N

 ,
wheresi,t,k denote the coefficients ofSt,k(q−1). The vectorȳ is changed accordingly.
The control sequence can then be computed using expressions similar to (7.48) or (7.50)
depending on whether or not hard constraints are present in the criterion.

Example 7.3

Consider again the system introduced in Example 7.1 which was controlled using a con-
strained MPC controller based on local linearizations in Example 7.2. The simulation result
for an MPC controller based on linearizations along a future trajectory is shown in Figure
7.6. The controller parameters was selected as in the previous example.

We see that this controller performs much better than the previous one. Since the latter
controller uses linear models of the plant along the predicted future trajectory, it is aware
of that the gain of the system will decrease as the output magnitude increases. Therefore it
is more restrictive in its use of control energy as the output approaches the setpoint.❏
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Figure 7.6 Step response experiment using a constrained predictive controller
based on linearizations along a trajectory. (a) Reference signal (dashed) and system
output (solid). (b) Control signal.
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7.4.4 General Nonlinear Optimization

The most general solution to the nonlinear MPC problem is perhapsbrute forceoptimization
of the criterion (7.40) using nonlinear programming methods. The optimal control sequence
u can thus be determined using a numerical optimization routine, that in each iteration
simulates the system given its current value, and then updates it in a direction such that the
value of the objective functionJ decreases.

As in the constant future control case, it is known that more accurate results normally
will be obtained if the optimization routine is provided with gradient information. But
fortunately, here the derivations in earlier sections come to our aid. From (7.47) it follows
that

∇ J = 2ST Qe(ŷ − r )+ 2Quu + 2DT Q1u1u. (7.51)

The gradient can thus be estimated from data using the sequence of local models obtained
along the simulated trajectory.

A severe problem with the general optimization formulation, though, is that the opti-
mization typically will be very complex and time-consuming for large control horizonsNu.
We will most likely also get problems with local minima.

Example 7.4

Consider again the nonlinear system considered in the previous examples. A simulation
using an optimization-based MPC controller with the same parameters as in the previous
examples is shown in Figure 7.7. We see that this controller, contrary to what is expected,
performs worse than the previous ones. This is probably due to the problem that the
optimization routine gets stuck in local minima. ❏

7.4.5 Choice of Horizons

Since the controller part of the algorithms presented in this section essentially coincides
with the traditional MPC/GPC approaches, the same tuning guidelines apply. The fact
that we now are dealing with nonlinear systems may in some situations require special
attention since model errors in the linearizations may cause instability. However, we shall
below summarize the standard choices for linear systems found by Clarkeet al. (1987a)
and Meadows and Rawlings (1997) after excessive simulation studies.

The output horizon N

If the system is of non-minimum-phase type, the output horizon should be selected so
that the later positive-going outputs are included in the objective. For linear discrete-time
systems this typically means thatN should exceed the degree of theB(q−1) polynomial.
In normal cases, though, it can be taken significantly larger, corresponding to the rise-time
of the system. This is a quite natural assumption.
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Figure 7.7 Step response experiment using a constrained predictive controller
based on nonlinear optimization. (a) Reference signal (dashed) and system out-
put (solid). (b) Control signal.

The control horizon Nu

The control horizon has found to be a very important design parameter, and is typically
selected much shorter than the output horizon. For simple systems a value ofNu = 1
typically gives quite acceptable result. Increasing it normally results in a faster system
response, but at the same time also larger and more aggressive controls.

One additional reason for choosing a short control horizon is that it is this parameter
that essentially determines the size of the optimization problem. In the model-on-demand
context, though, this argument might be of minor relevance since the algorithms anyway
are quite demanding in terms of computational resources.

7.4.6 Some Additional Examples

To establish the usefulness of the proposed concept of model-free predictive control we
will now apply it to some additional and more complex applications.

Example 7.5 Regulation of the Narendra-Li system

Recall the nonlinear system (5.23) which was used for simulation purposes in Chapter 5.
We will now try to regulate this system using the model-free predictive control approach.

