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Abstract

Recursive estimation deals with the problem of extracting information about pa-
rameters, or states, of a dynamical system in real time, given noisy measurements
of the system output. Recursive estimation plays a central role in many appli-
cations of signal processing, system identification and automatic control. In this
thesis we study nonlinear and non-Gaussian recursive estimation problems in dis-
crete time. Our interest in these problems stems from the airborne applications of
target tracking, and autonomous aircraft navigation using terrain information.

In the Bayesian framework of recursive estimation, both the sought parame-
ters and the observations are considered as stochastic processes. The conceptual
solution to the estimation problem is found as a recursive expression for the pos-
terior probability density function of the parameters conditioned on the observed
measurements. This optimal solution to nonlinear recursive estimation is usually
impossible to compute in practice, since it involves several integrals that lack ana-
lytical solutions.

We phrase the application of terrain navigation in the Bayesian framework, and
develop a numerical approximation to the optimal but intractable recursive solu-
tion. The designed point-mass filter computes a discretized version of the posterior
filter density in a uniform mesh over the interesting region of the parameter space.
Both the uniform mesh resolution and the grid point locations are automatically
adjusted at each iteration of the algorithm. This Bayesian point-mass solution is
shown to yield high navigation performance in a simulated realistic environment.

Even though the optimal Bayesian solution is intractable to implement, the
performance of the optimal solution is assessable and can be used for compara-
tive evaluation of suboptimal implementations. We derive explicit expressions for
the Cramér-Rao bound of general nonlinear filtering, smoothing and prediction
problems. We consider both the cases of random and nonrandom modeling of the
parameters. The bounds are recursively expressed and are connected to linear re-
cursive estimation. The newly developed Cramér-Rao bounds are applied to the
terrain navigation problem, and the point-mass filter is verified to reach the bound
in exhaustive simulations.

The uniform mesh of the point-mass filter limits it to estimation problems of
low dimension. Monte Carlo methods offer an alternative approach to recursive
estimation and promise tractable solutions to general high dimensional estimation
problems. We provide a review over the active field of statistical Monte Carlo
methods. In particular, we study the particle filters for recursive estimation. Three
different particle filters are applied to terrain navigation, and evaluated against the
Cramér-Rao bound and the point-mass filter. The particle filters utilize an adaptive
grid representation of the filter density and are shown to yield a performance equal
to the point-mass method.

A Markov Chain Monte Carlo (MCMC) method is developed for a highly com-
plex data association problem in target tracking. This algorithm is compared to
previously proposed methods and is shown to yield competitive results in a simu-
lation study.
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Preface

Some of the results of this thesis have, or will, appear as published material. The
work was initially focused on the application of terrain navigation, which resulted
in the conference papers

[15] N. Bergman. A Bayesian approach to terrain-aided navigation. In Proc. of
SYSID’97, 11th IFAC Symposium on System Identification, pages 1531–1536.
IFAC, 1997,

[23] N. Bergman, L. Ljung, and F. Gustafsson. Point-mass filter and Cramér-Rao
bound for terrain-aided navigation. In Proc. 36:th IEEE Conf. on decision
and control, pages 565–570, 1997

and the Licentiate thesis

[16] N. Bergman. Bayesian Inference in Terrain Navigation. Linköping Studies in
Science and Technology. Thesis No 649, 1997.

Most results on terrain navigation presented in this thesis can be found in [16]. The
terrain navigation application nicely encompasses the major concepts of the general
problem of nonlinear recursive estimation, and is therefore used as an extensive
introduction to the thesis presented in Chapter 2. This chapter is an exact copy of
the forthcoming article

[24] N. Bergman, L. Ljung, and F. Gustafsson. Terrain navigation using Bayesian
statistics. IEEE Control Systems Magazine, 19(3), June 1999.

The results on Cramér-Rao bounds presented in Chapter 4 and Section 7.2 are
covered by

[23] N. Bergman, L. Ljung, and F. Gustafsson. Point-mass filter and Cramér-Rao
bound for terrain-aided navigation. In Proc. 36:th IEEE Conf. on decision
and control, pages 565–570, 1997.

[25] N. Bergman and P. Tichavský. Two Cramér-Rao bounds for terrain-aided
navigation. IEEE Transactions on Aerospace and Electronic Systems, 1999.
In review.

The wavelet approach to spatial grid adaptation of Section 5.3 has been presented
as

[20] N. Bergman. An interpolating wavelet filter for terrain navigation. In Proc. conf.
on multisource-multisensor information fusion, pages 251–258, 1998.

The Monte Carlo methods for terrain navigation given in Section 7.4 have, and
will, appear as

[18] N. Bergman. Deterministic and stochastic Bayesian methods in terrain navi-
gation. In Proc. 37:th IEEE Conf. on Decision and Control, 1998.
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[21] N. Bergman. Terrain navigation using sequential Monte Carlo methods. In
A. Doucet, J.F.G. de Freitas, and N.J. Gordon, editors, Sequential Monte Carlo
methods in practice. Cambridge University Press, 1999. To appear.

Part of the results on target tracking in Chapter 8 will be published in

[22] N. Bergman and F. Gustafsson. Three statistical batch algorithms for tracking
manoeuvring targets. In Proc. 5th European Control Conference, Karlsruhe,
Germany, 1999.

Material not directly covered by the thesis, but nevertheless related to the concepts
in Chapter 8, is found in

[93] A. Isaksson, F. Gustafsson, and N. Bergman. Pruning versus merging in
Kalman filter banks for manoeuvre tracking. IEEE Transactions on Aerospace
and Electronic Systems, 1999. Accepted for publication.
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been provided by Saab Dynamics, Linköping Sweden. Detailed explanations about
the navigation application have also been provided by several employees of Saab,
Linköping.
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1

Introduction

Nonlinear and non-Gaussian recursive estimation problems are commonly encoun-
tered, e.g., in target tracking and navigation applications. Practical solutions to
these problems usually resort to model approximations, applying standard linear
solutions to local linearizations of the estimation model. This will yield algorithms
with modest computational requirements, but will clearly be suboptimal when the
nonlinearities of the problem are severe. The local linearization schemes therefore
fail in applications where detailed nonlinear models are available and the estimation
performance cannot be sacrificed.

In this work, we emphasize the Bayesian view on statistical inference and review
the tools available for approximative implementation of this approach to nonlinear
recursive estimation. Instead of describing the problem model approximatively, the
optimal solution is here implemented in an approximative fashion.

1.1 Thesis Outline

The next chapter is an exact copy of the submitted final manuscript to [24]. This
article highlights the major problems of recursive estimation by studying the terrain
navigation application in detail. It is this application that has been the foundational
application, propelling the work presented in this thesis. The chapter contains a
brief presentation of the terrain navigation application, its Bayesian solution, and
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2 Introduction

an approximative numerical integration method developed with this application in
mind. This introduction serves both to exemplify the type of problems we consider,
and to present the main results obtained for the terrain navigation application.
There will inevitably be some overlap between Chapter 2 and the rest of the thesis,
in particular when we return to the terrain navigation application in Chapter 7.

Chapter 3 contains a comprehensive review over estimation theory with an
emphasis on the Bayesian paradigm of statistical inference. The review aims at de-
scribing the Bayesian view of statistical inference in general, and its application to
the recursive estimation problem in particular. The chapter also contains comments
on optimal combination of sensor measurements and clarifies some connections be-
tween classical statistical inference and the inference method of Dempster–Shafer.
A review over approaches to nonlinear recursive estimation is also given in Chap-
ter 3.

In Chapter 4 we present bounds on the mean square estimation error in recursive
estimation. Firstly, we review and extend the basic results of Cramér-Rao bounds
for both random and parametric estimation. Secondly, these bounds are applied to
the recursive estimation problem. We derive recursive expressions for the Cramér-
Rao bounds to filtering prediction and smoothing in nonlinear, non-Gaussian state
space models. The presentation is streamlined by emphasizing the obtained results
and postponing all proofs to appendices to the chapter.

In Chapter 5, we consider a direct approach to implementing the optimal
Bayesian solution by means of numerical integration. This leads to grid based
methods that recursively computes a discretized version of the posterior filter den-
sity. We exemplify such methods by presenting a grid based method specifically
developed for the terrain navigation application. We also comment the difficulties
in applying grid based methods to problems of high dimension, and presents some
results on adapting the grid spatially.

Chapter 6 contains a review over simulation based methods, which are better
suited for high dimensional problems. In these Monte Carlo methods, statistical
inference is performed by simulating a large number of candidate parameters and
computing sample averages with respect to these. We review the general concept
of Monte Carlo methods and present the basic theoretical justifications for their
properties along with several algorithms. Most importantly, we present the Monte
Carlo methods for recursive estimation.

In Chapter 7, we return to the terrain navigation application and describe
the integration between terrain navigation and inertial navigation. Different ap-
proaches to terrain navigation are reviewed and compared to the Bayesian approach
suggested in this work. We combine the grid based method for Bayesian terrain
navigation of Chapter 5 with the Cramér-Rao bounds of Chapter 4. In extensive
simulations we show that the implementation reach a nearly optimal performance
level with a densely chosen grid resolution. Comparative simulation studies between
the grid based method, Cramér-Rao bound, and some algorithms from Chapter 6
are also provided.

Chapter 8 contains applications of Bayesian inference to problems in target
tracking. Firstly, we review the Expectation Maximization (EM) algorithm and



1.2 Contributions 3

apply it to a target manoeuvre detection problem. Secondly, we study a complex
data association problem occuring in over the horizon target tracking. We develop a
Gibbs sampling procedure for this problem and compare it to two other previously
suggested approaches. The applications of target tracking that we consider are
off-line algorithms and therefore fall slightly out of scope, judging form the title of
the thesis. Chapter 8 instead serves to illustrate Bayesian techniques in general,
and some concepts of Chapter 6 in particular.

Finally, Chapter 9 provides some conclusive remarks regarding the work, and
possible directions of future research.

1.2 Contributions

Chapter 3 and Chapter 6 contain overviews of statistical Bayesian estimation and
numerical Monte Carlo methods, respectively. The complementary chapters con-
tain the main contributions of the thesis, they are listed below in order of appear-
ance.

• The Bayesian formulation of, and solution to, the terrain navigation problem,
presented in Chapter 2.

• The parametric Cramér-Rao bounds for filtering, prediction, and smoothing
in nonlinear, and non-Gaussian, recursive state space estimation problems.
The bounds are presented in Chapter 4.

• The posterior Cramér-Rao bounds for singular state evolution and for smooth-
ing in nonlinear and non-Gaussian recursive estimation, also given in Chap-
ter 4.

• The numerical integration point-mass filter developed for the terrain naviga-
tion, detailed in Chapter 5.

• The Cramér-Rao bounds and particle filters for terrain navigation, presented
in Chapter 7.

• The Gibbs sampling procedure for multiple measurement data association,
described in Chapter 8.

1.3 Reading Directions

Readers primarily interested in the terrain navigation application may read Chap-
ter 2, and thereafter resort to Section 5.2 and Chapter 7. Complementary informa-
tion about the intricate details of the terrain navigation application can be found
in the Licentiate thesis [16]. However, the Bayesian approach to this problem, and
its solution, is fully covered in this work.

Readers with an aim to solely study the parts on the Cramér-Rao bounds for
recursive estimation are suggested to go directly to Chapter 4. The basic concepts
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of estimation theory can be found in Chapter 3 if a prior knowledge of statistical
estimation is lacking. Illustrations of the practical application of the bounds are
found in Section 7.2, Section 7.3, and Section 7.4.

The review of Monte Carlo methods in Chapter 6 is to a large extent self-
contained and may be read without reference to the other chapters. However,
it will prove beneficial to consult Section 7.4 and Section 8.2 to exemplify and
illuminate the concepts presented in Chapter 6.



2

Terrain Navigation using

Bayesian Statistics

In aircraft navigation the demands on reliability and safety are very high. The
importance of accurate position and velocity information becomes crucial when
flying an aircraft at low altitudes, and especially during the landing phase. Not
only should the navigation system have a consistent description of the position of
the aircraft, but also a description of the surrounding terrain, buildings and other
objects that are close to the aircraft. Terrain navigation is a navigation scheme that
utilizes variations in the terrain height along the aircraft flight path. Integrated
with an Inertial Navigation System (INS), it yields high performance position es-
timates in an autonomous manner, i.e., without any support information sent to
the aircraft. In order to obtain these position estimates, a nonlinear recursive
estimation problem must be solved on-line. Traditionally, this filtering problem
has been solved by local linearization of the terrain at one or several assumed air-
craft positions. Due to changing terrain characteristics, these linearizations will
in some cases result in diverging position estimates. In this work, we show how
the Bayesian approach gives a comprehensive framework for solving the recursive
estimation problem in terrain navigation. Instead of approximating the model of
the estimation problem, the analytical solution is approximately implemented. The
proposed navigation filter computes a probability mass distribution of the aircraft
position and updates this description recursively with each new measurement. The
navigation filter is evaluated over a commercial terrain database, yielding accu-
rate position estimates over several types of terrain characteristics. Moreover, in a

5



6 Terrain Navigation using Bayesian Statistics

Monte Carlo analysis, it shows optimal performance as it reaches the Cramér-Rao
lower bound.

2.1 Aircraft Navigation

Navigation is the concept of determination of the kinematic state of a moving
vehicle. In aircraft navigation this usually consists of finding the position and
velocity of the aircraft. Accurate knowledge of this state is critical for flight safety.
Therefore, an aircraft navigation system should not only provide a reliable and
accurate estimate of the current kinematic state of the aircraft, but also a consistent
description of the accuracy of this estimate.

Aircraft navigation is typically performed using a combination of dead-reckoning
and fix position updates. In dead-reckoning systems, the state vector is calculated
from a continuous series of measurements of the aircraft movement relative to an
initial position. Due to error accumulation, dead-reckoning systems must be re-
initialized periodically. Fix point, or positioning, systems measure the state vector
more or less without regard to the previous movement of the aircraft. They are
therefore suitable for re-initialization of dead-reckoning systems.

The most common dead-reckoning systems are the Inertial Navigation Systems
(INS) in which accelerometers are used to sense the magnitude of the aircraft accel-
eration. A set of gyroscopes either maintains the accelerometers in a known orien-
tation with respect to a fixed, non-rotating coordinate system, commonly referred
to as inertial space, or measures the angular rate of the accelerometers relative
to inertial space. The inertial navigation computer uses these sensed accelerations
and angular rates to compute the aircraft velocity, position, attitude, attitude rate,
heading, altitude, and possibly range and bearing to destination. An INS generates
near instantaneous continuous position and velocity, it is self-contained, functions
at all latitudes, and in all weather conditions. It operates independently of air-
craft manoeuvres and without the need for ground station support. Complete and
comprehensive presentations of inertial navigation can be found in [99, 135].

Positioning systems that have attracted a lot of attention lately are the global
satellite navigation systems which promise a very high accuracy and global cov-
erage. There are two global satellite systems for navigation in use today: GPS,
developed by the U.S., and the Russian system GLONASS. Position estimates are
obtained by comparing distances from the aircraft to four or more satellites. The
systems have been developed for military purposes and several coding techniques
are used to keep the accuracy for civilian or unauthorized users at a level far from
the actual performance of the systems. However, using ground stations as reference,
the coding errors can be removed efficiently. Vendors have off-the-shelf receivers
for differential GPS (DGPS) with a position accuracy below the one meter level. A
comprehensive summary of the concept of satellite navigation can be found in [99,
Chapter 5].

The radio navigation systems have the disadvantage of relying on information
broadcasted to the aircraft. This information could be deliberately jammed in
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a hostile situation, or the transmitters could be destroyed, leaving the aircraft
without navigation support. Hence, even if the satellite systems give high accuracy
position information they need to be combined with alternative backup systems us-
ing other navigation principles. The concept of terrain navigation is an alternative
positioning technique that autonomously generates updates to the INS, although
in general not with the same accuracy as the satellite systems. The main idea in
terrain navigation is to measure the variations in the terrain height underneath the
aircraft flight path and compare these measurements with a reference map. The

Altitude Ground clearance

Mean sea-level

Terrain elevation

Figure 2.1: The principle of terrain navigation.

principle of terrain navigation is depicted in Figure 2.1. The aircraft altitude over
mean sea-level is measured with a barometric altimeter and the ground clearance
is measured with a radar altimeter, pointing downward. The terrain elevation be-
neath the aircraft is found by taking the difference between the altitude and ground
clearance measurements. The navigation computer holds a digital reference map
with values of the terrain elevation as a function of longitude and latitude. The
measured terrain elevation is compared with this reference map and matching po-
sitions in the map are determined. Terrain repetitiveness and flatness make this
matching nontrivial and the quality of the outcome dependent on the amount of
terrain variation. Many areas inside the reference map will in general have a ter-
rain elevation comparable to the measured one. In order to distinguish the true
position from false ones, several measurements along the aircraft flight path need
to be considered. Hence, the measurements must be matched with the map on-line
and in a recursive manner. For comprehensive discussions about the applications
of terrain navigation techniques, see [86, 87].
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The performance of the matching of terrain elevation measurements with the
map depends highly on the type of terrain in the area. Flat terrain gives little or
no information about the aircraft position. Rough, but repetitive, terrain can give
several well matched positions in an area, making it hard to distinguish between
several, well matching tracks. The information content inside a generic area of the
map can be shown to be proportional to the average size of the terrain gradient,√√√√ 1

N

N∑
i=1

‖∇h(xi)‖2 (2.1)

where xi are positions uniformly distributed in the area of interest. This scalar
measure of the terrain information can be connected to an associated Cramér-Rao
bound for the underlying estimation problem [16]. The right part of Figure 2.2
shows (2.1) evaluated in square blocks of 400 meter side where bright color indicates
a large value. The terrain map used in this work is a real commercial map of a 100

Figure 2.2: The left part shows the terrain height and the right part the information
content in the map over a central part of Sweden.

by 100 km area of central Sweden. The pure terrain elevation samples are given in
a uniform mesh of 50 by 50 meter resolution and shown to the left in the figure.
Using interpolation from surrounding map values, the terrain map can be regarded
as a known look-up table of terrain elevations as a function of position. Everything
that in the real world cannot be found by interpolation from the database values
must be regarded as noise. The right part of Figure 2.2 very clearly shows the lakes,
and the coastline of the Baltic sea to the right in the map. The north-west part
of the map is flat agricultural land with very little navigation information, while
the southern part consists of very rough terrain with varying hills of some hundred
meters height and narrow valleys that give a high information content. Maps such
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as the right part of Figure 2.2 could be used for mission planning purposes, e.g.,
finding the most informative path to the final destination.

There are several commercial algorithms that solve the terrain navigation prob-
lem. Since the development has been driven by military interests, most of these
are not very well documented in the literature. The most frequently referred algo-
rithms for terrain navigation are TERCOM (terrain contour matching) and SITAN
(Sandia inertial terrain-aided navigation). TERCOM is batch oriented and corre-
lates gathered terrain elevation profiles with the map periodically [6, 75, 135]. The
aircraft is not allowed to maneuver during data acquisition in TERCOM and there-
fore it has mainly been used for autonomous crafts, like cruise missiles. SITAN is
recursive and uses a modified version of an extended Kalman filter (EKF) in its
original formulation [91]. When flying over fairly flat or over very rough terrain,
or when the aircraft is highly maneuverable, this algorithm does not in general
perform well. In order to overcome these divergence problems parallel EKFs have
been used in [31, 88]. Another widespread system is the TERPROM system, devel-
oped by British Aerospace, can be found in several NATO aircraft. It is a hybrid
solution, in which an acquisition-mode correlates measurements in batch to find
an initial position and in track-mode processes measurements recursively using
Kalman filter techniques. However, due to commercial interests and because of its
use as a classified military system, it is not as well documented in the literature as
the previous two. One more recent and different approach that tries to deal with
the nonlinear problems is VATAN [64]. In VATAN the Viterbi algorithm is ap-
plied to the terrain navigation problem, yielding a maximum a posteriori position
estimate.

In this work, we take a completely statistical view on the problem and solve the
matching with the map as a recursive nonlinear estimation problem. The concep-
tual solution is described in the following section and an approximate implemen-
tation in Section 2.3. Simulation results with this implementation are presented
Section 2.4.

2.2 The Bayesian Approach to Terrain Navigation

As shown in Figure 2.1 the difference between the altitude estimate and the mea-
sured ground clearance yields a measurement of the terrain elevation. Assuming
additive measurement noise the terrain elevation yt relates to the current aircraft
position xt according to

yt = h(xt) + et (2.2)

where the function h(·) : R2 7→ R is the terrain elevation map. The measurement
noise et is a white process with some known distribution pet(·). This measurement
error models both the errors in the radar altimeter measurements, the current al-
titude estimate and errors originating from the interpolation in the terrain map
not perfectly resembling the real world. Let ut denote the estimate of the rela-
tive movement of the aircraft between two measurements obtained from the INS.
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Modeling the dead-reckoning drift of the INS with a white additive process vt, the
absolute movement of the aircraft obeys a simple linear relation

xt+1 = xt + ut + vt (2.3)

where vt is distributed according to some assumed known probability density func-
tion pvt(·). Summarizing equations (2.2) and (2.3) yields the nonlinear model

xt+1 = xt + ut + vt

yt = h(xt) + et
t = 0, 1 . . . (2.4)

where vt and et are mutually independent white processes, both of them uncorre-
lated with the initial state x0 which is distributed according to p(x0). One may
argue that the INS estimate ut should be regarded as a sensor measurement instead
of as a known parameter in the state transition equation,

ut = xt+1 − xt + eINS
t .

This would require the introduction of a new state vector incorporating both xt and
xt+1 in order to retain the Markovian property of the state space model. Instead,
we choose to include the error eINS

t in the process noise vt in (2.4). This limits
the state dimension and drastically reduces the computational power required to
recursively compute an approximation of the conditional density of the states.

The objective of the terrain navigation algorithm is to estimate the current
aircraft position xt using the observations collected until present time

Yt = {yi}ti=0.

With a Bayesian approach to recursive filtering, everything worth knowing about
the state at time t is condensed in the conditional density p(xt |Yt). With some
abuse of notation, the distribution of a generic random variable z conditioned on
another related random variable w is

p(z |w) =
p(z , w)
p(w)

=
p(w | z) p(z)

p(w)
(2.5)

Assume that p(xt |Yt−1) is known and apply (2.5) to the last member in the set
Yt,

p(xt |Yt) =
p(yt |xt , Yt−1) p(xt |Yt−1)

p(yt |Yt−1)
.

Inserting the model (2.4) and noting that the denominator is a scalar normalization
constant yield,

p(xt |Yt) = α−1
t pet(yt − h(xt)) p(xt |Yt−1)

αt =
∫
pet(yt − h(xt))p(xt |Yt−1) dxt
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which describes the influence of the measurement. Using (2.5) the joint density of
the states at two measurement instants is

p(xt+1 , xt) = p(xt+1 |xt) p(xt).

The density update between two measurements is found by marginalizing this ex-
pression on the state xt and inserting (2.4),

p(xt+1 |Yt) =
∫
pvt(xt+1 − xt − ut)p(xt |Yt) dxt.

This completes one iteration of the recursive solution. Summarizing the deriva-
tion, the Bayesian formula for updating the conditional density is initiated by
p(x0 |Y−1) = p(x0) and calculated as

p(xt |Yt) = α−1
t pet(yt − h(xt)) p(xt |Yt−1)

p(xt+1 |Yt) =
∫
pvt(xt+1 − xt − ut)p(xt |Yt) dxt

(2.6)

where

αt =
∫
pet(yt − h(xt))p(xt |Yt−1) dxt.

The Bayesian solution is a density function describing the distribution of the states
given the collected measurements. From the conditional density, a point estimate
such as the minimum mean square error estimate can be formed

x̂t =
∫
xt p(xt |Yt) dxt. (2.7)

Assuming that this estimate is unbiased, the covariance

Ct =
∫

(xt − x̂t)(xt − x̂t)T p(xt |Yt) dxt (2.8)

quantizes the accuracy of the estimate. Equation (2.8) is convenient when compar-
ing (2.7) with estimates from other navigation systems.

The recursive update of the conditional density (2.6) describes how the mea-
surement yt and the relative movement ut affect the knowledge about the aircraft
position. With each new terrain elevation measurement, the prior distribution
p(xt |Yt−1) is multiplicatively amplified by the likelihood of the measurement yt.
This means that the conditional probability will decrease in unlikely areas and
increase in areas where it is likely that the measurement was obtained. Between
two measurements, the density function p(xt |Yt) is translated according to the
relative movement of the aircraft obtained from the INS and convolved with the
density function of the error of this estimate. Thus the support and shape of the
conditional density will adapt to areas which fit the measurements well and follow
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the movement obtained from the INS. It is worth noting that (2.6) is the Bayesian
solution to (2.4) for all possible nonlinear functions h(·) and for any noise distri-
butions pvt(·) and pet(·). In the special case of linear measurement equation and
Gaussian distributed noises the equations above coincide with the Kalman filter [2].

Computationally, each iteration of the Bayesian solution (2.6) consists of solving
several integrals. Due to the unstructured nonlinearity h(·), these integrations
are in general impossible to solve in closed form and therefore there exists no
solution that updates the conditional density analytically. The implementation
must therefore inevitably be approximate. A straightforward way to implement
the solution is to simply evaluate the recursion in several positions inside the area
where the aircraft is assumed to be and update these values further through the
recursion. With such a quantization of the state space, the integrals in (2.6) turn
into sums over the chosen point values. The earliest reference of such a numerical
approach to solving the nonlinear filtering problem is [34]. More recent references
involve the p-vector approach in [137] and a slightly different approach, presented
in [103], using a piecewise constant approximation to the density function. In the
terrain navigation problem the state dimension is two and the quantization can in
general be viewed as a bed-of-nails where the length of each nail corresponds to
a certain elementary mass in that position. The implementation described in this
paper is therefore labeled the point-mass filter (PMF).

2.3 The Point-Mass Filter

Assume that N grid points in R2 have been chosen for the approximation of
p(xt |Yt). Introduce the notation

xt(k) k = 1, 2, . . . , N

for these N vectors in R2. Each of these N grid points has a corresponding prob-
ability mass

p(xt(k) |Yt) k = 1, 2, . . . , N.

In order to obtain a simple and efficient algorithm, the grid points are chosen from
a uniform rectangular mesh with resolution of δ meters between each grid point.
Each integral operation in (2.6) is approximated by a finite sum over the grid points
with nonzero weight

∫
R2
f(xt) dxt ≈

N∑
k=1

f(xt(k)) δ2.
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Applying this approximation to (2.6) yields the Bayesian point-mass recursion:

p(xt(k) |Yt) = α−1
t pet(yt − h(xt(k))) p(xt(k) |Yt−1)

xt+1(k) = xt(k) + ut k = 1, 2, . . . , N

p(xt+1(k) |Yt) =
N∑
n=1

pvt(xt+1(k)− xt(n)) p(xt(n) |Yt) δ2

(2.9)

where

αt =
N∑
k=1

pet(yt − h(xt(k))) p(xt(k) |Yt−1) δ2. (2.10)

The time update has been split into two parts. First the grid points are translated
with the INS relative movement estimate ut and then the probability mass density
is convolved with the density pvt(·). The point estimate (2.7) is computed at each
iteration as the center of mass of the point-mass density,

x̂t =
N∑
k=1

xt(k)p(xt(k) |Yt) δ2.

Hence, the estimate does not necessarily fall on a grid point.
In order to follow the aircraft movements the grid must be adapted to the

support of the conditional density. After each measurement update, every grid
point with a weight less than ε > 0 times the average mass value

1
N

N∑
k=1

p(xt(k) |Yt) =
1

Nδ2
.

is removed from the grid. The new set of grid points is defined by{
xt(k) : p(xt(k) |Yt) > ε/Nδ2

}
.

The weights need to be re-normalized after this truncation operation. The trunca-
tion will make the algorithm focus on areas with high probability and remove grid
points in areas where the conditional density is small. The basic grid resolution δ
will however not be affected by the truncation. When the algorithm is initialized,
the uncertainty about the aircraft position is usually rather high. The prior will
then have a large support, and naturally it is not interesting to have a high grid
resolution. Instead we start with a sparse grid and run the algorithm and remove
weights using the truncation operation above until the number of remaining grid
points falls below some threshold N0. Then the mesh resolution can be increased
and the algorithm continued to process new measurements, updating the condi-
tional density in the new dense grid. The up-sampling is performed by placing one
grid point between every neighboring grid point in the mesh using linear interpo-
lation to determine its weight. This will yield a doubling of the mesh resolution.
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The convolution in (2.9) will introduce some extra grid points along the border of
the point-mass approximation, increasing the support of the mesh. If the measure-
ments have low information content there will be a net-increase of grid points even
though some are removed by the truncation operation. Therefore, if the number of
grid points increases above some threshold N1, the mesh is decimated by removing
every second grid point from the mesh, halving the mesh resolution.

Hence, the number of grid points N , the point-mass support and the mesh
resolution δ is automatically adjusted through each iteration of the algorithm using
the design parameters ε, N0 and N1. An illustration is given in Figure 2.6. In
summary the PMF algorithm consists of (2.9) and the appropriate resampling of
the grid described above. Details about the implementation and the grid refinement
procedure can be found in [16].

The refinement of the grid support and resolution in the PMF described above
is of course ad hoc, and one may wonder if this actually works. The Cramér-Rao
lower bound is a fundamental limit on the achievable algorithm performance which
can be used to evaluate the average performance of the PMF and verify that the
filter solves the nonlinear filtering problem with near optimal performance. The
results are presented here without proofs or derivations, see [16, 17, 23] for details.
Let N(x;m,P ) denote the n-dimensional Gaussian distribution with mean vector
µ and covariance matrix P

N(x;µ, P ) = 1√
(2π)n|P |

exp
(
− 1

2 (x− µ)TP−1(x− µ)
)
.

Inserting Gaussian distributions in (2.4),

pet(et) = N(et; 0, Rt) pvt(vt) = N(vt; 0, Qt) p(x0) = N(x0; x̂0, P0),

the Cramér-Rao lower bound for the one step ahead prediction of the states satisfies
the matrix (Riccati) recursion,

Pt+1 = Pt − PtHt(HT
t PtHt +Rt)−1HT

t Pt +Qt

initiated with P0. Above Ht is the gradient of h(·) evaluated at the true state value
at time t,

Ht = ∇h(xt).

Thus, the Cramér-Rao bound is a function of the noise levels and the gradient of
the terrain along the true state sequence.

The Cramér-Rao bound sets a lower limit on the estimation error covariance
which depends on the statistical properties of the model (2.4) and on the algorithm
used. A Monte Carlo simulation study is performed to determine the average
performance of the algorithm for comparison with the Cramér-Rao bound. The
Root Mean Square (RMS) Monte Carlo error for each fixed time instant is lower
bounded by the Cramér-Rao bound,√√√√ 1

M

M∑
i=1

‖xt − x̂it‖
2 &

√
trPt
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where x̂it is the one step ahead prediction of the states at time t in Monte Carlo
run i.

Figure 2.3 shows a 300 samples long track over a part of the terrain map from
Figure 2.2. The aircraft travels from right to left. The Cramér-Rao bound and the
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Figure 2.3: The simulation area and the true track, axes are labeled in meters.

obtained RMS error from 1000 Monte Carlo simulations with the PMF is shown
in Figure 2.4. The PMF is initiated with a prior with large support using a low
resolution of the grid, this yields far from optimal performance during the first
half of the simulations. However, as the grid resolution increases the RMS error
decreases and when the PMF resolution reaches a steady state level, the filter
performance reaches the optimal bound. Note also that both the bound and the
performance depend on the terrain variations along the true track. The Monte
Carlo evaluation above shows that the grid refinement method used in the PMF
works very well and that the filter achieves the optimal performance when the grid
is chosen dense enough.

2.4 Simulation Evaluation

The terrain map used in these simulations is the same terrain database over a part
of Sweden as is shown in Figure 2.2. A contour plot over this terrain map and
the true simulated aircraft flight path is shown in Figure 2.5. The aircraft starts
heading south, after a few turns over the rough part of the map it flies over a
part of the Baltic sea and then turns back and completes the counter-clockwise



16 Terrain Navigation using Bayesian Statistics

0 50 100 150 200 250 300
0

50

100

150

200

250

300

m
et

er

sample number

The Cramér-Rao lower bound
Monte Carlo RMS error

Figure 2.4: Monte Carlo root mean square error compared with the Cramér-Rao
bound.
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Figure 2.5: The simulation track over the terrain database.
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lap. The simulated aircraft track, the INS measurements and the radar altimeter
measurements have all been generated in an advanced realistic simulator used by
the navigation systems development department at Saab Dynamics. The track
has a duration of 25 minutes and is sampled at a rate of 10 Hz. The aircraft has
an average speed of Mach 0.55, and the manoeuvres are simulated as coordinated
turns.

The INS position estimate x̂0 is initiated with an error of 1000 m in both the
north and the east direction. The prior density is chosen as a Gaussian distribution
centered at the erroneous INS estimate

p(x0) = N(x0; x̂0, 10002I2). (2.11)

The initial grid resolution used in the PMF to sample this function is δ = 200 m.
The dead-reckoning drift in the INS is simulated as a constant bias of 1 m/s in
each channel. The distribution used in the algorithm to model this drift is Gaussian
pvt(vt) = N(vt; 0, 4I2). The choice of Gaussian distributions has proven successful
in the simulations but any other suitable distribution that better models the po-
sition drift and the initial uncertainty may be used. There is no restriction in the
PMF to Gaussian noises: the only assumption is that the noise can be regarded as
white.

Different sensor models are used when generating the simulated measurements.
Depending on the terrain category beneath the aircraft at the measuring instant,
both the bias and the variance of the radar altimeter are adjusted. For example,
flying over dense forest the radar altimeter has a bias of 19 m with a large variance.
Additional noise is added to the measurement to simulate that the radar altimeter
measurement performance degrades with increasing ground clearance distance. The
density used to capture these effects in the PMF algorithm is a mixture of two
Gaussian distributions,

pet(et) = 0.8 N(et; 0, 2) + 0.2 N(et; 15, 9).

This choice can be interpreted as on the average every fifth measurement being
biased due to reflection in trees or buildings. The truncation and resampling pa-
rameters used in the PMF are,

ε = 10−3, N0 = 1000, N1 = 5000.

The simulation result from the first three recursions is depicted in Figure 2.6.
Starting with the Gaussian prior (2.11), the first measurement amplifies the prob-
ability in several regions and removes samples of low probability. After the second
recursion, the grid resolution is increased to 100 m and the third recursion removes
even more samples and a single peak of the density shows the most probable aircraft
position while the uncertainty still is rather large. The bounding box indicating
the support of the prior is shown as a comparison with the support of each of the
filter densities. The irregular shapes of these densities shows how the unstructured
nonlinear terrain gives a filter density which is hard to approximate with smooth
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Figure 2.6: The first three recursions of the algorithm
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Figure 2.7: Estimation error along the simulation track, in logarithmic scale.
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functions or local linearizations. Figure 2.7 shows the estimation error along the
simulation track. Here it is obvious that the performance depends on the covered
terrain. The error converges rapidly from the initial error of more than 1 km down
to an error less than 30 m. When the aircraft reaches the Baltic sea the measure-
ments have little information and the error increases with the drift of the INS.
Once back over land, the estimate accuracy increases and a trend towards worse
performance is visible when the aircraft covers the low informative areas of the
map during the final part of the lap. The resolution of the grid is automatically
adjusted and varies between 200 m and 0.78 m along the simulation track. A com-
mon navigation performance parameter is the circular error probable (CEP) which
is the median of the position error. The simulation yields a median error of 12.2 m
CEP. As a comparison, in [88] an error of 50 m CEP is reported and in [31] a value
of 75 m is obtained. It should be remarked that both these values are found during
field tests and not simulations.

2.5 Conclusion

The performance of terrain navigation depends on the size of the terrain gradient
in the area. The point-mass filter described in this work yields an approximate
Bayesian solution that is well suited for the unstructured nonlinear estimation
problem in terrain navigation. It recursively propagates a density function of the
aircraft position. The shape of the point-mass density reflects the estimate quality,
this information is crucial in navigation applications where estimates from differ-
ent sources often are fused in a central filter. The Monte Carlo simulations show
that the approximation can reach the optimal performance and the realistic simu-
lations in Section 2.4 show that the navigation performance is very high compared
with other algorithms and that the point-mass filter solves the recursive estimation
problem for all the types of terrain covered in the test.

The main advantages of the PMF is that it works for many kinds of nonlin-
earities and many kinds of noise and prior distributions. The mesh support and
resolution are automatically adjusted and controlled using a few intuitive design
parameters. The main disadvantage is that it cannot solve estimation problems of
very high dimension since the computational complexity of the algorithm increases
drastically with the dimension of the state space. The implementation used in this
work shows real-time performance for two dimensional and in some cases three
dimensional models, but higher state dimensions are usually intractable.
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3

Bayesian Estimation

Statistical estimation deals with the problem of inferring knowledge about param-
eters indirectly observable from the outcome of a related experiment. Usually, the
experiment is a measurement or observation of a real world phenomenon, and the
parameter is a physical quantity that affects the measurement in a known manner.
In recursive estimation, the inferred knowledge about the parameters is updated
continuously as new measurements are collected. This recursive processing of ob-
servations is suitable in problems where the parameters have dynamic properties
that make them change with time, or when the application demands estimates
with certain frequency based on the sequence of measurements observed so far. We
label the estimation problem recursive when there is a demand for such recursive
processing of the observations. With the Bayesian view on estimation, both the
sought parameters and the observations are stochastic entities. This fundamental
paradigm yields a unifying framework for estimation problems where the inference
result is a conditional density function for the parameters given the observational
outcome.

This chapter is a review of basic estimation theory and it serves as a theoretical
platform for the sequel of the thesis. There are several excellent textbooks that
give a much deeper and more thorough presentation of estimation theory than
found herein. The book of Papoulis [120] presents the theory of probability and
random processes from first principles. This reference also contains some interesting
historical notes on the development of probability theory. A brief review of the

21
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foundational concepts from probability theory is provided in the appendix to this
chapter. The text in the appendix is based on [120]. Real valued parameters and
observations are considered throughout this chapter. A thorough measure theoretic
presentation of probability theory is given in the monograph by Chung [40].

The review of estimation theory presented in this chapter is mainly based on the
classical book of Van Trees [151]. Both the parametric and Bayesian approaches
to estimation are given by Van Trees, and the connections between estimation and
detection are strongly emphasized. A complement to the rigorous book by Van
Trees [151] that covers similar subjects in less detail is given by Scharf [130]. A
rather theoretical, and purely Bayesian decision theoretic presentation of statistical
inference is given in the monograph of Robert [127]. This reference contains a strong
argumentation in favor of the Bayesian paradigm in general. On the other side,
the pure parametric viewpoint is given by Lehmann [109], who focuses on classical
inference where point estimators and their theoretical properties are presented in
great depth.

Jazwinski [94] treats the recursive estimation problem both in continuous and
discrete time, and for linear and nonlinear models. A more detailed presentation of
linear recursive estimation is given by Anderson and Moore [2], where only discrete
time is considered. The manuscript of Kailath et al. [96] will probably be the key
reference to linear estimation when it finally goes into print.

3.1 Notational Conventions

A review of probability theory from the axiomatic definition to the concept of
conditional probability density functions is given in Appendix 3.A. This section
gives a very brief summary of the notational conventions, described in more detail
in Appendix 3.A.

Unless stated differently, x denotes a generic n-dimensional random parameter
vector and y a p-dimensional observation vector. Commonly in the literature, the
word parameter is saved for nonrandom fixed entities while random entities are la-
beled states. In the following section, we make no linguistical distinction between
random and nonrandom entities, all sought entities are labeled parameters regard-
less of if they are equipped with a prior distribution or not. Random variables are
sometimes typed in bold face, x, when it serves to clarify the underlying meaning.
Generally, p(x) denotes the probability density function for the random variable
given in the argument, in this case x. When this rule does not apply, the random
variable is indicated by a subscript, i.e., p(y)

y=x
= py(x). Likewise, mathematical

expectation is performed w.r.t. all random variables given in the argument unless
a subscript indicates which variable should be affected by the integration, e.g.,
E(f(x)) = Ex(f(x)).

The exact meaning of the conditional densities p(x | y) and p(y |x) is defined
in Appendix 3.A. Expectation w.r.t. a conditional density is denoted E(x | y),
and it follows the same subindex rule as regular expectation, e.g., E(f(x, y)) =
Ey(E(f(x, y) | y)) = Ey(Ex|y(f(x, y))).
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3.2 Bayesian Estimation

The objective of the estimation procedure is to gather information about the value
of the parameter x given an observation of an experimental outcome, y. In statisti-
cal estimation it is customary to treat the observation y as a random vector, often
justified by assumptions about random measurement noise, imprecise measurement
equipment or other unmodeled effects that may lend themselves for random mod-
eling. The observation vector is assumed to have a probability density function
belonging to a class indexed by the parameters, p(y |x). Hence, if the true parame-
ter value was known, the complete statistical properties of the measurement would
also be known. In a Bayesian framework the parameter vector itself is also referred
to as a random vector. The random vector x is assumed having a known prior
density function p(x). This prior distribution encompasses everything known, and
unknown, about the parameters prior to observing the experimental outcome.