As in Narendra and Li (1996), we use the reference signal

r (t) = yref(t + 1) = 0.75 sin

(
2π(t + 1)

50

)
+ 0.75 sin

(
2π(t + 1)

25

)



166 Chapter 7 Applications to Control

to check the tracking capabilities of the controller. We choose to use the same estimation
database and the same setup as for the model-on-demand simulation in Section 5.7.2, i.e.,
50 000 samples and a NARX 331 structure. Since the system is distinctly nonlinear, it
is crucial to select the controller parameters with care in order to obtain a stable closed-
loop system. We found that it was almost impossible to achieve an acceptable result with
the linearizing controller of Section 7.4.2. Therefore the more complex and resource-
demanding controller of Section 7.4.3 was used instead.

It turned out that a good choice of controller parameters was the valuesN = 3, Nu = 2,
Qe = 1, Qu = 0.1, andQ1u = 0.05. The relative large penalty on the increment was
needed to avoid excessive jumps in the control. Due to the way the estimation database
was generated, the control magnitude was limited according to

|u(t + k)| ≤ 2.5, k = 0, . . . , Nu − 1.

A simulation using the specified reference signal and the controller parameters above re-
sults in the behavior displayed in Figure 7.8. Note that the constraints on the the control
magnitude never are active in this case. The performance is equivalent to the result obtained
by Narendra and Li (1996) after using a complex neural-based controller.

A simulation using a square wave reference is shown in Figure 7.9. In this case it was
possible to shorten the control horizon toNu = 1. This resulted in a less oscillative control
signal. Notice, though, the steady-state control error that occurs in this case. This is
probably a consequence of the relatively short prediction horizon. Increasing this quantity,
however, resulted in an unstable closed-loop system. ❏
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Figure 7.8 Model-free predictive control of the Narendra-Li system. (a) Reference
(dashed) and system output (solid). (b) Control signal.
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Figure 7.9 Model-freepredictive control of the Narendra-Li system. (a) Reference
(dashed) and system output (solid). (b) Control signal.

Example 7.6 Continuous stirred-tank reactor

As a last example we will consider control of a continuous stirred-tank reactor. It has
earlier been studied by (among others) Meadows and Rawlings (1997). The reactor model
is given by

ẋ1(t) = −k1x1(t)− k3x2
1(t)+ (xF − x1(t))u(t) (7.52a)

ẋ2(t) = k1x1(t)− k2x2(t)− x2(t)u(t) (7.52b)

and models certain chemical reactions in the reactor. The parameters have nominal values
k1 = 50,k2 = 100,k3 = 10 andxF = 10. The control objective is to maintain the variable
x2(t) = y(t) at the setpoint 1.0

The two steady-state solutions(x̄1, x̄2, ū) that corresponds to the desired output are

(2.5, 1.0, 25) and (6.6667, 1.0, 233.33).

Due to some special performance properties of the process, the solution with lower values
is to prefer.

We assume that the states are not measurable, so we have to rely entirely on an input-
output structure for modeling and control. In order to generate data, the system (7.52) was
simulated using a Gaussian-type input with mean 25 and standard deviationσ = 50. A
dataset of 5000 samples was collected from this simulation by sampling withTs = 0.002 h.
The resulting data were used to construct a MOD database of NARX 221 type.

As noted by Meadows and Rawlings (1997), an MPC controller without penalties on the
control drives the system to the higher (undesirable) steady-state solution. The same is
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observed for controllers with short horizons and is probably a consequence of the system’s
non-minimum-phase properties. This behavior is even more critical in the MOD case,
since the system state then moves out of the support of the stored data. We found that
a good choice of parameters for the controller that brings the system to the desired state
was N = Nu = 7, Qe = 1, Qu = 0, Q1u = 2 · 10−4, umin = 0 andumax = 50. A
simulation based these values, MOD-algorithm 4.1 and initial conditionsx1(0) = 2.9997
andx2(0) = 1.11697 is shown in Figure 7.10. The result is equivalent to that reported by
Meadows and Rawlings (1997). ❏
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Figure 7.10 Simulation result for the stirred-tank reactor.

7.4.7 Summary

We have in this section presented the promising concept ofmodel-free predictive control,
that combines the idea of model-on-demand with established and well-known MPC/GPC
techniques. The method is model-free in the sense that no global model of the process
dynamics is required. Instead it relies on an on-line estimation scheme that depends upon
process data stored in a database. The only model-related quantities that have to be decided
upon by the user, are the parameters that control the configuration of the regression vector,
i.e., the orders and delays. The remaining part of the modeling is performed automatically
and on-line during operation.