The result of the experiment is a realization of the random variable y. Observing
the event {y = y} yields, by means of Bayes’ law (3.A.24), that the knowledge
about the parameters is altered so that

p(x | y) =
p(y |x)p(x)

p(y)
. (3.1)

The meaning of this relation is described in detail in Appendix 3.A. With a purely
Bayesian view on the estimation problem the posterior density function p(x | y)
describes everything about the parameter x after the experimental outcome has
been observed. With the experiment result y at hand, the denominator of (3.1) is
just a scalar positive constant which can be found by marginalization,

p(y) =
∫
Rn
p(y |x)p(x) dx.

Hence, in order to compute (3.1) one only needs to specify the product p(y |x)p(x).

Proposition 3.1
A Bayesian estimation problem is defined by the joint density of the parameters and
the observations, p(x, y) = p(y |x)p(x).

From a Bayesian viewpoint, the likelihood and the prior, or alternatively the joint
density, define the statistical model for the estimation problem, while the poste-
rior (3.1) is its solution. Once the information {y = y} is at hand, the parameters,
priorly regarded as the random variable x, should now be regarded as the random
variable x | y. The posterior density can be used to deduce the probability of any
characteristic of the parameter given the data. Hence, the posterior density should
always be regarded as the most general solution to the estimation problem even if
the primary goal of the inference often is aimed at certain features of the posterior.
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3.2.1 Estimates

The posterior is a general, but rather complex answer to the inference problem.
Each candidate parameter value in Rn yields a value of p(x | y) reflecting the pos-
terior probability of that parameter value. An estimate x̂ is an educated guess
of the parameter value given the observations at hand. It is often more desirable
to determine an estimate than the complete posterior density. Each realization of
the measurement yields a new estimate, and generally the rule of passing from an
observation to a parameter estimate is a function termed an estimator . Hence,
an estimator is a function from the observation space to the parameter space
x̂ : Rp → Rn. The argument of this function is explicitly indicated, x̂(y), only
when the dependency needs to be clarified. Note that the estimator should be re-
garded as a random variable, since it is a function of the random variable y, while
the estimate is a deterministic vector since it depends on the observed realization
y.

A natural way to find suitable estimators is to define a penalty for choosing an
erroneous estimate. Let L(x̂(y), x) denote a cost function, reflecting a user defined
penalty for erroneous estimates x̂ 6= x. In general, L(x̂, x) is defined such that the
greater the discrepancy x − x̂, the larger the cost. Without loss of generality, we
can assume that the cost function is positive and that L(x, x) = 0 is its unique
minimum. The Bayesian risk R associated with an estimator x̂ is defined as the
expected cost,

R
M= E(L(x̂(y), x)) ,

where expectation is over both x and y. The optimal choice of x̂(y), using a cost
defined by L(x̂(y), x), is the one that minimizes the Bayesian risk,

x̂(y) = arg min
x?(y)

∫
Rn+p

L(x?(y), x)p(x, y) dx dy,

where the minimization is over all possible functions x?(y). Inserting p(x, y) =
p(x | y)p(y) splits the integration into two parts

x̂(y) = arg min
x?(y)

∫
Rp

∫
Rn
L(x?(y), x)p(x | y) dx p(y) dy.

Since both L(x?, x) and p(x | y) are positive, the inner integral is positive given any
y. Furthermore, since p(y) also is positive, the value of x?(y) that minimizes the
risk is the value that minimizes the inner integral,

x̂(y) = arg min
x?(y)

∫
Rn
L(x?(y), x)p(x | y) dx (3.2)

for each y. The optimization problem (3.2) defines the Bayesian estimation prob-
lem and each choice of cost function gives different estimators. As an alternative
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to (3.2), a minimax approach can be used. Then, the estimate that minimizes the
maximal cost is chosen,

x̂(y) = arg min
x?(y)

max
x

L(x?(y), x). (3.3)

In estimation problems it is often the case that the cost function only depends
on the estimation error

x̃
M= x− x̂,

and the abbreviated notation L(x − x̂) is used. This is no general consideration
though, there may, e.g., be situations where the cost of erroneously choosing certain
estimates should be extra high since those estimates are used to take some crucial
actions. This is exemplified at the end of this section. Nevertheless, the cost
function L(x̃) is rather general and can, e.g., handle cases when it is a much more
severe error to overestimate a quantity than to underestimate it. To illustrate the
use of cost functions to determine estimates, two standard choices of cost function
and their solutions to (3.2) follow below, see [151] for details.

First, we introduce a compact notation for quadratic norms. Let ‖x‖2A
M= xTAx

for any square matrix A and compatible matrix or vector x, and introduce the
abbreviated notation ‖x‖2 = ‖x‖2I . Moreover, let A > 0 denote that A is symmetric
and positive definite. The, possibly weighted, mean-square error cost is defined by

LMS(x− x?) M= ‖x− x?‖2Q (3.4)

where Q > 0 is a weighting matrix. The minimum mean-square error estimate is
thus defined by

x̂MS
M= arg min

x?

∫
Rn
‖x− x?‖2Q p(x | y) dx.

Taking the gradient of the RHS integral w.r.t. x? and setting the result equal to
zero yield

−2
∫
Rn
Qxp(x | y) dx+ 2

∫
Rn
Qx? p(x | y) dx = 0 (3.5)

which is an equation for the unique minimum since the second derivative equals
2Q > 0. Solving for x? yields that the optimal estimate in the mean-square sense
is

x̂MS =
∫
Rn
xp(x | y) dx. (3.6)

For obvious reasons, this estimate is also referred to as the conditional mean esti-
mate.
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Another common choice of cost function is the one that penalizes all errors
equally,

LUNIF(x− x?) M=
{

1 if ‖x− x?‖2 ≤ ∆
2

0 if ‖x− x?‖2 > ∆
2

given some small ∆ > 0. Then, as ∆→ 0, the optimal estimate is the maximum a
posteriori estimate,

x̂MAP
M= arg max

x
p(x | y), (3.7)

which will coincide with the maximum likelihood estimate when an uninformative
prior p(x) is used. For a derivation of (3.7) see Van Trees [151].

The cost functions given above are the two most common choices for Bayesian
point estimation. Some other examples of cost functions are given in [94, 151].
One reason for the frequent use of these cost functions is the explicit form of the
estimates (3.6) and (3.7), while for a generally chosen cost function, the estimate is
only implicitly defined through (3.2). Another reason for choosing the conditional
mean estimate is that it actually solves the general optimization problem (3.2) for
a rather large class of cost functions, illustrated in the following two lemmas.

Lemma 3.1 (Property 1 of [151, p. 60])
Let the cost function L(x̃) be a symmetric convex function, and assume that the
posterior density is symmetric about its mean. Then, the optimal Bayesian esti-
mator (3.2) is the conditional mean (3.6).

Lemma 3.2 (Property 2 of [151, p. 61])
Let the cost function L(x̃) be symmetric and nondecreasing, and assume that the
posterior density is symmetric about its mean, unimodal, and that it satisfies

lim
x→∞

L(x)p(x | y) = 0.

Then, the optimal Bayesian estimator (3.2) is the conditional mean (3.6).

Various interpretations of these two lemmas, together with proofs, can be found
in [2, 94, 151]. Throughout this thesis we will only consider conditional mean and
maximum a posteriori estimates.

The general framework of defining estimates through cost functions also ap-
plies to hypothesis testing and decision problems, as illuminated by the following
example.

Example 3.1 (Bayesian Detection Problem)
Consider the problem of detecting a nonzero parameter vector x given a related
observation y. This problem is a binary hypothesis test with

H0 : x = 0
H1 : x 6= 0
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The estimate x̂ is the output of the detector, thus it either accepts or rejects the
hypothesis H0. The possible costs are defined by a (2 × 2) matrix

L(x̂, x) x = 0 x 6= 0
x̂ : choose H0 C00 C01

x̂ : choose H1 C10 C11

(3.8)

With the prior density

p(x) =

{
P0 if x = 0.

P1 if x 6= 0.

inserted into (3.2) this will eventually lead to the well known likelihood ratio
test [130, 151]

p(y |x 6= 0)
p(y |x = 0)

H1

≷
H0

P0(C10 − C00)
P1(C01 − C11)

.

Hence, x̂ is chosen to H1 if the LHS is greater than the RHS, otherwise H0 is
chosen.

The likelihood ratio test is obtained when choosing the decision that minimizes the
Bayesian risk (3.2), while the criterion (3.3) will lead to minimax type decisions.
Detailed presentations of these concepts with deeper analogies between estimation
and detection problems are carried out by Van Trees [151] and by Scharf [130].
In (3.8) one usually distinguishes the cost for false alarm, C10, from that of missed
detection, C01. Thus, this is an example of a cost function which has different
costs depending on both x̂ and x, while for the estimates derived previously the
cost function was a function only of the estimation error L(x̃).

3.3 Parametric Inference

With a so-called Fisherian, or parametric, view on estimation, the parameters are
not regarded as random variables. Instead, the sought parameters are regarded as
fixed-but-unknown, and the parameter value explicitly affects the statistical proper-
ties of the observation in a known manner. This connection between measurement
and parameter is defined by a density function for the observation vector y param-
eterized by the parameter vector x, denoted p(y |x). With a parametric view on
estimation, p(y |x) is regarded as a function of the parameters after inserting the
measurement. Often, this likelihood function is written

l(x | y) M= p(y |x)

to emphasize that it is regarded as a function of the first argument after inserting
the observed y. Given the observed measurement y inserted into this function,
the parameter vector x corresponding to the density most likely generating the
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observed measurement is chosen. An estimate is thus formed by maximizing the
likelihood function,

x̂ML = arg max
x

l(x | y)

this will lead to the theory of maximum likelihood estimation, rigorously presented
in [109]. With a very flat, also called uninformative, prior p(x), it is readily seen
from (3.1) that the posterior will be almost proportional to the likelihood so that
the Bayesian and parametric viewpoints in some sense coincide. Detailed pre-
sentations over similarities and discrepancies between Bayesian and parametric
statistical estimation can be found in [33, 127].

It is sometimes argued that the demand for prior knowledge in order to define
p(x) makes the Bayesian viewpoint less attractive. This should therefore favor the
parametric approach where no such knowledge is needed. Moreover, the spokesmen
for the parametric view often claim that even if such prior knowledge exists it is hard
to describe, at least in the form of a probability density function. Similar reasoning
says that since the choice of prior often is rather subjective, it may seriously alter
the resulting inference in a destructive way. These arguments speak in favor of
the parametric viewpoint over the framework of Bayesian statistics. However,
since both the likelihood and the prior define the inference problem according to
Proposition 3.1, picking the correct likelihood reflects the same problem as picking
a good prior.

In a practical situation we cannot guarantee that the real world observations
that we base our inference on are exactly drawn from the probability model defined
by the joint density p(x, y). Likewise, there is no way to assure that the measure-
ments we collect origin from a parameterized density function p(y |x) given some
x in the set of admissible parameters. Both these frameworks are merely models
where statistics is used to describe a complex reality. If the reality was exactly de-
scribed by, e.g., the model p(x, y), the complete solution is given by the posterior
density p(x | y). If this is not the case, but we still base our inference and compute
our estimates with respect to the density p(x, y), it is an issue of robustness against
modeling errors. Detailed discussions in this topic along with means to introduce
robustness into Bayesian inference is given by Berger [14], Box and Tiao [33].

The need for defining a prior knowledge is not a demand but an option. Choos-
ing an uninformative prior attenuates its effect on the inference result, while a
prior with a well defined support will be clearly visible in the estimate. Hence, the
Bayesian approach can be seen as a generalization of the parametric approach with
an option to bias the result by choosing the support and shape of the prior density.
Robert [127] delivers a strong argumentation in favor of the Bayesian viewpoint
over the parametric one. General guidelines to the choice of prior distribution are
given by Berger [14], Box and Tiao [33] and Robert [127].
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3.4 Sensor Fusion

Conceptually, inference based on several sensors can be performed within either of
the frameworks for statistical inference reviewed above. Since we allow for a vector
valued observation, the measurement vector can straightforwardly be assembled
from two physical measurements provided by different sensors. The statistical de-
pendency between the two sensors is controlled by the choice of likelihood. Com-
bining, e.g., two sensor outputs, y1 and y2, with independent measurement noise,
a likelihood on the form

p(y |x) = p(y1, y2 |x) = p(y1 |x)p(y2 |x) (3.9)

is a suitable choice. However, inference at this high level of generality is often
not practically possible. Either the features that the sensors measure or the type
of information they produce are usually so different that it is hard to model the
behavior of all sensors in a complete framework of the type (3.9). Moreover, im-
plementational constraints often induce that most processing of data need to be
executed locally, at each sensor. This may put constraints on the inference that
are hard to incorporate in the framework of (3.9).

The general problem of combining information regarding an object, or several
objects, and the surrounding environment is commonly referred to as the sensor
fusion problem. The key difference between traditional statistical inference and
sensor fusion is that the information considered is of fundamentally different form
and provided on different levels of abstraction. Surveys over the area are provided,
e.g., by Waltz and Llinas [154], and Hall [82]. It is commonly assumed that the
sensors are given in a decentralized architecture, Varshney [152] presents several
issues regarding decentralized detection and estimation for sensor fusion.

The field of sensor, or information, fusion is fairly young, and has only recently
been recognized as a separate research society. It has developed from a composition
of several existing, rather different, branches of research. Issues raised in the field
of sensor fusion concern conventional and non-conventional methods for statistical
estimation and foundational concepts of probability. But sensor fusion also cov-
ers topics from computer science, artifical intelligence, image processing, physical
modeling of the sensors and man-machine interface issues. In sensor management,
the collected information is utilized to control the sensor, the inherent feedback
leads to a risk of instability which can be analyzed by methods from the field of
automatic control. Therefore, automatic control also has strong connections to
sensor fusion applications.

It is our strong belief that the issue of combination of sensor measurements
ultimately remains best handled within the sound framework of statistical inference.
The basic concepts of probability and statistics presented in this chapter provide
a solid foundation on which any sensor fusion methodology inevitably must rest.
However, fusion of information of conceptually different type may very well call for
unconventional methods, and in Section 3.4.3 we review such a novel framework for
representation of sensor ambiguity that is commonly utilized in the sensor fusion
literature. We emphasize that, although the Dempster–Shafer framework has been
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considered as a generalization to Bayesian inference, this method has many things
in common with the classical statistical paradigm of Bayesian inference. In the two
subsections preceding the Dempster–Shafer survey, we present the general issue of
combination of sensor measurements from a purely statistical point of view. The
issues presented below serve as a foundation for the recursive estimation problem
presented in Section 3.5. Recursive estimation is a type of sensor fusion since it is
a sequential combination of measurements from one or several sensors.

3.4.1 Estimation Error Covariance

From a Bayesian perspective, the posterior density p(x | y) describes everything
worth knowing about the parameters after the experimental outcome has been
observed. Even though the parameters are regarded as random, an estimate is
often of more practical interest than the conditional density itself. An estimate
computed from the posterior density is an educated guess of the vector parameter
value. However, the estimate alone does not reveal anything about the relative
goodness of this guess.

A convenient entity that quantifies the estimate quality is the mean square error
correlation matrix

P
M= E
(
(x − x̂)(x − x̂)T

)
, (3.10)

if E(x− x̂) = 0 this quantity also coincides with the estimation error covariance.
After observing the event {y = y} and computing a suitable estimate x̂(y) the
error correlation matrix is straightforwardly computed from the posterior density

P =
∫
Rn

(x− x̂)(x − x̂)T p(x | y) dx.

Since the mean-square estimate (3.6) satisfies E(x− x̂MS | y) = 0, it has an error
covariance matrix

PMS = Cov (x− x̂MS | y) = Cov (x | y) (3.11)

Hence, the first and second central moments of the posterior density p(x | y) is
the mean-square estimate and its estimation error covariance, respectively. Note
that (3.11) gives the error covariance of the mean-square estimate based on the
observed y and it quantifies the uncertainty about the this estimate. The error
covariance of the estimator can be found by performing expectation over y as well,
and will quantify the overall performance of the estimator, prior to collecting any
observations. The estimator error covariance and estimator performance will be
further discussed in Chapter 4.

3.4.2 Optimal Fusion of Estimates

In several applications there are different sensors observing related aspects of the
same environment. Statistical inference is often performed at each sensor which
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computes an estimate given the sensor data collected locally. The different esti-
mates produced by the sensors are sent to a central fusion filter which has the role
of combining the estimates in an optimal way. In such a scenario, a measure of
the quality of each locally computed estimate is crucial for correct relative weight-
ing in the central filter. Aircraft navigation is an application where system design
often builds on such a distributed architecture. Several independent estimates of
the aircraft kinematic state are delivered by navigation subsystems, often using
statistical inference to interpret sensor measurements. Estimates and estimation
error covariances are computed by each subsystem and integrated in a central nav-
igation filter. Assuming that the different estimates have independent errors that
are Gaussian distributed with zero mean and covariance given by the estimation
error covariance, the mean-square estimate of the state given all distributed sensor
information can be computed optimally by the central fusion filter. This fact relies
on the fundamental property that the conditional density will be Gaussian in this
case. Denote the generic n-dimensional Gaussian density with mean vector µ and
covariance matrix P by

N (x;µ, P ) M=
1√

(2π)n|P |
exp

(
− 1

2‖x− µ‖
2
P−1

)
.

The following basic result is crucial for linear estimation, see [2] for details.

Theorem 3.1 (Fundamental Equations of Linear Estimation)
Let x and y be two jointly Gaussian vectors

p(x, y) = N
([
x
y

]
;
[
x̄
ȳ

]
,

[
Pxx Pxy
Pyx Pyy

])
,

then

p(x | y) = N
(
x; x̄ + PxyP

−1
yy (y − ȳ), Pxx − PxyP−1

yy Pyx
)
,

and thus x̂MS(y) = x̄+PxyP−1
yy (y−ȳ), with an error covariance of Pxx−PxyP−1

yy Pyx.

Proof

p(x | y) =
p(x, y)

p(y)
∝
√
|Pyy|
|P| exp

(
− 1

2
‖[ xy ]−

[
x̄
ȳ

]
‖2P−1 + 1

2
‖y − ȳ‖2

P−1
yy

)
(3.12)

where P =
[
Pxx Pxy
Pyx Pyy

]
. Applying the transformation[

Pxx Pxy
Pyx Pyy

]
=

[
I PxyP

−1
yy

0 I

] [
Pxx − PxyP−1

yy Pyx 0
0 Pyy

] [
I 0

P−1
yy Pyx I

]
and collecting terms in the exponent of (3.12) verifies the claim. �

With two estimates having independent, Gaussian, estimation errors, their mean-
square optimal combination is given by the following widely applied theorem.
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Theorem 3.2 (Sensor Fusion)
Let x̂1 and x̂2 be two estimates of x with independent Gaussian errors of covari-
ance P1 and P2, respectively. Then, the mean-square estimate given the combined
information is

x̂FUSED = (P−1
1 + P−1

2 )−1(P−1
1 x̂1 + P−1

2 x̂2) (3.13)

and the resulting fused estimate will have an error covariance of

PFUSED = (P−1
1 + P−1

2 )−1.

Proof With a Bayesian approach, two estimates cannot simply be combined without
prior knowledge. Instead, we consider the first estimate as the prior information and the
second estimate as an observation, and seek the posterior distribution of the parameters
given all data. Given the first estimate, the distribution of the parameters is

x | x̂1 = x̂1 + x̃1 ∼ N(x̂1, P1)

where N(µ,Q) denote a Gaussian distribution with mean vector µ and covariance P . The
second estimate x̂2 = x− x̃2 = x̂1 + x̃1 − x̃2, hence jointly[

x | x̂1

x̂2

]
∼ N

([
x̂1

x̂1

]
,

[
P1 P1

P1 P1 + P2

])
.

Applying Theorem 3.1 yields

x | x̂1, x̂2 ∼ N
(
x̂1 + P1(P1 + P2)−1(x̂2 − x̂1), P1 − P1(P1 + P2)−1P1

)
∼ N

(
(P−1

1 + P−1
2 )−1(P−1

1 x̂1 + P−1
2 x̂2), (P−1

1 + P−1
2 )−1

)
The claim follows from (3.6) and (3.11). �

The fusion formula of Theorem 3.2 is often used even if the errors involved are
not Gaussian distributed, as might be the case in the aircraft navigation applica-
tion. The results are often quite satisfactory anyway. However, one should always
remember that in general, the estimate and estimate covariance cannot condense
everything about the posterior density. The posterior density of a certain sub-
system might, e.g., have several peaks of comparable size in different areas of the
parameter space. Then, an estimate such as (3.6) might fall between these peaks
in an area with very little probability. In such cases the formula (3.13) should be
used with care.

3.4.3 Dempster-Shafer Combination

In this subsection we present a brief review over a method for statistical inference
commonly utilized in sensor fusion applications. The method of Dempster–Shafer
combination, or evidential reasoning, was originally developed in the statistical lit-
erature as a methodology for inference when the observation relation is set-valued.
When there is a one-to-many transformation from the parameters of interest to the
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space of observations it is not possible to deduce a unique conditional probability
distribution for the state values. In a series of articles, Dempster [50, 51, 52] de-
fines this problem and introduces the notion of upper and lower probabilities that
can be determined from observations of this kind. Dempster claims this interval of
probability being a natural generalization of standard Bayesian inference, and that
it coincides with the latter method when the interval becomes trivially thin. The
correctness of this assertion is greatly debated, e.g., in the discussion appended
to [52]. Nevertheless, Shafer [132] later brought the ideas to the field of artifical
intelligence and introduced several additional concepts defined on the solid statisti-
cal base of Dempster’s work. When referring to the theory of evidential reasoning,
or Dempster–Shafer theory, it is basically the framework described in [132] that
is considered. Dempster’s original work and the framework of Shafer both focus
on discrete random variables from a countable set. In more recent work on this
topic, Schneider [131] extends the theory to absolutely continuous distributions and
connect it to the structural inference method of Fraser [68].

Dempster–Shafer theory considers a finite set of hypotheses Θ = {Hi}ni=1 con-
stituting the frame of discernment of the inference problem. A disjunction of
hypotheses is referred to as a proposition, and the power set of all possible proposi-
tions is denoted 2Θ. In classical inference, each singleton in Θ is assigned a posterior
probability based on the observed measurement. The fundamental axioms of proba-
bility, given in Definition 3.A.1, yield that assigning a certain amount of probability
to a hypothesis in Θ, the remaining probability mass must be distributed over the
other hypotheses,

Pr(H1) = 1− Pr(Θ \ {H1}),

where Θ \ {H1} is the complement of H1 in Θ. In Dempster–Shafer theory this
need is alleviated by letting each proposition be given a unique probability of its
own, i.e., each subset of Θ is regarded as a distinct hypothesis. The yet unas-
signed probability mass is given as the probability for the certain proposition, Θ.
A probability mass distribution assigns probabilities to the different propositions.
Formally, this function m : 2Θ → [0, 1] needs to satisfy the axioms

0 ≤ m(A) ≤ 1 m(∅) = 0
∑
B∈2Θ

m(B) = 1

for all propositionsA ∈ 2Θ. The combination of two independent mass distributions
is given by Dempster’s rule of combination, for each A ∈ 2Θ,

m(A) = K
∑

A1∩A2=A

m1(A1)m2(A2)

K−1 = 1−
∑

A1∩A2=∅
m1(A1)m2(A2).

(3.14)

This formula distributes the probability to all propositions formed from disjunc-
tions between the propositions available in the two original distributions m1(·) and
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m2(·). A probability interval is computed from the combined probability mass.
The support of a proposition A is defined as

Sp(A) =
∑

{B:A⊆B}
m(B),

which can be interpreted as all probability in m(·), in some sense pointing at A.
The support is the upper limit of the probability interval for a proposition. The
lower limit, known as the plausibility of the proposition, is defined as the lack of
support for its negation, i.e., Pl(A) = 1− Sp(¬A).

A justification of the inference rule (3.14) based on probability theory was pre-
sented in the original work of Dempster [51]. Generally, the combination rule (3.14)
follows straightforwardly by regarding each proposition as a unique hypothesis and
applying Bayes’ rule. This connection, however, is not emphasized in work on
Dempster–Shafer theory presented, e.g., in the senor fusion or artifical intelligence
literature. It is even not emphasized in the original work of Dempster. Instead,
initiated by the book of Shafer [132], a number of less rigorously verified extensions
have been developed. Most of these are not theoretically justified from a statistical
point of view.

The key feature of the Dempster–Shafer approach is the ability of introduc-
ing ignorance into the posterior probabilities. This effect is obtained by assigning
probability to the certain event Θ. In classical inference, ignorance is handled
by spreading the remaining probability equally over the possible hypotheses. The
spokesmen of Dempster–Shafer theory claim that such an approach sometimes
can yield misleading conclusions. Application of Dempster-Shafer theory is of-
ten directed towards identification of object properties, by utilizing observations
on several levels of abstraction. Examples involve identification of aircraft type
and class in target tracking systems [29, 35, 67] and object recognition in mo-
bile robotic navigation [107]. The general conclusion drawn in all these references
is that Dempster–Shafer not necessarily yields better performance than classical
probabilistic inference. Even if the Dempster–Shafer framework might seem better
suited for these problems, it is rather complex to implement and in recursive con-
stellations it will often yield slower convergence towards a stationary result than
classical inference [29, 35]. Arguments against Bayesian inference, on the basis of
its demand for priors, have also been raised when comparing classical Bayesian in-
ference with Dempster–Shafer type information fusion. However, it is rather easy
to realize that both methods can utilize or ignore prior information as desired.

3.5 Recursive Estimation

Many applications of estimation theory tackle the problem of recursively deter-
mining, or tracking, parameters given measurements. Either the parameters admit
some dynamical properties that make them change with time, and/or the estimate
of the parameters is needed on-line demanding the information about the parame-
ters to be updated with each new measurement. Examples of applications that fall
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into this category are target tracking systems, used in both civilian and military
aviation, and for naval applications. Here, the complete kinematic state consisting
of position, velocity and possibly acceleration of the target is sought by passive or
active position measurements. Other examples of recursive estimation are all types
of navigation applications ranging from global aircraft and ship navigation down to
autonomous robot navigation. Recursive estimation is also applied in adaptive con-
trol, where the parameters of a dynamical system working in closed loop are tracked
using measurements of system input and output. One may also resort to recursive
estimation in off-line applications with large amounts of data. In cases when the
joint density p(x, y) is very complicated due to the size of the measurement vector
y, treating the problem recursively can yield a reasonable tradeoff between com-
putational complexity and performance. Detailed surveys over nonlinear recursive
estimation can be found in Sorenson [137], and Kulhavý [106].

In recursive estimation problems the parameters are usually referred to as states
of the system and they may change with time. Let xt denote the state at time t,
where we always let the time index t ∈ N independently of the actual time evolved.
This will allow for unequally spaced time steps within the same framework while
keeping the notation streamlined. Uniformly spaced time intervals will however
be assumed unless stated differently. The notation T will be used for the fixed
sampling interval.

If a correct modeling of the problem has been performed, the states xt are
chosen such that they describe everything about the system at the present time.
Hence, conditioned on the present state no additional information about the future
states should be available in past observations. This Markovian property of the
system states is fundamental to recursive estimation. The following proposition
defines the type of recursive estimation problems that we study in this thesis.

Proposition 3.2
A recursive estimation problem is an estimation problem where the states evolve in
time according to a Markov process with an initial state x0 ∼ p(x0) and transition
kernel,

p(xt+1 |xt) t = 0, 1, . . .

This transition kernel may explicitly depend on the time index. The measure-
ment observed at the time instant t is conditionally independent of the previously
observed measurements given the current state value. The likelihood

p(yt |xt) t = 0, 1, . . . (3.15)

may explicitly depend on the time index t.

A recursive estimation problem is uniquely specified when the prior p(x0), the
transition kernel p(xt+1 |xt) and the likelihood p(yt |xt) are given. Note that this
coincides with Proposition 3.1 since these entities define the joint density of all
measurements and all states from time zero to time t. An example of a Bayesian
formulation of a recursive estimation problem follows, its Bayesian solution is il-
lustrated in the subsequent section.
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Example 3.2
In the bearings-only tracking problem the objective is to track the movements of
an object using measurements of the relative angle to the object. Consider, e.g., a
case when the position of a ship is tracked using passive sonar measurements. Let

xt =

[
x

(1)
t

x
(2)
t

]
be the north and east coordinates of the ship, and yt the bearings measurement
from the sonar. A simple model of the inference problem with a random ship
movement is given by

xt+1 = xt + wt

yt = tan−1(x(2)
t /x

(1)
t ) + et

where the noises wt and et are independent, white processes with density functions

p(wt) = N
(
wt;
[
0
0

]
,

[
2002 0

0 2002

])
p(et) = N(et; 0, 0.12)

Furthermore, let the prior knowledge about the ship position be

p(x0) = N
(
x0;
[
−2000
3000

]
,

[
5002 0

0 5002

])
,

and let it be independent of the noises acting on the system. It is a recursive
estimation problem to determine the ship position xt, given all collected data from
initial time to present. A model specification in accordance with Proposition 3.2
is given by

p(xt+1 |xt) = N
(
xt+1;xt,

[
2002 0

0 2002

])
p(yt |xt) = N

(
yt; tan−1(x(2)

t /x
(1)
t ), 0.12

)
and p(x0) given above.

3.5.1 Conceptual Solution

All recursive estimation problems that can be expressed in the form of Proposi-
tion 3.2 have a common conceptual solution consisting of a recursive propagation
of the conditional density. The stacked vector of the complete measurement history
at time t has length (t+ 1)p and is denoted by

Yt =


y0

y1

...
yt

 , and generally Ys:t =


ys
ys+1

...
yt
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for any s < t. This notation will be adopted generally for stacked vectors of random
processes. Applying Bayes’ rule (3.1) to the last element of the measurement vector
Yt yields

p(xt |Yt) =
p(yt |xt,Yt−1)p(xt |Yt−1)

p(yt |Yt−1)

=
p(yt |xt)p(xt |Yt−1)

p(yt |Yt−1)
(3.16)

since, by (3.15), we assume that the observation yt is conditionally independent of
previous measurements given the state xt. The expression (3.16) is referred to as
the measurement update in the Bayesian recursion. As in (3.1) the denominator
can be expressed through the law of total probability, i.e., by marginalization.

The effect of a time step is obtained by observing that

p(xt+1, xt |Yt) = p(xt+1 |xt,Yt) p(xt |Yt)
= p(xt+1 |xt) p(xt |Yt)

which follows from the assumption that the process {xt} is Markovian, and that
xt+1 is independent of Yt when xt is given. Integrating both sides with respect to
xt yields the time update equation

p(xt+1 |Yt) =
∫
Rn
p(xt+1 |xt)p(xt |Yt) dxt. (3.17)

This relation is also referred to as the Chapman-Kolmogorov equation [94]. Af-
ter (3.17) has been evaluated, the time index can be increased and the effect of a
new measurement incorporated as in (3.16). To summarize, a recursive propagation
of the posterior filter density of the states given the measurements is obtained.

Theorem 3.3
A recursive estimation problem of the form in Proposition 3.2 has a recursive
Bayesian solution

p(xt |Yt) =
p(yt |xt)p(xt |Yt−1)

p(yt |Yt−1)

p(xt+1 |Yt) =
∫
Rn
p(xt+1 |xt)p(xt |Yt) dxt

t = 0, 1, . . .

where

p(yt |Yt−1) =
∫
Rn
p(yt |xt)p(xt |Yt−1) dxt

and the recursion is initiated by p(x0 |Y−1) = p(x0).
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Commonly used point estimates derived from the posterior density are

xMS
t|t =

∫
Rn
xtp(xt |Yt) dxt

xMAP
t|t = arg max

xt
p(xt |Yt),

compare to (3.6) and (3.7). Their respective estimation error covariance is

Pt|t =
∫
Rn

(x− x̂)(x− x̂)T p(xt |Yt) dxt.

One often distinguishes between the problems of filtering and prediction in recursive
estimation. The solution to the filtering problem is given in Theorem 3.3 while the
solution to the prediction problem is given by performing extra time updates (3.17).

As noted in the title of this subsection, the recursive propagation of the posterior
density in Theorem 3.3 is only a conceptual solution. In general, the multidimen-
sional integrals in Theorem 3.3 and in the calculation of estimates and the error
covariances above have no explicit analytical solutions. Only when all these inte-
grals have analytical solutions for any admissible measurement sequence Yt and for
all times t can the recursive Bayesian solution be solved analytically. The posterior
density is then said to be parameterized by a finite dimensional sufficient statis-
tic. For general models with nonlinear and non-Gaussian elements, this happens
only very rarely. Hence, in a practical application of Theorem 3.3 one is forced to
work with some approximate description of the posterior filter density. The format
of this approximation should be well-suited for propagation through Theorem 3.3
and for calculation of the chosen estimate and its error covariance. The choice of
numerical approximation will be handled in detail in Chapter 5.

We conclude this subsection with an illustration of the Bayesian solution to a
common target tracking problem.

Example 3.3 (Continued from Example 3.2)
Inserting the model of the bearings-only tracking problem from Example 3.2 into
the Bayesian solution in Theorem 3.3 yields

p(xt |Yt) ∝ N
(
yt; tan−1(x(2)

t /x
(1)
t ), 0.12

)
p(xt |Yt−1)

p(xt+1 |Yt) =
∫
R2

N
(
xt+1;xt,

[
2002 0

0 2002

])
p(xt |Yt) dxt

initiated by

p(x0 |Y−1) = N
(
x0;
[
−2000
3000

]
,

[
5002 0

0 5002

])
.

Figure 3.1 shows a simulation with three snapshots of a numerical approximation
to the conditional density. The figure shows numerical approximations to the prior
p(x0 |Y−1), and the posterior p(xt |Yt) at two stages of the recursion. Naturally,
the posterior density is narrow seen from the platform but widespread along the
line-of-sight between ship and platform.
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ship positions 

t=0 
t=8 

t=16 

platform

Figure 3.1: The Bayesian solution to bearings only target tracking. Three snapshots
of the filtering density are shown. The prior, the filter density at time t = 8, and
the filter density at time t = 16 are depicted. The ship moves from right to left
and its true position at the considered time instants is indicated by solid circles.

3.5.2 Linear Recursive Estimation

The celebrated Kalman filter [98] is the Bayesian solution to recursive estimation for
a specific class of models. When the measurement relation and the state transition
equation both are linear and the noises acting on the system are Gaussian, an
analytical solution to the recursive propagation of Theorem 3.3 exists.

Theorem 3.4 (The Kalman Filter [2, 96])
Consider the linear state space model,

xt+1 = Ftxt +Gtwt

yt = Htxt + et
t = 0, 1, . . . (3.18)

where both the noises and the initial state are Gaussian distributed, the noises are
white, and

E

wt

et
x0

 [wT
t eTt xT0 1

] =

Qt St 0 0
STt Rt 0 0
0 0 P0 x0

 .
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The conditional density for the one-step ahead prediction problem, p(xt |Yt−1), is
Gaussian. Initiated by x̂0 = x0, the mean obeys the recursion

x̂t+1 = Ftx̂t +Kt(yt −Htx̂t),

where Kt = (FtPtHT
t +GtSt)(Rt +HtPtH

T
t )−1 and the posterior covariance is

Pt+1 = FtPtF
T
t −Kt(Rt +HtPtH

T
t )KT

t +GtQtG
T
t

initiated by P0.

Proof A proof of the statement above along with comprehensive presentations regarding
all aspects of Kalman filtering can be found in, e.g., [2, 96]. �

For the linear and Gaussian model class described above, Theorem 3.1 yields that
the posterior distribution is Gaussian. Hence, a sufficient statistic consists of the
mean vector and the covariance matrix of this Gaussian conditional density. It is
these parameters that are given by the analytical solution to the Bayesian recursive
estimation problem in the theorem above. Due to the properties of the Gaussian
density, the recursively updated parameters also coincide with the mean-square
estimate and its error covariance for the linear Gaussian model class. The Kalman
filter has several interpretations apart from being a Bayesian solution to a certain
class of models, see [2, 96] for a thorough presentation of linear estimation theory.

3.5.3 Nonlinear Recursive Estimation

Most real-world problems have elements of nonlinearity, non-Gaussianity and non-
stationarity. For this large class of practical problems it is not possible to derive
exact closed form solutions for the estimators and estimation error covariances. The
most common approach to circumvent this problem has been to resort to model
simplifications and approximations which inevitably will lead to performance degra-
dations. In critical situations where one cannot compromise the accuracy of the
result, the only way to solve these inference problems is by numerical approxima-
tion techniques. A few notable exceptions of non-standard models with exact finite
dimensional solutions exist, see, e.g., [65, 105]. For practical nonlinear estimation,
approximative solutions must in general be considered. These approximations can
be categorized into two groups, either the underlying model of the problem is sim-
plified so that an analytical solution is obtained, or an approximative description
of the posterior distribution itself is determined.

Local model approximations

The approach to locally approximate the nonlinear model is the most frequently
used practical technique for nonlinear recursive estimation. The nonlinear model
equations are expanded into a Taylor series around a point estimate of the states.
A model of the form (3.18) is obtained by inserting the estimate obtained from
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the last iteration of the algorithm, and approximating the distributions of noises
acting on this linearized model with Gaussian distributions. The system matrices
of this linear time dependent model will explicitly depend on the estimate that the
linearization is performed around. Disregarding this dependence, the Kalman filter
can be applied directly to this linearized time dependent model. This scheme is
usually labeled the Extended Kalman Filter (EKF) [2, 94]. Several applications of
EKF techniques to nonlinear estimation problems can be found in Sorenson [136].

The EKF approach yields a nonlinear estimation filter with very modest com-
putational requirements that is frequently applied in practical recursive nonlinear
estimation such as target tracking, navigation, and robotics. However, there are
some well known disadvantages with this linearization technique. It often happens
that the estimation error Pt, calculated by the algorithm, becomes inconsistent
with the true estimation error. Usually, the filter underestimates this error result-
ing in a reduction of the filter gain and an insensitivity to new measurements. This
effect is labeled the divergence problem of the EKF. The situation usually arises as
a result of linearization errors when the local approximation ceases to hold. Apart
from manually keeping the filter gain above a certain level, several generalizations
that deal with the divergence problem have been proposed. These include meth-
ods for higher order approximation schemes and the iterated version of the EKF.
Jazwinski [94] gives a thorough treatment of these topics.

Another sort of model approximation is obtained by letting the state vector be
limited to a finite number of values. In this case the conditional density recursion
can be solved by approximately determining the conditional probability for each
candidate state value using numerical integration methods. This type of model with
discrete valued states is often referred to as a Hidden Markov Model (HMM). A
comprehensive presentation of HMMs, containing results regarding both estimation
and control, can be found in Elliott et al. [63], and a tutorial over HMMs is given
by Rabiner [125].

Global approximation of the posterior density

The local linearization technique of the EKF fails to hold when the nonlinearity
of the model is substantial, the initial estimate is bad or the noises acting on the
model are far from Gaussian distributed. A global approximation is obtained by
keeping the original nonlinear model but instead solving the Bayesian recursion of
Theorem 3.3 approximately. There are two common approaches to global approx-
imation of the Bayesian solution. Either the posterior density is parameterized in
a finite number of parameters that are inserted into the Bayesian recursion and
approximately updated with each iteration, or the integrals in the recursion are
directly attacked by numerical integration methods. Both these approaches result
in similar globally approximate Bayesian filters. With no linearization errors in-
troduced, these methods promise a solution closer to the optimal one. Contrary to
the EKF technique, these filters may, e.g., handle multi-modal conditional densities
without any further modifications. However, this is usually obtained at the price
of a substantially higher computational burden.
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Numerical integration methods based on grid approximations of the posterior
density will be presented in more detail in Chapter 5. In many cases, the result-
ing algorithms of numerical integration will be rather similar to the approach of
approximating the conditional density. Generally, practical on-line estimation is a
function approximation problem under the constraints that an efficient and reliable
update of the function expansion through the Bayesian recursion is possible. The
measurement and time updates consist of multiplications and convolutions between
probability density functions. From the analytical solution of the linear Gaussian
model, it is known that multiplying and convolving Gaussian distributions will
generate new Gaussian distributions. A reasonable approximative expansion of the
posterior is therefore obtained by a weighted sum of Gaussian distributions,

p(xt |Yt−1) ≈
N∑
i=1

γi N(xt;µi,Σi). (3.19)

This is utilized in the Gaussian sum estimation techniques introduced by Alspach
and Sorenson [1], Sorenson and Alspach [138]. Through the measurement update
multiplication, the number of terms in the approximating sum (3.19) will in general
increase at each iteration. In [1, 138] it is therefore suggested that terms with small
weights should be neglected and terms that are close should be combined into a
single term at each iteration of the algorithm.

Another expansion that lends itself to the nonlinear estimation problem is the
point-mass approach, originally suggested by Bucy and Senne [34]. In the point-
mass approach the posterior is approximated by a set of point values on a moving
grid

p(xt |Yt) ≈
N∑
i=1

piδ(xt − xit).

With this approach, the integrals will be replaced by summations that can be
suitably truncated over finite intervals. The point-mass approximation has been
generalized to piecewise constant approximations by Kramer [102], Kramer and
Sorenson [104]. This approach to nonlinear filtering was developed during the
early 1970’s. At this time, the main concern about the practical applicability
of these techniques was the problem of storing the comparatively large number of
grid points. Due to this constraining limitation, research focused on more advanced
interpolation techniques that could produce the same results with fewer grid points.
The spline filters of de Figueiredo and Jan [47] and Youssef [155] were developed
with this in mind. The more advanced interpolation schemes in general suffer from
a more complicated description of the grid nodes. The propagation of the grid
introduces extra overhead computations that, to a large extent, compensate for
the reduction of the number of interpolation functions. A thorough background to
the development of global approximation methods in nonlinear estimation with an
emphasis on point-mass approximations is presented in [137]. Lately, the point-
mass approaches have had a minor revival due to the rapid increase in desktop
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computer memory size and floating point computational performance. Simandl
and Královec [133] give some general guidelines towards choosing the grid resolution
and support.