By assuming that MOD estimator delivers local linear models, an advantage with the
approach is that it is possible to use standard MPC techniques for the controller part.
This also implies that standard tuning guidelines apply. Moreover, since the estimator at
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each sampling instant returns the best available linearization given data, the method has
the the ability of controlling mildly nonlinear and time-varying systems. This has been
demonstrated in several numerical simulations.

A drawback with the approach is that the performance of the controller is critically
depending on the quality of the database. Furthermore, the concept will probably not
work with strongly nonlinear systems where the local model is valid only in a very narrow
neighborhood of the operating point. The controller also requires large computational
resources due to the nature of the underlying estimation procedure.

7.5 Conclusions and Extensions

This chapter has discussed several possibilities of using the model-on-demand philosophy
in a control framework, ranging from simple adaptive control ideas to more sophisticated
predictive approaches. The most promising approach here seems to be the model-free
predictive control (or MoDPC) approach ofSection 7.4,although it is clear that its properties
need to be further studied and analyzed.

All the described methods have relied upon the certainty equivalence principle, i.e., that
the obtained local model exactly describes the true system dynamics. This is of course never
true in reality. However, as demonstrated in Chapter 4, it is possible to derive statistical
descriptions of the model uncertainty such as the variance of the estimate or confidence
bands. To utilize such uncertainty descriptions from the local models in the control design
is an obvious and natural extension of the concept.
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8
Summary & Conclusions

The problem of modelingdynamical systems when large data volumes areavailable has been
studied. The proposed solution, the model-on-demand estimator, stores all observations
in a database, and computes estimates “on demand” as the need arises. When a model is
really needed at (or around) a certain operating point, relevant data is retrieved from the
database, and a modeling operation is performed on that subset.

It has been recommended that the model-on-demand estimator is formed as a weighted
average of the observations belonging to small neighborhood around the operating point.
Two conceptually different approaches for weight selection have been studied, where the
first one is based on traditional kernel functions and the other one relies on an explicit
optimization stage. Furthermore, two algorithms corresponding to these approaches have
been presented and their asymptotic properties have been studied. It has been demonstrated
through simulations that the optimization approach for some applications may produce
more accurate predictions. However, it is at the same time more demanding in terms of
computational resources.

Identification Applications

Chapters 5 and 6 have shown that the model-on-demand concept with success can be applied
to system identification problems, both in the time and frequency domains.

For time-domain prediction/simulation, it has been demonstrated that the derived meth-
ods are very flexible, and that they for some applications produce smaller prediction errors
than other proposed methods like neural nets. However, this performance improvement
comes to the price of an increased computational complexity. Other potential drawbacks
are that the model-on-demand method is critically depending on the number of data, and
that it might be sensitive to the data distribution and effects at the boundary of the regressor
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space.
For the frequency domain problems, it has been shown that the nonparametricmodeling

concept provides methods that estimate spectra and frequency functions from data using
automatic, adaptive and frequency-dependent frequency resolution. This gives several
advantages over traditional spectral analysis techniques. Many frequency functions exhibit
fine details to different degrees in different frequencybands. The local smoothing approach
thus gives a useful alternative to multi-resolution techniques like wavelets. We have also
demonstrated how an automated procedure, based on a local goodness-of-fit criterion, leads
to good choice of bandwidths that very well matches the asymptotically optimal choice of
frequency resolution.

Control Applications

In Chapter 7 we have outlined several possibilities of using the model-on-demand philos-
ophy in a control framework, ranging from simple adaptive control ideas to more sophis-
ticated predictive approaches. In particular we have proposed the concept ofmodel-free
predictive control, which combines the idea of model-on-demand with established and
well-known MPC/GPC techniques. This approach holds the promise of high-performance
nonlinear control without the need for global models.

A potential drawback with the method is that the performance of the controller is criti-
cally depending on the quality of the database. Furthermore, the concept will probably not
work with strongly nonlinear systems where the local model is valid only in a very narrow
neighborhood of the operating point. The controller also requires large computational re-
sources due to the nature of the underlying estimation procedure. This can of course be a
problem for high-performance applications with timing constraints.

Extensions & Future Work

There is a number of open questions that need to be further investigated. Some possible
topics for future research are listed below.

• For the estimation part, a natural extension is to consider more complex statistical
models and noise distributions. This will lead to research in the direction of local
likelihood estimation.