A somewhat different approach to approximation of the posterior distribution is
taken by Kulhavý [106]. From the empirical density of the observations, a paramet-
ric posterior distribution from an exponential family is determined using convex op-
timization methods. This optimization can be posed such that each new measure-
ment is added recursively and an on-line implementation is thus possible. Kulhavý
only considers inference of nonrandom parameters but introduces the possibility of
tracking time-varying parameters using forgetting factor techniques. Applications
to several recursive estimation problems and to adaptive control problems are given
in [106].

3.5.4 Continuous Time Filtering

Above, and throughout this thesis, we study the recursive estimation problem in
discrete time only. Hence, the Markovian transitions of the states is assumed to
evolve in discrete steps and the measurements are obtained at discrete time in-
stants. One can argue that the class of purely discrete time models, although
possibly nonlinear, is too restrictive for practical application. Often, real world
phenomena evolve in continuous time while measurements are collected at discrete
time instants. Consider, e.g., the target tracking problem where the position and
velocity of an aircraft target change continuously in time while the radar measure-
ments are obtained periodically, when the target is illuminated by the rotating
radar antenna.

With continuous time state evolution, the Chapman-Kolmogorov equation (3.17)
will turn into a partial differential equation, often referred to as the Kolmogorov
forward equation or the Fokker-Plank equation [94]. This nonlinear partial differ-
ential equation has been studied extensively in the field of optimal filtering. Apart
from the obvious linear Gaussian case, analytical solutions to the Fokker-Plank
equation have only been found in rare cases [13, 43]. For general nonlinear and
non-Gaussian models, EKF linearization techniques can be applied similarly to
the discrete time case. The counterpart to the numerical integration approach of
discrete time filtering is numerical solution of the nonlinear Fokker-Plank partial
differential equation. A general adaptive grid method for this problem has been
developed by Cai et al. [36]. The techniques are similar to the nonlinear integra-
tion methods for discrete time filtering and in general very time consuming and
application specific.

From almost any continuous time evolution, a purely discrete time model can be
obtained by performing several small time update steps between each measurement
update. For this reason, we will solely consider discrete time estimation problems
and for simplicity that only one time update is needed between each measurement
update. A thorough treatment of discrete and continuous time nonlinear filter-
ing and estimation as well as hybrid problems with, e.g., continuous time state
evolution and discrete time measurements, is given by Jazwinski [94].
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3.6 Summary

Many practical problems in signal processing can be described accurately by an
underlying statistical model of the problem. In this context, the Bayesian approach
to statistical inference gives a natural framework where information given as prior
knowledge as well as information in observations are considered. Both parameters
and observations are regarded as random variables and inference is performed by
conditioning through Bayes’ rule.

The posterior density p(x | y) summarizes the information gained after observing
the experimental outcome y. The mean of this function x̂MS is an estimate that
minimizes the Bayesian risk for a large class of cost functions. The error covariance
of x̂MS is equal to the covariance of the random variable x | y and is useful when
comparison or combination with other estimates should be performed.

The expressions for the normalizing factor of the posterior p(x | y), the esti-
mate and estimation error covariance, all involve multidimensional integrals or
optimizations. Unfortunately, it is only in certain special cases these integrals and
optimizations have analytical solutions. In a recursive setting the Bayesian solution
consists of sequentially updating the posterior density with each new observation
and with time. This posterior can only rarely be parameterized using a finite dimen-
sional sufficient statistic which may be sequentially updated analytically. Practical
recursive Bayesian estimation therefore demands numerical solutions to high di-
mensional complex integrations or optimizations with respect to the parameters.
In addition to solving these integration problems, the posterior density itself must
be approximately described in a way that lends itself to approximate propagation
through the conceptual Bayesian solution.



Appendix

3.A Foundational Concepts of Probability Theory

This appendix summarizes the basic concepts of probability theory, from Kol-
mogorov’s definition of probability to conditional probability density functions and
Bayes’ law. It also serves to settle the notation used in the thesis. The appendix
relies on several texts, the main reference is [120]. The presentation herein is by no
means complete or comprehensive. Thorough treatments of the topics presented in
this appendix with complete proofs, enlightening discussions and several additional
concepts can be found in either of [40, 109, 120].

3.A.1 Probability Theory

The basic concepts of probability theory are the event space Ω, which consists of
all possible outcomes of an experiment, and events which are subsets of Ω. The
event space Ω is also referred to as the certain event, while the empty set, ∅, is the
impossible event. Events that are singletons are sometimes denoted ω.

Definition 3.A.1 (Axiomatic definition of probability)
To each event A we assign the number Pr(A) which we call the probability of the
event A. The probability is chosen to satisfy the following four axioms:

1. Pr(A) ≥ 0

2. Pr(Ω) = 1

3. If A ∩B = ∅, then Pr(A ∪B) = Pr(A) + Pr(B).

4. If Ai ∩Aj = ∅ for i 6= j, then Pr(∪∞i=1Ai) =
∑∞

i=1 Pr(Ai)

All statistical inference is based on the concept of conditional probabilities. A
conditional probability describes what effect knowing a certain event has on the
probabilities of other, related, events.

45
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Definition 3.A.2
The conditional probability of an event A given an event M of nonzero probability
Pr(M) > 0 is defined as the ratio

Pr(A |M) =
Pr(A ∩M)

Pr(M)

It is readily possible to verify that a conditional probability is a probability in
accordance with the axioms of Definition 3.A.1. From this we can deduce that the
probability of every event can be written as a sum of conditional probabilities.

Theorem 3.A.5 (Total probability theorem)
Let {A1, . . . ,An} be a partition of Ω and let B be an arbitrary event, then

Pr(B) = Pr(B |A1) Pr(A1) + · · ·+ Pr(B |An) Pr(An)

Combining Definition 3.A.2 and Theorem 3.A.5 yields the following famous formula
for conditional probability, originally due to Bayes [9] in 1763.

Theorem 3.A.6 (Bayes’ theorem)
Let {A1, . . . ,An} be a partition of Ω and let B and M be two events, then

Pr(M |B) =
Pr(B |M) Pr(M)

Pr(B |A1) Pr(A1) + · · ·+ Pr(B |An) Pr(An)

3.A.2 Random Variables

A random variable is a real valued function with domain Ω, the set of all possible
experimental outcomes. For every outcome ω we assign a real number x(ω). We will
often omit the explicit dependency on the event ω and write the random variable as
a bold character x. Due to the frequent use of stochastic variables in this thesis we
will even alleviate the bold character notation when no risk for ambiguity exists.
The set {x ≤ x} is a set in the event space, a subset of Ω consisting of all outcomes
ω such that x(ω) ≤ x. The distribution function of x is the function

Px(x) = Pr(x ≤ x),

and the density function is the derivative of the distribution function

px(x) =
dP (x)
dx

.

When no risk of ambiguity exists, we will omit the subindex in the notation Px(x)
and px(x), and simply write P (x) and p(x).

Definition 3.A.2 of conditional probability is straightforwardly extended to dis-
tribution functions.
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Definition 3.A.3 (Conditional distribution)
The conditional distribution of a random variable x given an event M of nonzero
probability Pr(M) > 0 is

P (x |M) = Pr(x ≤ x |M) =
Pr(x ≤ x,M)

Pr(M)
.

The event {x ≤ x,M} is the event consisting of all outcomes ω such that x(ω) ≤ x
and ω ∈M.

The conditional density is the derivative of P (x |M),

p(x |M) =
dP (x |M)

dx
= lim

∆x→0

P (x ≤ x ≤ x+ ∆x |M)
∆x

The conditional probability of the event A given an event of zero probability, like
{x = x}, is defined through the limit

Pr(A |x = x) M= lim
∆x→0

Pr(A |x ≤ x ≤ x+ ∆x). (3.A.20)

The total probability theorem, Theorem 3.A.5, for conditional events of zero prob-
ability can then be expressed as an infinite sum over the limits in (3.A.20). Hence,
the probability of any event A can be written

Pr(A) =
∫ ∞
−∞

Pr(A |x = x)p(x) dx.

The conditional density of x given the event A is

p(x |A) =
Pr(A |x = x) p(x)

Pr(A)
. (3.A.21)

So far we have considered events and real scalar random variables. The exten-
sion to vector valued random variables follows conceptually by looking at pairs of
scalar variables. The distribution and density functions extend naturally as

P (x, y) = Pr(x ≤ x,y ≤ y)

p(x, y) =
∂2P (x, y)
∂x ∂y

.

These functions are occasionally given the prefix joint distribution and density
function, respectively. The definition of conditional distribution and density applies
to pairs of random variables as well

P (x, y |M) =
Pr(x ≤ x,y ≤ y,M)

Pr(M)

p(x, y |M) =
∂2P (x, y |M)

∂x ∂y
(3.A.22)
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As in Definition 3.A.3, it is assumed that Pr(M) > 0. The conditional density of a
random variable y, assuming the value of some other random variable x is known,
is frequently used in statistical inference. This density cannot be derived directly
from (3.A.22) due to the fact that the event {x = x} generally has zero probability.
Instead, this density is defined through the limit

p(y |x = x) = lim
∆x→0

p(y |x < x ≤ x+ ∆x) =
p(x, y)
p(y)

. (3.A.23)

When no risk of ambiguity exists, the shorter notation p(y |x) will be used in
liu of the somewhat cumbersome notation p(y |x = x). Combining (3.A.23)
with (3.A.21) yields the most common version of Bayes’ theorem.

Theorem 3.A.7 (Bayes’ theorem and total probability)
The conditional density can be written

p(x | y) =
p(y |x) p(x)

p(y)
(3.A.24)

where the normalizing constant in the denominator can be expressed using the law
of total probability

p(y) =
∫
Rn
p(y |x)p(x) dx.

The function p(y |x) is labeled the likelihood while the density function of the
parameters p(x) is called the prior . Using the total probability theorem it is worth
noting that Bayes’ law (3.A.24) can be expressed solely using the joint density of
x and y,

p(x | y) =
p(y, x)∫

Rn p(y, x) dx
.

Since the conditional density is the fundamental solution to the inference problem,
it follows that the joint density is the only description needed for doing statistical
inference.



4

Cramér-Rao Bounds

The posterior filter density of most nonlinear recursive estimation problems cannot
be described analytically by a finite number of parameters. Several examples of
suboptimal algorithms for practical nonlinear recursive estimation have therefore
appeared in the literature. Generally, these procedures approximate either the es-
timation model or the description of the posterior distribution. These inevitable
approximations may seriously degrade the estimation performance compared to
the results obtained if the posterior filter density was known exactly. It is of great
practical interest to quantify this performance degradation, and measure the effect
of the introduced approximations. A benchmark simulation evaluation against the
optimal solution is not an option since it would require infinite computing power
and unlimited memory resources to run the optimal algorithm. However, even if the
optimal solution is intractable, the performance of the optimal algorithm may very
often be computed with limited resources. The estimation error obtained with an
optimal algorithm depends only on fundamental properties of the model, e.g., sig-
nal to noise levels and prior assumptions on the sought parameters. Characteristics
of the optimal estimation error define lower limits on the performance that can be
achieved using any approximative implementation. The characteristics of the sub-
optimal estimation error are revealed in simulation studies using the implemented
procedure. The discrepancy from the lower bound gives an indication of the effect
of the approximations introduced in the implemented algorithm. A relative com-
parison between the suboptimal and the optimal algorithms is therefore possible

49
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even if it is intractable to implement the optimal solution. A lower bound on some
property of the estimation error is convenient when evaluating implemented sub-
optimal procedures, but can also be used to quantify the fundamental performance
level that can be reached for the currently studied estimation problem.

In this chapter we focus on the fundamental Cramér-Rao bound which sets a
lower limit on the mean square estimation error. The bound states that the dif-
ference between the expected mean square error correlation matrix and a matrix
determined by the model of the estimation problem, should always be positive
semidefinite. The parametric and the Bayesian viewpoints on estimation give two
different kinds of Cramér-Rao bounds. These bounds, known as parametric and
posterior Cramér-Rao bounds respectively, are reviewed in Section 4.1. In Sec-
tion 4.2, we review some results on Cramér-Rao bounds for recursive estimation,
and present the class of nonlinear state space estimation models that is considered
in this work. The subsequent section presents compact expressions for the para-
metric Cramér-Rao bound for general filtering and prediction. The smoothing case
is also handled, in a somewhat rudimentary fashion. The recursive formulas for the
Cramér-Rao bound hold true for general nonlinear and non-Gaussian models and
require limited computational efforts and memory resources. Similar expressions
are presented using the posterior bound in Section 4.4. Without restrictions that
guarantee non-singularities in the state evolution process, the computations and
storage requirements for the posterior Cramér-Rao bound for recursive estimation
will increase linearly with time. The class of estimation problems for which the
posterior Cramér-Rao bound can be computed with limited effort still includes
general nonlinear models with possibly non-Gaussian noises. In Section 4.5, we
present some suggestions to the practical application of the Cramér-Rao bounds.
The utilization of both the parametric and the posterior Cramér-Rao bound is also
exemplified by the terrain navigation application in Chapter 7. A summary of the
results and some conclusive remarks are finally given at the end of this chapter.

4.1 Review over Cramér-Rao Bounds

In this section, we review the Cramér-Rao bound for the generic estimation problem
discussed in Section 3.2. The sought parameters are assembled in an n-dimensional
vector x and the observations are given as a p-dimensional vector y. For random
parameters, the estimation relies on the Bayesian paradigm and the problem is
uniquely specified by the joint density p(x, y) = p(y |x)p(x). For nonrandom pa-
rameters, it is the likelihood p(y |x) that alone defines the estimation problem.

For sake of completeness, the bounds reviewed in this section are presented with
derivations from first principles. The technical details of the proofs are summarized
in Appendix 4.B. The fact that we deliver complete derivations does not mean that
we claim originality of all the results presented. The main results of this review
can be found in any textbook on estimation theory. For a thorough treatment of
the results in this section we refer to the excellent, and now classical, monograph
of Van Trees [151].
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Commonly, the Cramér-Rao bound for multiple parameter estimation is derived
as an extension from the scalar case. Contrary to, e.g., Van Trees [151], we choose
to present the general bounds for vector valued estimation directly. In addition,
we introduce a slight generalization of the classical bounds. This modification is
utilized in the application of the bounds to the recursive estimation problem. It
allows us to derive expressions for the Cramér-Rao bound to a general class of state
space estimation problems.

4.1.1 Estimator Performance

Consider the generic statistical inference problem of estimating an n-dimensional
parameter x based on a p-dimensional observation vector y. The fundamental
Cramér-Rao bound sets a lower limit on the mean square estimation error of any
estimator x̂(y). The bound applies to all estimators under certain conditions on
the estimator bias, which is defined as the expected systematic error it produces
averaged over all measurements.

Definition 4.1
The bias of an estimator x̂(y) is the expected error,

B(x) M=
∫
Rp

(x̂(y)− x)p(y |x) dy.

In parametric estimation, the bias vector is a function of the unknown but fixed
true parameter x = x?. In the Bayesian framework, it is a random vector defined
by the function B(·), and the prior distribution p(x). Depending on the properties
of the bias vector, the estimators are grouped into three different classes.

Unbiased When the bias B(x) = 0 for all x, the estimator is unbiased . On the
average, the estimate equals the sought parameter.

Known bias When the bias is nonzero but independent of the parameter B(x) =
B, the estimator is said to have a known bias . An unbiased estimator is
straightforwardly obtained by subtracting the known bias from the estimate.

Unknown bias In the general case, B(x) is a function of the unknown param-
eter x and the estimator is said to have an unknown bias . Since the bias
is a function of the unknown parameter, it cannot be subtracted from the
estimate.

An unbiased estimator for the nonrandom parameter x has an estimation error
covariance given by

C = Cov(x̂(y)− x) = E
(
(x̂(y)− x)(x̂(y)− x)T

)
.

In parametric estimation the expectation is performed over the only stochastic
variable, viz. y, using the parameterized density p(y |x). Given any unbiased es-
timator defined for a parametric estimation problem, the Cramér-Rao bound for
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this problem is a matrix P of the same dimension as the estimator error covariance
C that satisfies

C − P ≥ 0. (4.1)

The inequality in (4.1) means that the left hand side is positive semidefinite. In
the random parameter case, it turns out that the bias has less importance and that
the estimation error correlation matrix, or mean square error matrix,

C = E
(
(x̂(y)− x)(x̂(y)− x)T

)
= Cov(x̂(y)− x) + E(B(x)) E

(
BT (x)

)
satisfies the Cramér-Rao inequality (4.1), given only minor assumptions on the
estimator bias. In the random case, the expectation is over both x and y, using
the joint density p(x, y).

The Cramér-Rao bound P is uniquely determined by the estimation model.
In the case of fixed nonrandom parameters, P depends on the likelihood and the
unknown fixed parameter. In the Bayesian random case, P depends on the joint
density. Proof of (4.1) and expressions for P in both the case of parametric and
of random estimation follow in the two subsequent sections. The material of these
two subsections have mainly been collected from [151]. An alternative presentation
only covering the parametric case is given by Scharf [130]. However, the Cramér-
Rao bounds presented below are somewhat generalized versions of the ones found
in [151]. We introduce the ability to distinguish between the parameter vector that
we are interested in estimating, x, and the vector z that affects the estimation
model. This makes it possible to handle cases when the prior density of x is
singular, i.e., involves Dirac delta measures.

The sequel of this chapter involves some, rather standard, vector gradient no-
tation and utilizes some basic block matrix manipulations. Appendix 4.A reviews
some of the utilized results, and settles the basic notation.

4.1.2 Nonrandom Parameters

When the parameters are regarded as unknown but fixed, they define a parameter-
ization of all admissible probability density functions for the observations, p(y |x).
The parametric Cramér-Rao bound depends on this likelihood and on the true
unknown parameter, denoted by x?.

The score function is the gradient of the logarithm of the likelihood

∇x log p(y |x).

In maximum likelihood estimation, this function returns a vector valued score given
the observation y and a candidate parameter vector x. Scores close to zero are good
scores since they indicate that x is close to a local optimum of p(y |x). Regarding
p(y |x) as a positive function of x,

∇x log p(y |x) =
1

p(y |x)
∇xp(y |x).
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Inserting the random vector y into the score function, each candidate parameter
vector yields a stochastic score. The expected value of the stochastic score function
is zero since

E(∇x log p(y |x)) =
∫
Rp
∇x(log p(y |x)) p(y |x) dy =

∫
Rp
∇xp(y |x) dy

= ∇x
∫
Rp
p(y |x) dy = 0.

This implies that the correlation and covariance matrices of the score function
coincide. The Fisher Information Matrix (FIM) is defined as this covariance matrix
of the random score vector.

Definition 4.2 (The Fisher information matrix)
The Fisher information matrix (FIM) is the covariance matrix of the score function

J(x) M= E
(
∇x log p(y |x)∇Tx log p(y |x)

)
In Corollary 4.B.3 in Appendix 4.B an alternative and more compact expression
for the FIM is given,

J(x) = E(−∆x
x log p(y |x)) , (4.2)

where ∆x
x is the second order partial derivative operator, see Appendix 4.A. The

FIM is a measure of the average size of the random score vector, for a given
parameter value x. We will often suppress the dependency on the parameter vector
and, when no risk of ambiguity exists, solely write J for the FIM of the currently
studied parametric estimation problem.

In parametric estimation, the probability density function of the observations is
parameterized by the sought parameter vector. The stochastic model of the obser-
vation vector is uniquely defined given a parameter vector x. However, this does not
imply that all elements of x or combinations of elements of x affect the stochastic
properties of the observations. The likelihood p(y |x) might be overparameterized
so that some elements of x or combinations of elements of x do not affect p(y |x),
regarded as a probability density function for y. In such a case, the FIM (4.2)
for the parameter vector x becomes singular. This will lead to problems when
computing the Cramér-Rao bound. Let z ∈ Rr be an alternative parameterization
of the likelihood such that p(y | z) is a well defined density function for y given
any z ∈ Rr and the corresponding FIM is nonsingular. Hence, we let r ≤ n and
define the possibly noninvertible coordinate transformation x = t(z). This possi-
bility to distinguish between the quantity that is estimated, x, and the parameters
that directly affect the likelihood, z, is utilized in the subsequent sections when
the bound is applied to recursive nonlinear estimation. The Cramér-Rao bound for
parametric estimators x̂(y) given a possibly overparameterized likelihood follows.
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Theorem 4.1 (Parametric Cramér-Rao bound)
Assume that the observation y ∈ Rp has a well defined probability density function
p(y | z) for all z ∈ Rr, and let z? denote the parameter that yields the true distri-
bution of y. Moreover, let x̂(y) ∈ Rn be an unbiased estimator of x = t(z), and let
x? = t(z?). The estimation error covariance of x̂(y) is bounded from below by

E
(
(x̂− x?)(x̂− x?)T

)
≥MJ−1MT

where

J = E(−∆z
z log p(y | z))

z=z?
and MT = ∇ztT (z)

z=z?

are matrices that depend on the true unknown parameter vector z?.

Proof A detailed proof is given in Appendix 4.B.1. In essence, the bound follows from
the positive semi-definiteness of the covariance matrix

E

([
x̂− x

∇z log p(y | z)

] [
x̂− x

∇z log p(y | z)

]T)
=

[
C M
MT J

]
≥ 0.

The Schur complement of C in this block matrix gives the desired result. �

Inserting the identity transformation x = t(z) = z yields the classical Cramér-Rao
bound which says that the estimation error covariance of any unbiased estimator
is bounded from below by the inverse of the FIM. The general bound given in The-
orem 4.1, with the possibility to have a gradient matrix M 6= I, is commonly not
utilized in the current literature on Cramér-Rao bounds. We believe this general-
ization to be of great practical importance since the formulation above allows us to
evaluate the bound in cases when the FIM is singular. A suitable reformulation of
a singular problem by parameterizing the likelihood with respect to fewer param-
eters can make the FIM invertible. Theorem 4.1 yields a bound for the original
likelihood parameterization by utilizing the transformation between the different
likelihood parameterizations. This aspect is crucial for the general Cramér-Rao
bounds to recursive estimation presented in the latter part of this chapter.

The general bound given in Theorem 4.1 can also be used to obtain a Cramér-
Rao bound for estimators with possibly nonzero bias.

Corollary 4.1 (Biased Estimators)
Consider an estimation problem defined by the likelihood p(y | z), and the fixed
unknown parameter z?. Any estimator ẑ(y) with unknown bias B(z) has a mean
square error bounded from below by

E
(
(ẑ − z?)(ẑ − z?)T

)
≥MJ−1MT +B(z?)BT (z?)

where

J = E(−∆z
z log p(y | z))

z=z?
and MT = I + ∇zBT (z)

z=z?
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Proof Introducing the quantity x = z +B(z), the estimator x̂(y)
M
= ẑ(y) is an unbiased

estimator of x. Hence, Theorem 4.1 yields that

E
(

(x̂− x)(x̂− x)T
)
≥ (I +∇zBT (z))T {E(−∆z

z log p(y | z))}−1 (I +∇zBT (z))

and thus that

E
(

(ẑ − z)(ẑ − z)T
)
≥ (I +∇zBT (z))T {E(−∆z

z log p(y | z))}−1 (I +∇zBT (z))

+B(z)BT (z),

after suitably inserting the true unknown parameter z?. �

The Cramér-Rao bound in Theorem 4.1 depends on the true unknown parame-
ter vector z?, and on the model of the problem defined by p(y | z) and the mapping
t(z). Hence, the bound can typically only be computed in simulation studies, when
the true value of the sought parameter vector is known.

4.1.3 Random Parameters

For random parameters there is no true unknown parameter value. Instead, the
prior assumption on the parameter distribution determines the probability of dif-
ferent parameter vectors. Like in the parametric case of the previous subsection,
we allow for a possibly non-invertible mapping t : Rr → Rn between a parameter
vector z and the sought parameter x. The vector z is assumed to have been cho-
sen such that the joint density p(z, y) is a well defined density, without singular
Dirac delta factors. The Cramér-Rao bound presented in the theorem below is
a slight generalization of the posterior Cramér-Rao bound for multiple parameter
estimation by Van Trees [151].

Theorem 4.2 (Posterior Cramér-Rao bound)
Let z ∈ Rr and y ∈ Rp be two random vectors with a well defined joint density
p(z, y), and let x̂(y) ∈ Rn be an estimate of x = t(z). If the estimator bias

B(z) =
∫
Rp

(x̂− t(z)) p(y | z) dy

satisfies

lim
zi→±∞

Bj(z)p(z) = 0 for all i = 1, . . . , r and j = 1, . . . , n,

then the mean square error of the estimate is bounded from below

E
(
(x̂ − x)(x̂− x)T

)
≥MJ−1MT

where

J = E(−∆z
z log p(y, z)) and MT = E

(
∇ztT (z)

)
.
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Proof The bound follows from the positive semidefinite correlation matrix

E

([
x̂− x

∇z log p(z, y)

] [
x̂− x

∇z log p(z, y)

]T)
=

[
C M
MT J

]
≥ 0.

A detailed proof is presented in Appendix 4.B.2. �

Since p(z, y) = p(y | z)p(z), the “information matrix” in the posterior Cramér-Rao
bound can be decomposed into two matrices

J = JD + JP .

Above, JD represents the information in the observed data and JP the information
in the prior,

JD = E(−∆z
z log p(y | z)) JP = E(−∆z

z log p(z)) .

Note that JD is the expectation of the parametric FIM performed under the prior
measure p(z). Alternatively, with the decomposition p(z, y) = p(z | y)p(y), the
posterior bound can be written

J = E(−∆z
z log p(z | y)) (4.3)

since ∆z
z log p(y) = 0. Expectation is naturally performed with respect to p(z, y)

in (4.3). This expression in some sense justifies the name “posterior” Cramér-Rao
bound.

Contrary to the parametric case, the posterior Cramér-Rao bound can be com-
puted even in real applications. Since the parameters are random there is no
unknown true parameter value. Instead, in the posterior Cramér-Rao bound the
matrices J and M are computed by mathematical expectation performed with
respect to the prior distribution of the parameters.

4.2 Discrete Time Nonlinear Estimation

In nonlinear recursive estimation, the primary interest lies in bounds on the filtering
or prediction error. For sake of completeness, we will also determine bounds for
fixed interval smoothing.

4.2.1 Background

Kerr [100] presents a general review over Cramér-Rao bounds for both continuous
and discrete time nonlinear filtering. Although the continuous time case is of less
practical interest, it has been studied in much greater detail than the discrete time
case. The Cramér-Rao bound for discrete time filtering was initially studied by
Borobsky and Zakai [32]. They consider the posterior bound with the restriction
to scalar nonlinear models with additive Gaussian noise. Later, Galdos [70] ex-
tended the results to the multidimensional case. A more recent generalization of
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the same technique is given by Doerschuk [56]. The class of models considered
in [56] are discrete time, state space representations of nonlinear autoregressive
processes driven by Gaussian state dependent noise having full rank covariance
matrix. The approach initiated in [32] and extended in [56, 70] relies on a compar-
ison between the information matrix of the nonlinear system and the information
matrix of a suitable linear Gaussian system. According to [100], the argumenta-
tion in [32] is somewhat imprecise and lacks a proper definition of the equivalence
between the linear and nonlinear models. Some additional limitations of this ap-
proach are also discussed in the general overview over lower bounds for nonlinear
filtering provided by Kerr [100]. The parametric bound has not been given the
same amount of attention in the literature as the posterior bound. A parametric
bound is derived by Taylor [144] for the case of continuous time deterministic state
evolution and nonlinear discrete time measurements with additive Gaussian noise.

Lately, Tichavský et al. [147] have derived general expressions for posterior
Cramér-Rao bounds to discrete time nonlinear filtering using a different, and more
general, approach than developed [32]. Similar results were independently obtained
by Bergman [17]. Bounds for multidimensional state space models without any
limiting Gaussianity assumptions are derived in [147]. The approach to posterior
Cramér-Rao bounds for nonlinear filtering advocated by Tichavský et al. has served
as an inspiration for the development of a novel parametric Cramér-Rao bound for
recursive estimation presented in Section 4.3. The parametric bound can even be
evaluated for state space models of greater generality than the ones used for the
posterior bound studied in [147]. Due to the lack of prior assumptions, some extra
fictitious measurements must be introduced to retain the prediction power of the
state space model in the parametric case. Previous work on parametric bounds
for discrete time nonlinear filtering utilizes similar techniques to introduce prior
information about the system state at the initial time [144]. The parametric bounds
presented in Section 4.3 also utilize information about the system state noise and
are more general than the one presented in [144]. The case of random parameter
estimation is considered in Section 4.4. This section provides a complete proof of
the bound for prediction and a review of the filtering bound given by Tichavský
et al. [147]. In Section 4.4, we present novel expressions for the posterior Cramér-
Rao bound to smoothing problems in nonlinear and possibly non-Gaussian state
space models. Finally, in Section 4.5, we give some brief comments on how to
practically apply and compute the derived bounds.

4.2.2 Estimation Model

The states xt are assumed to evolve according to an a priori known, possibly time
dependent and nonlinear, discrete time, dynamical state space model

xt+1 = ft(xt, wt)
yt = ht(xt, et)

t = 0, 1, . . . (4.4)

where xt ∈ Rn, wt ∈ Rm and both yt and et are elements of Rp. Let {wt} and
{et} be mutually independent i.i.d. sequences with known densities p(wt) and p(et),



58 Cramér-Rao Bounds

respectively. The initial state is independent of both these noises at all times and
has a known probability density function p(x0). The densities of the state and
measurement noises, and the initial state together with the algebraic dependency
induced by the model (4.4) determine the stochastic properties of the state and
measurement sequences. This gives a correspondence with the generic formulation
of recursive estimation problems in Proposition 3.2.

Apart from some regularity conditions such as continuity and differentiability,
only one additional restriction is put on the functions in the state space model (4.4).
We assume that ht(xt, ·) : Rp → Rp is bijective for all t and all xt. Denote the
inverse of this function by h−1

t (xt, ·). This assumption is perfectly reasonable from
a modeling point of view and it ensures that the likelihood function of yt given xt
is well defined for all t and xt,

p(yt |xt) = pet
(
h−1
t (xt, yt)

)
. (4.5)

The lack of additional restrictions on the state transition equation allows us to
include, e.g., the case of models where the conditional state transition density
p(xt+1 |xt) is singular. Such cases must, however, be given some special attention
when a random interpretation of the state sequence us utilized. This is studied in
the posterior bound case of Section 4.4.

In recursive estimation, the estimator is based on all measurements observed
from initial time and the estimate is usually the current or the predicted state
vector. Instead of regarding the current state as the parameter and all observed
measurements as observations, we study the complete history of states and mea-
surements from the state space model (4.4) and regard the states in past time as
nuisance parameters. Introduce the vectors of stacked entities from the model (4.4),

Yt =


y0

y1

...
yt

 Xt =


x0

x1

...
xt


U0 = u0 =

[
x0

w0

]
Ut =

[
Ut−1

ut

]
=
[
Ut−1

wt

]
t > 0

(4.6)

Define the relation from the disturbances driving the model to the current state
xt+1 = ϕt(Ut) where ϕt : Rn+tm → Rn. We further define the stacked history of
such relations Xt+1 = Φt(Ut) where Φt : Rn+tm → R(t+1)n, i.e.,

Xt+1 = Φt(Ut) =


x0

ϕ0(U0)
ϕ1(U1)

...
ϕt(Ut)

 . (4.7)

In recursive Bayesian estimation of the states of (4.4), the posterior density is one
of the marginals of p(Xt |Yτ ), for different choices of τ . In filtering, it is the case
τ = t that is considered, while prediction treats the case of τ < t, and smoothing
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τ > t. When the conditional state transition density, p(xt+1 |xt), is singular, the
FIM for these estimation problems will be singular as well. While instead treating
the vector Ut as the sought parameter, the FIM for this problem will be invertible
and can be used to determine the Cramér-Rao bounds for recursive estimation of
the state sequence Xt.

4.3 Parametric Bounds

In the model (4.4), the states are random since both the initial state x0 and the
sequence {wt} are modeled as random vectors. Inserting a specific realization of
these random quantities will yield a corresponding realization of the state sequence.
This state sequence can be regarded as a fixed but unknown parameter sequence
in a parametric framework. In Section 4.3.1 we introduce extra, fictitious, mea-
surements that are used to incorporate prior information about the state sequence
into the parametric case.

The parametric Cramér-Rao bounds for recursive estimation are derived in
Section 4.3.2. The resulting bounds are found to coincide with the error covariance
Riccati recursion of the Kalman filter to the system obtained when linearizing the
model around the true state sequence. Parametric bounds for filtering, prediction,
and smoothing are presented with derivations in Section 4.3.2.

4.3.1 Fictitious Measurements

Denote the fixed but unknown true sequence of states by X?t . This vector can
thus alternatively be specified by U?t−1 since the state transition part of the model
yields that Φt−1(U?t−1) = X?t . Given the measurements Yt and a pure parametric
view on the state sequence, very little can be said about future state values xt+τ .
Since no prior information is available about the unknown future values of wt,
the limitations induced by the state space model are strictly algebraic, and lower
bounds for parametric prediction of the state sequence will therefore in general be
impractically high. The unknown but fixed parameter sequence X?t must naturally
satisfy the model

x?t+1 = ft(x?t , w
?
t ) t = 0, 1, . . . ,

but the future true parameters w?t are unknown, and the only knowledge about
them is that they are elements in Rm. The range of possible future states is
therefore in general unlimited and the measurements Yt carry no information about
these state values.

However, the prediction power inherent in the state space model (4.4) can be
retained by introducing some regularizing prior information about the parameters
w?t . Assume that we are provided with some average value of w?t , and a probabilistic
model for the difference between the true parameter and this average value. That
is, let

w?t = w̄t + w̃t
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where w̄t is the average value of the unknown parameter and w̃t is a random,
zero mean, error having well a defined density pw̃t(w̃t). The average value w̄t
is regarded as a measurement of the parameter w?t . This measurement and the
density function pw̃t(w̃t) defines the prior knowledge that retains the prediction
ability in the parametric framework. Similar prior knowledge is also needed for the
initial state of the model (4.4). Thus, we define some additional measurements, zt,
originating from a measurement model with

z0 =
[
x0 − x̃0

w0 − w̃0

]
and

zt = wt − w̃t for t = 1, 2, . . .
(4.8)

In (4.8) we clearly indicate which quantities are stochastic and which are deter-
ministic but this notational distinction is not pursued in the sequel. The observed
event at initial time is z0 =

[
x̄0
w̄0

]
and at later times zt = w̄t. We also define Zt to

be the stacked vector of the measurements zt,

ZTt =
[
zT0 zT1 . . . zTt

]
. (4.9)

The likelihood for the fictitious measurements (4.8) is thus given by

p(z0 =
[
x̄0
w̄0

]
|x0, w0) = px̃0(x0 − x̄0)pw̃0(w0 − w̄0)

p(zt = w̄t |wt) = pw̃t(wt − w̄t)

where the interpretation of the measurements as the average value of the parameter
is obvious. Without loss of generality we can, for the sake of the Cramér-Rao bound
calculations, assume that all of w̄t and x̄0 are equal to zero, and for notational
convenience set px̃0(·) = px0(·), and pw̃t(·) = pwt(·). The likelihood of the fictitious
measurements will then have the exact role of the prior distributions in the Bayesian
framework,

p(z0 = 0 |x0, w0) = px0(x0)pw0(w0) p(zt = 0 |wt) = pwt(wt).

This yields a more compact notation and makes comparisons with the random case
easier. In previous work on parametric Cramér-Rao bounds for nonlinear filtering,
Taylor [144] also introduces the concept of an additional measurement for the prior
information about the initial state. This introduction of fictitious measurements
corresponds to real measurements in the terrain navigation application. The head-
ing and speed estimates from the inertial navigation system are measurements that
are used to determine the mean value of the system noise. The variance of these
measurements is prior information about the drift of the inertial system during one
sample interval, as described in Chapter 2. When estimation of Xt, or specifically
xt, is considered, it is in the sequel understood that the measurements Zt−1 have
been observed as an all zero vector. Since the bounds are derived using these fic-
titious measurements, the estimators evaluated against the bounds may also have
the ability to utilize the information in the measurements (4.8). In practice, this
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is obtained by introducing prior information, e.g., in the way used in the terrain
navigation application. This will also be further exemplified in the Cramér-Rao
bound evaluation in Chapter 7.

The fictitious measurements are introduced solely since the lack of prior infor-
mation about the states seriously degrades the prediction power of the state space
model. For filtering and smoothing, we are not obliged to use the additional mea-
surements. A rigorous derivation of expressions for the parametric Cramér-Rao
bound for filtering and smoothing without the additional measurements can be
performed in a straightforward manner. We refrain from this option since it builds
on a very similar argumentation to the derivation presented below, with the mea-
surements incorporated into the Cramér-Rao bound. Moreover, the state evolution
equation will only play a minor role for the bound if no prior information about
the state noise parameters wt is given. Consider, e.g., the case of additive noise in
the state transition,

xt+1 = ft(xt) + wt. (4.10a)

With no prior information about wt, the state evolution equation will not affect the
bound at all since the value of xt says nothing about xt+1. In this case, the model
simplifies to a series of nonlinear regressions affected by white noise measurement
error

yt = ht(xt, et) (4.10b)

where each xt is a completely new parameter without statistical connection to any
other xτ , τ 6= t. Hence, in a parametric framework without any prior information
about wt, the model (4.10) does not correspond to a filtering problem since there
is no dynamical dependency in the state sequence.

4.3.2 Bound Calculations

Consider the parametric inference problem of estimating the fixed state sequence
X?t+1, where X?t+1 = Φt(U?t ) according to (4.7). The estimate X̂t+1 is based on the
sequence Yt, given in (4.6) and the set of fictitious measurements Zt, from (4.7).
The Cramér-Rao bound states that the mean square error of any unbiased estimator
X̂t+1 satisfies

E
(

(X̂t+1 − X?t+1)(X̂t+1 − X?t+1)T
)
≥ Pt+1, (4.11)

where, according to Theorem 4.1, the lower bound is given by

Pt+1 =
(
∇UtΦTt (Ut)

)T
J−1
t

(
∇UtΦTt (Ut)

)
Ut=U?t

(4.12a)

Jt = E
(
−∆UtUt log p(Yt,Zt |Ut)

)
Ut=U?t

(4.12b)
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and expectation is performed with respect to the likelihood p(Yt,Zt |Ut). Let Pt+1

denote the Cramér-Rao bound for the one step ahead prediction of the state xt+1

given measurements Yt and the prior knowledge defined by observing the all zero
vector Zt. By decomposing the lower bound (4.11) into sub-blocks, the Cramér-Rao
bound for this prediction problem is found in the lower right corner of Pt+1,

E

([
X̂t − X?t

x̂t+1 − x?t+1

] [
X̂t − X?t

x̂t+1 − x?t+1

]T)
≥
[
∗ ∗
∗ Pt+1

]
. (4.13)

The historical part of the state sequence Xt is here regarded as nuisance parame-
ters. The parametric Cramér-Rao bound for both the filtering and the smoothing
problems can similarly be found on the block diagonal of the matrix Pt+1. Straight-
forwardly computing Pt+1 by forming (4.12) and extracting these block diagonal
elements would require increasingly tedious computations. The sought block diag-
onal elements can instead be expressed recursively by exploiting the structure of
the Cramér-Rao bound matrix Pt+1.

Theorem 4.3 (Parametric Prediction)
The Cramér-Rao bound for the problem of one step ahead prediction of the un-
known but fixed states of (4.4) is

E
(
(x̂t+1(Yt,Zt)− x?t+1)(x̂t+1(Yt,Zt)− x?t+1)T

)
≥ Pt+1

where P−1
0 = −∆x0

x0
log px0(x?0), and

Pt+1 = Ft
(
Pt − PtHT

t (HtPtH
T
t +Rt)−1HtPt

)
FTt +GtQtG

T
t .

The matrices Ft and Gt are given by gradients of the functions defining the
model (4.4), evaluated at the true trajectory,

FTt = ∇xtfTt (x?t , w
?
t ) GTt = ∇wtfTt (x?t , w

?
t ).

The matrices Ht, Rt and Qt are similarly given by partial derivatives of the model
expressions,

HT
t R
−1
t Ht = E

(
−∆xt

xtp(yt |x
?
t )
)

Q−1
t = E

(
−∆wt

wtp(zt |w
?
t )
)

where the factorization between Ht and Rt is such that Rt > 0 and expectation
is performed with respect to p(yt |x?t ) and p(zt |w?t ), respectively. The likelihood
p(yt |xt) is given in (4.5). The Cramér-Rao bound inequality is valid under the
assumption that the abovementioned gradients, expectations and matrix inverses
exist.

Proof See Appendix 4.C.1. �

The expression for the parametric Cramér-Rao bound Pt is recognized as the Ric-
cati recursion for the error covariance in a Kalman filter, see Theorem 3.4. It is
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straightforward to incorporate the case of statistically dependent observation and
state transition noise into the Cramér-Rao bound above. This yields a perfect
resemblance with Theorem 3.4. Thus, the bound Pt is the error covariance of
the Extended Kalman Filter (EKF), obtained by linearizing the state equations
around the true state trajectory. Thus, the EKF would be an efficient estimator if
this linearization could be performed. However, this would make it unnecessary to
perform any estimation since it would require that the true trajectory was known.