• Another obvious extension in the general setting is the dataset searching problem.
This will concern investigations regarding suitable data structures that will enable
efficient searches for neighborhoods. Tree structures likek-d trees were discussed in
Chapter 4 and could be a useful alternative here. When working with huge datasets,
though, it would be more desirable to utilize a database management system (DBMS).
How such a system could be integrated with the estimation procedure clearly needs
to be further studied.

• A related question occurs when dealing with the time-domain prediction problem:
How should the collected input-output data be organized in memory to enable largest
possible flexibility? We have until now assumed that the data are stored as output-
regressor pairs. However, this restricts the possibility of changing model structure
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after the database is constructed. Applications involving time-varyingsystems where
the database has to be updated on-line also raise the demand for forgetting mecha-
nisms or data compression methods.

• For the frequency-domainapplications, we have shown that it is important to estimate
the variance from data in order to obtain good estimates. How the final result is
affected by this initial smoothing stage needs to be investigated further. The same
holds for the recursive procedure that was used to speed up the estimation process. Its
sensitivity against certain classes of frequency functions needs to be further analyzed
through simulations.

• The control applications of course also need to be more thoroughly studied and
analyzed. All described control methods have relied upon the certainty equivalence
principle, i.e., that the obtained models exactly reflect the true system dynamics. This
is of course rarely true in reality. However, we have shown that it is possible to derive
statistical descriptions of the model uncertainty such as variance of the estimate or
confidence bands. To utilize such uncertainty descriptions from the local models in
the control design is an obvious and natural extension.
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Notation

Acronyms

AIC Akaike’s Information Theoretic Criterion
AMISE Asymptotic Mean Integrated Squared Error
AMSE Asymptotic Mean Squared Error
ARMA Auto-Regressive Moving Average
ARMAX Auto-Regressive Moving Average with eXogenous input
ARX Auto-Regressive with eXogenous input
Cp Mallow’s Cp estimate of risk
CV Cross-validation
ETFE Empirical Transfer Function Estimate
FIR Finite Impulse Response
FPE Akaike’s Final Prediction Error
GCV Generalized Cross-validation
GPC Generalized Predictive Control
LQ Linear Quadratic
MPC Model Predictive Control
MISE Mean Integrated Squared Error
MISO Multiple Input Single Output
MOD Model-on-demand
MSE Mean Squared Error
NARX Nonlinear ARX
NFIR Nonlinear FIR
OE Output Error
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184 Notation

PRBS Pseudo-Random Binary Signal
RMSE Root Mean Squared Error
SISO Single Input Single Output

Symbols

C The set of complex numbers
R The set of real numbers
Rd Euclideand-dimensional space
I The identity matrix
',∼ aN ' bN , if and only if limN→∞(aN/bN) = 1
o aN = o(bN), if and only if lim supN→∞ |aN/bN | = 0
O aN = O(bN), if and only if lim supN→∞ |aN/bN | <∞
�k A neighborhood around the current operating point that contains

k data
σ 2 Noise variance
X The design matrix
H The hat matrix
ek Thekth column of the identity matrix
1 The vector whose elements are equal to 1
Ru(τ ) Autocovariance function
Ryu(τ ) Cross-covariance function
8u(ω) Spectrum of the signalu
ˆ̂8u(ω) Periodogram of the signalu
ˆ̂G(eiω) Empirical transfer function estimate
B(X) The vector of basis functions associated with a polynomial model
Dm(x) The d × 1 derivative vector whichi th entry is equal to

(∂/∂xi )m(x)
Hm(x) The d × d Hessian matrix which(i , j )th entry is equal to

∂2/(∂xi ∂x j )m(x)

Operators and Functions

(·)+ The positive part of the expression
b·c The integer part of the expression
‖ · ‖ Vector norm,‖x‖2 = xT x
‖ · ‖M Scaled vector norm,‖x‖2M = xT Mx
x∗ Complex conjugate
arg min

x
f (x) The minimizing argument of the functionf (·) w.r.t. x

E X Mathematical expectation of the random variableX
Var X Variance of the random vectorX
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infl(Xi , x) The influence function
µk(m)

∫
xkm(x) dx

R(m)
∫

m2(x) dx
AT The transpose of the matrixA
tr A The trace of the matrixA
|A|, detA The determinant of the matrixA
vecA Thevectorof the matrixA, obtained by stacking the columns of

A underneath each other in order from left to right
vechA Thevector-half of the matrixA, obtained from vecA by elimi-

nating the above-diagonal entries ofA
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