The theorem gives a recursive expression for the bound where the recursive
update is determined by gradients and expectations over the model functions and
densities. In Section 4.5, we will comment on the issue of computing these expec-
tations whenever they lack known analytical solutions. In practice, one must also
consider the implicit definition of the matrices Ht and Rt in Theorem 4.3. The
factorization between Ht and Rt in the theorem will depend on the actual model
studied. Generally, it can be computed by singular value decomposition once the
matrix E

(
−∆xt

xt log p(yt |xt)
)

has been formed, or possibly by an analytical inves-
tigation into the measurement model of the problem. Often, the choice

HT
t = ∇xt

(
h−1
t (xt, yt)

)T
will suffice, at least if this gradient is independent of yt. This will, e.g., be the
case when the noise enters the measurement equation additively. If, additionally,
the noise distribution is Gaussian, the expectations in the bound recursion can be
analytically evaluated.

Corollary 4.2 (Additive Gaussian Measurement Noise)
Consider the prediction problem of Theorem 4.3. Under the assumption that the
measurement noise enters additively,

yt = ht(xt) + et

and that p(x0), p(wt) and p(et) are Gaussian distributed with positive definite
covariance matrices P0, Qt and Rt, respectively, the Cramér-Rao bound is given
by the recursion

Pt+1 = Ft
(
Pt − PtHT

t (HtPtH
T
t +Rt)−1HtPt

)
FTt +GtQtG

T
t .

The matrices Ft and Gt are given in Theorem 4.3, while

HT
t = ∇xthTt (xt).

Proof Any Gaussian density with positive definite covariance satisfies

−∆x
x log N(x, ;µ, P ) = P−1.

The likelihood p(yt |xt) = pet(yt − ht(xt)) yields that

E(−∆xt
xt log p(yt |xt)) = ∇xthTt (xt)R

−1
t

(
∇xthTt (xt)

)T
since expectation is performed with respect to yt. �
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The Cramér-Rao bound for filtering can be found using a partitioning, similar
to the one in (4.13)

E


X̂t−1 − X?t−1

x̂t − x?t
x̂t+1 − x?t+1

X̂t−1 − X?t−1

x̂t − x?t
x̂t+1 − x?t+1

T
 ≥

 ∗ ∗ ∗
∗ Pt|t ∗
∗ ∗ Pt+1


Utilizing the analogy between the Cramér-Rao bound of Theorem 4.3 and the
Kalman filter recursion, the bound recursion can be decomposed into a time update
and a measurement update step. The Cramér-Rao bound for the filtering problem
thus follows by performing these steps in opposite order, and initiating the recursion
with one additional measurement update.

Theorem 4.4 (Parametric Filtering)
The Cramér-Rao bound for the filtering of the states of (4.4) is given by

E
(
(x̂t(Yt,Zt−1)− x?t )(x̂t(Yt,Zt−1)− x?t )T

)
≥ Pt|t

where P0|0 = P0 − P0H
T
0

(
H0P0H

T
0 +R0

)−1
H0P0 and

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t

Pt+1|t+1 = Pt+1|t − Pt+1|tH
T
t

(
HtPt+1|tH

T
t +Rt

)−1
HtPt+1|t.

The matrices Ft, Gt, Ht, Qt and Rt are defined in Theorem 4.3.

Proof Follows by minor adjustments in the proof of Theorem 4.3. �

The bound for the smoothing problem also follows from the Kalman filter analogy.
The bound results in the usual type of forward-backward recursions for fixed inter-
val smoothing. The smoothing case is considered in greater detail for the posterior
case in the following section.

4.4 Posterior Bounds

For the random case, it is the joint density of parameters and observations that
enters the Cramér-Rao bound calculations. Using the notation defined in (4.6), the
joint density for the one step ahead prediction problem is

p(Yt,Ut) = p(yt |Ut−1)p(wt)p(Yt−1,Ut−1).

However, applying a similar approach as the one in the parametric case is not possi-
ble for the posterior bound. Following the notation in the proof of Theorem 4.3, the
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matrices for the Cramér-Rao bound can be decomposed and recursively expressed
as

Jt = E

([
WT
t−1H

T
t R
−1
t HtWt−1 0
0 Q−1

t

])
+
[
Jt−1 0

0 0

]
(4.14a)

Mt = E

([
0 0

FtWt−1 Gt

])
+
[
Mt−1 0

0 0

]
(4.14b)

where all the matrices inside the expectation operator depend on either or both
of the random quantities Ut and yt. The expectation should be performed over
both Ut and yt using the joint density p(yt,Ut). These expectations hinder us
from obtaining a recursion similar to the one for the parametric case. Further
restrictions need to be introduced into the model (4.4) in order to obtain posterior
bounds with limited computational complexity.

Tichavský et al. [147] introduce the additional assumption that the transition
kernel p(xt+1 |xt) is a well defined probability density function for xt+1 at all times
t and given any xt ∈ Rn. Specifically, the function p(xt+1 |xt) must be twice
differentiable with respect to both xt and xt+1. A necessary condition for this
assumption to hold is that the system noise wt ∈ Rn. This is commonly not the
case, e.g., in target tracking applications. The bound for nonlinear filtering is
considered in [147]. We present both cases of prediction and filtering in a single
theorem.

Theorem 4.5 (Posterior filtering and prediction bounds)
The posterior Cramér-Rao bound for the one step ahead prediction of the states
of (4.4) is given by the recursion

P−1
t+1 = Qt − STt

(
P−1
t + Rt + Vt

)−1
St

initiated by P−1
0 = E

(
−∆x0

x0
log p(x0)

)
, and where

Vt = E
(
−∆xt

xt log p(xt+1 |xt)
)

Rt = E
(
−∆xt

xt log p(yt |xt)
)

St = E
(
−∆xt+1

xt log p(xt+1 |xt)
)

Qt = E
(
−∆xt+1

xt+1
log p(xt+1 |xt)

)
.

The filtering case is initiated by P−1
0|0 = (P−1

0 +R0)−1 and recursively determined
as

P−1
t+1|t+1 = Qt +Rt+1 − STt

(
P−1
t|t + Vt

)−1

St.

The expressions hold under the assumption that the involved differentiations and
expectations exist. Explicitly, this assumes that p(xt+1 |xt) is well defined for all
t.

Proof See Appendix 4.C.2 for a proof of the prediction bound. The filtering case follows
similarly, or alternatively refer to [147], or [146]. The bound for prediction will soon also
appear in [134]. �
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For the linear Gaussian case, the recursive expressions for the bounds will once
again coincide with the Kalman filter recursions. Generally, the likelihood p(yt |xt)
is given by (4.5) and the state transition kernel p(xt+1 |xt) implicitly defined
by (4.4). To be more precise, consider nonlinear models with additive noise

xt+1 = ft(xt) + wt

yt = ht(xt) + et
t = 0, 1, . . . (4.15)

where we assume that the noise wt, et, and the initial state x0 all are Gaussian
distributed with known positive definite covariances Q̃t, R̃t, and P0, respectively.
This model is covered by Theorem 4.5 and follows in a straightforward way by
verifying that

Vt = E
(
∇xtfTt (xt)Q̃−1

t (∇xtfTt (xt))T
)

St = −E
(
∇xtfTt (xt)

)
Q̃−1
t

Rt = E
(
∇xthTt (xt)R̃−1

t (∇xthTt (xt))T
)

Qt = Q̃−1
t

which defines the recursion for the bound defined in Theorem 4.5.
The main restrictive assumption of Theorem 4.2 is the regularity assumption

on the transition kernel p(xt+1 |xt). Tichavský et al. [147] suggest to handle the
cases when p(xt+1 |xt) is singular by adding extra “regularization noise” with small
covariance in the state transition equation. However, the bound for the case with
singular transition kernel p(xt+1 |xt) can actually be computed without some ad-
ditional regularization noise for models with linear state evolution but possibly
nonlinear measurement relation. Consider the estimation model

xt+1 = Ftxt +Gtwt

yt = ht(xt, et)
t = 0, 1, . . . (4.16)

where wt ∈ Rm and m ≤ n. As usual, the densities p(x0), p(wt), and p(et) are
assumed known, but otherwise not restricted to any special class of distributions.
This class of models, although severely more restrictive than (4.4), still captures
many practical estimation problems. Several target tracking applications can ac-
tually be written in the form given in (4.16).

Theorem 4.6 (Posterior bound with singular state evolution)
The posterior Cramér-Rao bound for the one step ahead prediction of the states
of (4.16) is given by the recursion

Pt+1 = Ft
(
Pt − Pt(Pt + Z−1

t )−1Pt
)
FTt +GtQtG

T
t .

The recursion is initiated by

P−1
0 = E

(
−∆x0

x0
log px0(x0)

)
and

Q−1
t = E

(
−∆wt

wt log pwt(wt)
)

Zt = E
(
−∆xt

xt log p(yt |xt)
)
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where the likelihood is given in (4.5). The expectations above are performed with
respect to x0, wt, and the joint density p(yt,Ut−1), respectively. The result holds
under the assumption that the expectations, differentiations and matrix inverses
above exist.

Proof Since the relation xt+1 = ϕt(Ut) becomes linear for the model (4.16), xt+1 =
WtUt and the gradient ∇UtxTt+1 = W T

t is a constant matrix which is unaffected by the
expectations in (4.14). Thus, a technique similar to the one in Appendix 4.C.1 is applicable
to the model class of this theorem. A detailed proof is given in Appendix 4.C.3 for sake
of completeness. �

Corresponding filtering and smoothing formulas for the case in Theorem 4.6 follow
similarly as in the parametric case. Instead, we consider the bound for smoothing
under the assumption that p(xt+1 |xt) is nonsingular. This bound follows from a
similar technique as the one used in Theorem 4.5 and the bounds presented by
Tichavský et al. [147], but the smoothing bounds are not considered by Tichavský
et al. [147].

Theorem 4.7 (Posterior Cramér-Rao bound for smoothing)
Under the assumption that p(xt+1 |xt) is nonsingular, the posterior Cramér-Rao
bound for smoothing of the states in (4.4)

E
(
(x̂t(YN )− xt)(x̂t(YN )− xt)T

)
≥ Pt|N

can be computed using a forward-backward recursion. Initiated by

P−1
0 = E

(
−∆x0

x0
log p(x0)

)
,

the forward recursion is

P−1
t+1 = Qt − STt

(
P−1
t +Rt + Vt

)−1
St t = 0, 1, . . . , N

Initiated by PN+1|N = PN+1, the backward recursion becomes

Pt|N = Pt|t + Pt|tStPt+1|NS
T
t Pt|t t = N,N − 1, . . . , 0

where

Pt|t =
(
Rt + Vt + P−1

t

)−1
.

The matrices Qt, Rt, St and Vt are defined in Theorem 4.5.

Proof See Appendix 4.C.4. �

The theorem presents the bound for fixed interval smoothing, fixed lag or point
smoothing follows similarly. For the linear Gaussian case, the recursions above will
coincide with the Rauch-Tung-Striebel (RTS) formulas for optimal linear smooth-
ing [2, 96].
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4.5 Relative Monte Carlo Evaluation

There are several ways to utilize the bounds for recursive estimation presented
in this chapter. Lower bounds on estimation performance can, e.g., be used to
determine whether the imposed design specifications are realistic. Alternatively,
plotting the bound versus the range of different unknown but not estimated model
parameters, e.g., versus the signal to noise ratio, can give valuable insight into
the character of the estimation problem. In this work we utilize the bounds for
evaluation of suboptimal algorithms by means of Monte Carlo simulations. Such an
evaluation can be used to determine the suboptimal performance of the algorithm,
but also used to verify the correctness of the actual implementation of an optimal
algorithm.

Comparison of the performance of several algorithms on the basis of their Monte
Carlo Root Mean Square (RMS) error is commonly utilized in signal processing
applications. A relative comparison between different algorithms can be used to
choose the most favorable approach for the problem at hand. The absolute RMS
error, on the other hand, only reveals the average performance of the algorithm
under the simulation conditions used in the Monte Carlo evaluation. This error
value will naturally depend on the subjective choice of noise levels and distributions
used in the particular simulation study. By computing a lower bound to compare
the results with, a measure of the relative effectiveness of each algorithm is obtained.
The discrepancy of the absolute RMS error from this lower bound reveals the effects
of any suboptimal approximations introduced in the current algorithm.

In nonlinear estimation, the RMS error may depend on the region of the state
space that the simulation is performed over. This is the case in terrain navigation
where simulations over flat terrain usually yields higher RMS errors than identical
simulations performed over rough terrain. Examples of such behavior are given
both in Chapter 2, and Sections 7.2 and 7.3. A statement about the average
position error of a terrain navigation algorithm in a simulation study therefore
says nothing about the general performance of the algorithm. The statement needs
to be accompanied by a measure of the terrain variation in the area where the
simulations were performed. The Cramér-Rao bound can be seen as a very natural
way to quantize the terrain information. The relative difference between the bound
and the algorithm performance is a measure that makes sense even if two different
algorithms are evaluated over different terrain areas. Hence, the lower bound yields
an opportunity to compare the Monte Carlo RMS performance between algorithms
tested under different circumstances.

Consider the parametric one step ahead prediction problem, with a Cramér-Rao
bound given by the matrix inequality

E
(
(x̂t − x?t )(x̂t − x?t )T

)
≥ Pt, (4.17)

where Pt is recursively defined by Theorem 4.3. This matrix inequality is hard to
depict, at least if the state space is of dimension greater than two. Consider instead
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the scalar mean square error given by the trace of (4.17),

E
(
(x̂t − x?t )T (x̂t − x?t )

)
= E

(
‖x̂t − x?t ‖

2
)
≥ trPt. (4.18)

Both the left hand side mean square error and possibly the right hand side Cramér-
Rao bound recursion involve expectations which can be estimated using Monte
Carlo simulations.

In a simulation study under the parametric paradigm, a true trajectory X?t of
length N must be determined. This fixed state trajectory can be generated by
choosing x?0 and w?t and then running these parameters through the state space
model, i.e., computing X?t = Φt−1(U?t ). The algorithm that should be evaluated is
then applied M times to this trajectory using different, but identically distributed,
realizations of the measurement noise. Let x̂it denote the estimate produced by the
algorithm at time t in Monte Carlo iteration i. Since the expectation in (4.18) is
performed over the measurement distribution, this expectation can be estimated
by a sample mean over the independent measurement realizations. This is an
application of the principle of Monte Carlo integration which will be thoroughly
discussed and applied to recursive estimation in Chapter 6. Inserting the Monte
Carlo estimate and taking the square root on both sides of (4.18) yields that√√√√ 1

M

M∑
i=1

‖x̂it − x?t ‖
2 &

√
trPt t = 0, 1, . . . , N

where the notation& is used to denote that the inequality only holds approximately
for finite M . Hence, the simulation root mean square (RMS) error in a Monte
Carlo evaluation is bounded from below by the square root of the trace of the
Cramér-Rao bound. The Cramér-Rao bound is computed as in Theorem 4.3 where
the linearizations around the true state trajectory are computed analytically or
numerically. The expectations for evaluating Rt and Qt for Theorem 4.3 can also
be computed by Monte Carlo techniques or evaluated analytically, e.g., if the noises
are Gaussian distributed.

The same Monte Carlo approach can be used in the posterior case. The only
difference is that the RMS error should be averaged over M different state trajec-
tories, with different measurement noise independently generated according to the
system model. The Monte Carlo limit for the posterior case thus becomes√√√√ 1

M

M∑
i=1

‖x̂it − xit‖
2 &

√
trPt t = 0, 1, . . . , N

where the right hand side is given by Theorem 4.5, and xit is the true system
state at time t in Monte Carlo run i. The matrices in the posterior Cramér-Rao
bound recursion involve expectations over the joint density. These expectations
can be computed using a similar Monte Carlo approach. In the posterior bound of
Theorem 4.5 the matrix

Rt = E
(
−∆xt

xt log p(yt |xt)
)



70 Cramér-Rao Bounds

is needed for the recursion. With additive Gaussian measurement noise having
positive definite covariance R̃t, the estimate

R̂t ≈
1
M

M∑
i=1

∇xthTt (xit)R̃
−1
t

(
∇xthTt (xit)

)T
is an appropriate estimate of Rt. The number M must be chosen sufficiently
large, since both the algorithm RMS error and the Cramér-Rao bound increase in
reliability with the number of Monte Carlo iterations.

Estimators with a mean square error that reaches the Cramér-Rao bound are
often referred to as efficient estimators. A suboptimal algorithm for which the
Monte Carlo RMS error stays in the vicinity of the bound will naturally imply
that the algorithm is good. However, if the RMS error does not reach the bound
this does not necessarily imply that it is a bad algorithm. There might not exist
any efficient estimator for the current estimation problem [151]. In the parametric
case, it is well known that if an efficient estimator exists, the maximum likelihood
estimator will be efficient and have mean square error equal to the Cramér-Rao
bound [151]. On the other hand, one may also construct estimators for which the
mean square error falls below the Cramér-Rao bound. Such superefficiency usually
originates from a bias variance trade-off for a finite number of observations, but
can actually also occur asymptotically. Stoica and Ottersten [139] present a general
review of the theoretical background to such behavior exemplified by some, non-
trivial yet simple, superefficient estimators.

4.6 Conclusions

Expressions for several Cramér-Rao bounds have been presented in this chapter.
Bounds for filtering, prediction and smoothing have been given both for the para-
metric and the random view on nonlinear state space estimation. Table 4.1 presents
a quick overview of the different expressions for Cramér-Rao bounds derived in this
chapter. The expressions for the bounds are given as recursive formulas for rather
general classes of state space estimation models. The recursive expressions in-
volve differentiations of the model equations and expectations over these. Both
the bound and the algorithm performance can straightforwardly be evaluated in
standard Monte Carlo simulations. By performing these Monte Carlo simulations
under simplified conditions, e.g., assuming additive Gaussian noises, the bound can
often be explicitly determined. Such simulations must naturally be accompanied
by more realistic simulations for evaluation of the absolute performance of the al-
gorithm. In Chapter 7 we present extensive Monte Carlo simulations using both
the parametric and the posterior bounds to evaluate an approximative algorithm
for terrain navigation.
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Theorem 4.1, page 53 Bound for general unbiased estimators in parametric
inference, C ≥MJ−1MT .

Corollary 4.1, page 54 Bound for parametric estimators with unknown bias.
Theorem 4.2, page 55 Bound for general random inference, C ≥MJ−1MT .
Theorem 4.3, page 62 Parametric one step ahead prediction using the gen-

eral model (4.4) and some fictitious measurements.
Theorem 4.4, page 64 Parametric filtering for the abovementioned case.
Theorem 4.5, page 65 Posterior bounds for filtering and prediction under

the assumption that p(xt+1 |xt) is nonsingular.
Theorem 4.6, page 66 Posterior bound for possibly singular but linear state

evolution.
Theorem 4.7, page 67 Posterior bound for smoothing under the assumption

that p(xt+1 |xt) is nonsingular.

Table 4.1: Summary of the different results on Cramér-Rao bounds.



Appendix

4.A Vector Gradients and Matrix Inversions

The presentation in this chapter utilizes vector gradient and block matrix nota-
tion. For reader’s convenience, we summarize some of the basic definitions and
results regarding these matters in this appendix. This first subsection presents the
definition of vector gradients and some expressions involving such operators. The
second subsection presents two commonly applied matrix inversion formulas. The
expressions have been borrowed from Graham [79] and Kailath [95], respectively.
Several other useful relations can be found in these references.

4.A.1 Vector Gradients

Let x ∈ Rp, and a(x) 7→ R be a scalar valued function of x. The gradient of a(x)
with respect to x is the p× 1 vector

∇xa(x) M=


∂a(x)
∂x1
∂a(x)
∂x2
...

∂a(x)
∂xp

 .

The gradient operator ∇x is a column vector of scalar partial derivative operators.
The generalization to vector valued functions therefore follows by standard matrix
multiplication. Thus, let a(x) 7→ Rn, be a vector valued function of x ∈ Rp, then

∇xaT (x) =


∂a1(x)
∂x1

. . . ∂an(x)
∂x1

...
...

∂a1(x)
∂xp

. . . ∂an(x)
∂xp

 .
Some useful relations follow straightforwardly from the definitions above

∇xxT = I ∇xvTx = ∇xxT v = v

72
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∇xaT (x)b(x) =
(
∇xaT (x)

)
b(x) +

(
∇xbT (x)

)
a(x)

∇xxTMx = (M +MT )x

if v and M are constant, e.g., independent of x.
Let a(x, y) 7→ R be a scalar valued function of two vectors, x ∈ Rp and y ∈ Rr.

The Laplacian of a(x, y) with respect to x and y is the r × p matrix

∆x
ya(x, y) M= ∇y∇Tx a(x, y) =


∂2a(x,y)
∂y1∂x1

. . . ∂2a(x,y)
∂y1∂xp

...
...

∂2a(x,y)
∂yr∂x1

. . . ∂2a(x,y)
∂yr∂xp

 .
Commonly, the Laplacian ∆x

x is referred to as the Hessian operator, Hx. This
notation, however, will not be used herein. The Hessian of the logarithm of a
Gaussian density function frequently appears in expressions for the Cramér-Rao
bound. Straightforwardly, we have that

∆x
x log N(x;µ, P ) = −P−1

for Gaussian densities with mean µ and positive definite covariance matrix P .

4.A.2 Two Common Matrix Inversion Relations

The inverse of a 2× 2 block matrix can be expressed in the inverse of its upper left
block. If A−1 exists, the following formula holds[

A D
C B

]−1

=
[
A−1 +A−1D∆−1CA−1 −A−1D∆−1

−∆−1CA−1 ∆−1

]
(4.A.19)

where ∆ = B − CA−1D. The matrix ∆ is known as the Schur complement of A
in the block matrix

[
A D
C B

]
. Another expression frequently utilized in this chapter

describes the inverse of a sum of two matrices. Assuming that A−1 and C−1 exist,
it holds that

(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1 (4.A.20)

for matrices of compatible dimension. This relation is also known as the matrix
inversion lemma.

4.B Proof of General Cramér-Rao Bounds

This section summarizes the proof of the parametric and the posterior Cramér-
Rao bounds given in Theorem 4.1 and Theorem 4.2, respectively. We start with a
lemma concerning both theorems.
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Lemma 4.B.1
Given a function f : Rn+p → R+ the following expression holds

∇x∇Tx log f(x, y) =
1

f(x, y)
∇x∇Tx f(x, y)−∇x log f(x, y)∇Tx log f(x, y).

Proof The scalar relation ∂
∂x

log f(x) = 1
f(x)

∂f
∂x

straightforwardly generalizes to the
vector form

∇x log f(x, y) =
1

f(x, y)
∇xf(x, y). (4.B.21)

Inserting this relation repeatedly into the left hand side of the lemma statement yields

∇x∇Tx log f(x, y) = ∇x
(

1

f(x, y)
∇Tx f(x, y)

)
=

1

f(x, y)
∇x∇Tx f(x, y) +∇x

(
1

f(x, y)

)
f(x, y)∇Tx log f(x, y)

=
1

f(x, y)
∇x∇Tx f(x, y)−∇x log f(x, y)∇Tx log f(x, y).

�

The following corollary determines an alternative expression for the FIM.

Corollary 4.B.3
Let y ∈ Rp be a random vector with density p(y |x) parameterized by the non-
random vector x ∈ Rn, then

E
(
∇x log p(y |x)∇Tx log p(y |x)

)
= E(−∆x

x log p(y |x)) .

Proof Follows from Lemma 4.B.1 by taking expectation with respect to y on both sides
since

E

(
1

p(y |x)
∇x∇Tx p(y |x)

)
=

∫
Rp
∇x∇Tx p(y |x) dy = ∇x∇Tx

∫
Rp
p(y | x) dy = 0.

�

A similar corollary holds for the random case.

Corollary 4.B.4
Let x ∈ Rn, y ∈ Rp be random vectors with joint density p(x, y), then

E
(
∇x log p(x, y)∇Tx log p(x, y)

)
= E(−∆x

x log p(x, y)) .

Proof Follows from Lemma 4.B.1 since

E

(
1

p(x, y)
∇x∇Tx p(x, y)

)
=

∫
Rn+p

∇x∇Tx p(x, y) dxdy = ∇x∇Tx
∫
Rn+p

p(x, y) dxdy = 0.

�
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4.B.1 Proof of Theorem 4.1

A proof of the parametric Cramér-Rao bound follows. Inserting the coordinate
transformation x = t(z) into the expression for the unbiasedness of the estimator
yields that ∫

Rp
(x̂(y)− x)T p(y |x) dy =

∫
Rp

(x̂(y)− t(z))T p(y | z) dy = 0.

Taking the gradient w.r.t. z on both sides of the last relation above yields that∫
Rp
∇z
(
(x̂(y)− t(z))T p(y | z)

)
dy = 0∫

Rp
∇z (p(y | z)) (x̂(y)− t(z))T dy −

∫
Rp
∇ztT (z)p(y | z) dy = 0.

The cross correlation of the stochastic score vector and the estimation error thus
becomes ∫

Rp
∇z (log p(y | z)) (x̂(y)− t(z))T p(y | z) dy = ∇ztT (z) (4.B.22)

after applying (4.B.21). Consider the random vector[
x̂(y)− t(z)
∇z log p(y | z)

]
as a function of the observations y. Since this vector has zero mean, its covariance
matrix is

E

([
x̂− x

∇z log p(y | z)

] [
x̂− x

∇z log p(y | z)

]T)
=
[
C M
MT J

]
(4.B.23)

where the expectation is performed over y using the likelihood p(y | z). Inserting
z? into (4.B.23), we can identify the error covariance matrix

C = E
(
(x̂ − x?)(x̂ − x?)T

)
,

the Fisher information matrix

J = E(−∆z
z log p(y | z))

z=z?

from Corollary 4.B.3, and the matrix of the gradient of the coordinate transforma-
tion

MT = ∇ztT (z)
z=z?
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from (4.B.22). The covariance matrix (4.B.23) is positive semidefinite by construc-
tion. Since this matrix can be diagonalized by a nonsingular coordinate transfor-
mation [

I −MJ−1

0 I

] [
C M
MT J

] [
I 0

−J−1MT I

]
=
[
C −MJ−1MT 0

0 J

]
we have that

C ≥MJ−1MT .

This can also be found directly from the Schur complement of (4.B.23). �

4.B.2 Proof of Theorem 4.2

Proof of the posterior Cramér-Rao bound follows. The estimator bias is defined by

BT (z) =
∫
Rp

(x̂(y)− t(z))T p(y | z) dy.

Multiplying both sides of this expression by p(z) and taking the gradient w.r.t. z
yields the matrix relation

∇z
(
BT (z)p(z)

)
= ∇z

∫
Rp

(x̂(y)− t(z))T p(z, y) dy

= −∇ztT (z)p(z) +
∫
Rp
∇z (p(z, y)) (x̂(y)− t(z))Tdy

Integrating both sides w.r.t. z over its complete range Rr yields∫
Rr
∇z
(
BT (z)p(z)

)
dz =

∫
Rr
−∇ztT (z)p(z) dz

+
∫
Rp+r

∇z (p(z, y)) (x̂(y)− t(z))Tdydz (4.B.24)

The (i, j)-element of the left hand side matrix is∫
Rr

∂Bj(z)p(z)
∂zi

dz =
∫
Rr−1

(
Bj(z)p(z)

zi=∞
− Bj(z)p(z)

zi=−∞

)
dz¬i

where dz¬i = dz1 . . . dzi−1dzi+1 . . . dzr. Under the conditions on the bias given in
the theorem all these entries are zero. Finally, using (4.B.21) on the right hand
side of (4.B.24), we have∫

Rp+r
∇z log p(z, y)(x̂(y)− t(z))T p(z, y) dzdy =

∫
Rr
∇ztT (z)p(z) dz, (4.B.25)
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which is the cross correlation between the score function and the estimator error.
Similarly to the parametric case, consider the random vector[

x̂− t(z)
∇z log p(z, y)

]
which is a function of the two random vectors z and y. The error correlation matrix

E

([
x̂− x

∇z log p(z, y)

] [
x̂− x

∇z log p(z, y)

]T)
=
[
C M
MT J

]
(4.B.26)

is positive semidefinite by construction. Equation (4.B.25) gives that

MT = E
(
∇ztT (z)

)
while Corollary 4.B.4 yields that

J = E(−∆z
z log p(z, y)) .

The result follows by a similar argumentation as in the parametric case, presented
in Appendix 4.B.1.

4.C Proof of Bounds for Recursive Estimation

4.C.1 Proof of Theorem 4.3

The likelihood for the one step ahead prediction of the complete state history is
determined by the recursive expression

p(Yt,Zt |Ut) = p(yt |Ut−1)p(zt |ut)p(Yt−1,Zt−1 |Ut−1) (4.C.27)

where the stacked vectors are defined in (4.6) and (4.9), and the decomposition
follows from the Markovian property of the model (4.4). The conditions given on
the model (4.4) ensure that the likelihood p(yt |xt) (4.5) is a well defined probability
density function. Therefore, the first factor of (4.C.27) is alternatively given as

p(yt |Ut−1) = pyt|xt(yt |ϕt−1(Ut−1))

where we utilize the mapping defined in (4.7). A decomposition of the correspond-
ing FIM with respect to the historical and predictive part of the parameters yields
a recursive expression for this matrix,

Jt(Ut) = E
(
−∆UtUt log p(Yt,Zt |Ut)

)
= E

(
−
[

∆Ut−1
Ut−1

∆ut
Ut−1

∆Ut−1
ut ∆ut

ut

]
log p(Yt,Zt |Ut)

)
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=
[
WT
t−1(Ut−1)HT

t (xt)R−1
t (xt)Ht(xt)Wt−1(Ut−1) + Jt−1(Ut−1) 0

0 Q−1
t (wt)

]
.

In the recursion above, zeros stand for zero matrices of appropriate dimension,

WT
t−1(Ut−1) = ∇Ut−1ϕ

T
t−1(Ut−1)

is a (tm+ n× n) matrix that depends on Ut−1, and

HT
t (xt)R−1

t (xt)Ht(xt) = E
(
−∆xt

xtp(yt |xt)
)

Q−1
t (wt) = E

(
−∆wt

wtp(zt |wt)
)
.

The factorization above is chosen such that Rt(xt) is positive definite, and ex-
pectation is performed with respect to p(yt |xt) and p(zt |wt), respectively. Since
ϕt(Ut) = ft(ϕt−1(Ut−1), wt), the gradient of the state xt+1 with respect to Ut is
recursively defined by

WT
t (Ut) =

[
WT
t−1(Ut−1)FTt (Ut)

GTt (Ut)

]
where

FTt (Ut) = ∇xtfTt (xt, wt) and GTt (Ut) = ∇wtfTt (xt, wt).

Straightforwardly, this yields a recursion

MT
t (Ut) = ∇UtΦTt (Ut) =

[
MT
t−1(Ut−1) WT

t−1(Ut−1)FTt (Ut)
0 GTt (Ut)

]
. (4.C.28)

The true state trajectory is given either as U?t or X?t+1. After inserting this tra-
jectory into the expressions above, we drop the arguments of these matrices. The
Cramér-Rao bound for the estimation of the complete state sequence given in (4.11)
and (4.12) becomes

Pt+1 = MtJ
−1
t MT

t

=
[
Mt−1 0
FtWt−1 Gt

] [
WT
t−1H

T
t R
−1
t HtWt−1 + Jt−1 0

0 Q−1
t

]−1 [
MT
t−1 WT

t−1F
T
t

0 GTt

]
.

The lower right sub-matrix Pt+1 is found correspondingly to (4.13) as

Pt+1 = FtWt−1

(
WT
t−1H

T
t R
−1
t HtWt−1 + Jt−1

)−1
WT
t−1F

T
t +GtQtG

T
t

= Ft
(
Pt − PtHT

t (HtPtH
T
t +Rt)−1HtPt

)
FTt +GtQtG

T
t

since Wt−1J
−1
t−1W

T
t−1 = Pt.
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4.C.2 Proof of Theorem 4.5

Since p(xt+1 |xt) is assumed to be nonsingular, the prior density p(Xt+1) is well
defined and there is no need to phrase the Cramér-Rao bound in terms of Ut.
From (4.4) and (4.6), we have that the joint density is recursively defined by

p(Yt,Xt+1) = p(yt |xt)p(xt+1 |xt)p(Yt−1 |Xt) (4.C.29)

initiated by p(Y−1 |X0) = p(x0). The Cramér-Rao bound now simply becomes the
inverse of the “information matrix”

Jt = E

(
−
[

∆Xt−1
Xt−1

∆xt
Xt−1

∆Xt−1
xt ∆xt

xt

]
log p(Yt−1,Xt)

)
=
[
At Bt
BTt Ct

]
. (4.C.30)

Inserting (4.C.29) yields the recursive update

Jt+1 = E

−
∆Xt−1

Xt−1
∆xt
Xt−1

∆xt+1
Xt−1

∆Xt−1
xt ∆xt

xt ∆xt+1
xt

∆Xt−1
xt+1 ∆xt

xt+1
∆xt+1
xt+1

 log p(Yt−1,Xt)


=

At Bt 0
BTt Ct +Rt + Vt St
0 STt Qt

 , (4.C.31)

where zeros indicate block matrices with zero entries of appropriate dimension, and

Vt = E
(
−∆xt

xt log p(xt+1 |xt)
)

Rt = E
(
−∆xt

xt log p(yt |xt)
)

St = E
(
−∆xt+1

xt log p(xt+1 |xt)
)

Qt = E
(
−∆xt+1

xt+1
log p(xt+1 |xt)

)
.

The Cramér-Rao bound for the one step ahead prediction problem is found in the
lower right corner of the information matrix,

J−1
t =

[
∗ ∗
∗ Pt

]
.

Equation (4.C.30) yields that P−1
t = Ct −BTt A−1

t Bt, and thus we have

P−1
t+1 = Qt −

[
0 STt

] [At Bt
BTt Ct +Rt + Vt

]−1 [ 0
St

]
= Qt − STt

(
P−1
t +Rt + Vt

)−1
St

which concludes the proof.

4.C.3 Proof of Theorem 4.6

The joint density is given by

p(Yt,Ut) = p(yt |Ut−1)p(wt)p(Yt−1 |Ut−1)
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and the “information matrix” therefore given as

Jt = E
(
−∆UtUt log p(Yt,Ut)

)
= E

(
−
[

∆Ut−1
Ut−1

∆ut
Ut−1

∆Ut−1
ut ∆ut

ut

]
log p(Yt,Ut)

)

=
[
Wt−1ZtW

T
t−1 + Jt−1 0
0 Q−1

t

]
(4.C.32)

where WT
t = ∇UtϕTt−1(Ut) is independent of the parameters Ut the assumptions

given in the theorem. In (4.C.32),

Zt = E
(
−∆xt

xt log p(yt |xt)
)

Q−1
t = E

(
−∆wt

wt log p(wt)
)

where expectation is performed with respect to both yt and xt, and wt, respectively.
The gradient matrix MT

t = ∇UtΦTt (Ut) is also constant and recursively defined by

MT
t =

[
MT
t−1 WT

t−1F
T
t

0 GTt

]
(4.C.33)

where Ft and Gt originate from the linear state transition relation. Analogously to
the derivation in Appendix 4.C.1 for the parametric case, the Cramér-Rao bound
matrix for the estimation of the complete state sequence Xt+1 is given by Pt+1 =
MtJ

−1
t MT

t , and recursively determined as

Pt+1 =
[
Mt−1 0
FtWt−1 Gt

] [
Wt−1ZtW

T
t−1 + Jt−1 0
0 Q−1

t

]−1 [
MT
t−1 WT

t−1F
T
t

0 GTt

]

after inserting (4.C.33) and (4.C.32). The lower right sub-matrix of Pt+1 is the
sought Cramér-Rao bound Pt+1, which becomes

Pt+1 = FtWt−1

(
WT
t−1ZtWt−1 + Jt−1

)−1
WT
t−1F

T
t +GtQtG

T
t

= Ft
(
Pt − Pt(Pt + Z−1

t )−1Pt
)
FTt +GtQtG

T
t

since Wt−1J
−1
t−1W

T
t−1 = Pt.

4.C.4 Proof of Theorem 4.7

The forward recursion Pt follows from Theorem 4.5 as the lower right block of the
inverse of the sequence of information matrices, Jt+1. This information matrix
has a strong diagonal structure imposed by the recursive update (4.C.31). In the
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notation of Appendix 4.C.2, for any t ≤ N the matrix can be written

JN+1 =



At Bt 0 0 0 0
BTt Ct + Rt + Vt St 0 0 0
0 STt Qt +Rt+1 + Vt+1 St+1 0 0

0 0 STt+1

. . . . . . 0

0 0 0
. . . . . . SN

0 0 0 0 STN QN


=

[
Jt|t Kt

KT
t Lt|N

]
(4.C.34)

and its inverse is similarly decomposed as

J−1
N+1 =



P0|N
. . .

Pt|N

Pt+1|N
. . .

PN+1|N


(4.C.35)

where all unimportant entries have been left empty. It is the diagonal blocks
indicated in (4.C.35) that constitute the Cramér-Rao bound for the smoothing
problem. Introduce the notation Pt|t for the lower right block of J−1

t|t ,

J−1
t|t =

[
At Bt

BTt Ct +Rt + Vt

]−1

=

[
∗ ∗
∗ Pt|t

]
. (4.C.36)

From Appendix 4.C.2 we know that P−1
t = Ct −BTt A−1

t Bt, and therefore that

P−1
t|t = Rt + Vt + Ct −BTt A−1

t Bt = Rt + Vt + P−1
t .

Assume that the matrices Pi|N for i > t have been computed, the next matrix in the
diagonal of (4.C.35) is Pt|N . Applying the block matrix inversion formula (4.A.19)
to (4.C.34), the matrix Pt|N in (4.C.35) is found as

Pt|N =
[
0 I

]J−1
t|t + J−1

t|t Kt

Pt+1|N
. . .

PN+1|N

KT
t J
−1
t|t

[0I
]

= Pt|t + Pt|tStPt+1|NS
T
t Pt|t

where the last step follows from (4.C.36) and the fact that Kt, defined in (4.C.34),
only will pick out Pt+1|N for the resulting recursion. The proof follows by induction
since, by definition, PN+1|N = PN+1 from the forward recursion.
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5

Grid Based Methods

Statistical inference under the Bayesian paradigm relies heavily on the ability to
evaluate integrals over the parameter space. For generic inference problems, these
integrals typically determine the normalizing factor of the posterior density and
the minimum mean-square error estimate. In recursive estimation, an additional
integral implicitly defines the posterior filtering density. Since the integrals encoun-
tered in Bayesian estimation seldom have analytical solutions, practical Bayesian
inference is generally an issue of approximative evaluation of integrals.

Approximative integration is usually performed using a “quadrature formula,”
which is a linear combination of values of the integrand. In one dimensional inte-
gration a generic quadrature is given by∫ b

a

f(x) dx ≈ w1f(x1) + · · ·+ wnf(xn),

where, occasionally, derivatives of the integrand occur in the quadrature. The aim
of the numerical integration procedure is to pick as few points xi as possible to
minimize the computational requirements and to choose the corresponding weights
wi to minimize the error in the right hand side estimate of the integral. The
quadrature above is scalar; extension to higher dimensional integral approximations
is straightforward but the choice of the quadrature points, xi, and weights, wi,
becomes severely more complicated. Moreover, the number of integrand evaluations
will in general increase drastically with the dimension of the integration region,

83
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given a fixed relative error. Some brief comments on the latter fact are presented
in Section 5.1.

For numerical integration on the real line, or in the plane, there exists a va-
riety of methods to construct efficient quadratures for general integrands. These
methods determine the quadrature points adaptively given the integrand and inte-
gration region. Some of these methods are also available in commercial numerical
integration software. Generally, numerical integration in low dimension is strongly
connected to interpolation of functions. The locations of the interpolation points
are determined by the local oscillations of the integrand and the weights by the
interpolation method. Special care must be taken to integrands with singulari-
ties and rapid local behavior and to infinite integration intervals. Much effort is
also spent on estimating bounds on the achieved integration error. The accuracy
one can hope to achieve in higher dimensional problems will in general be rather
low compared to the one obtained with scalar integrals. In high dimension, in-
terpolation methods become less feasible and instead the method of Monte Carlo
integration more attractive. Monte Carlo, or sampling, techniques are presented
in detail in Chapter 6.

It is an impossible task to give general guidelines on how to perform numerical
approximation of the integrals in Bayesian inference. The appropriate choice of
numerical integration method will depend on the dimension and shape of the inte-
gration region, on the type of integrand, and on the required accuracy of the result.
This choice will therefore inevitably depend on the specific estimation problem at
hand. Any textbook on numerical integration methods can be consulted for guide-
lines and algorithms that might apply to the current problem of interest. Davis
and Rabinowitz [45, 46] give both a theoretical foundation and practical guidelines
to numerical integration methods.

In recursive estimation, one additional aspect complicates the application of
standard numerical integration techniques. After numerically evaluating the in-
tegrals of the first iteration of the Bayesian recursion, the integrand used in the
following iterations is only known approximately. To see this, consider a recursive
estimation problem on the form given in Proposition 3.2, i.e., the model is de-
fined by explicit analytical expressions for p(x0), p(yt |xt), and p(xt+1 |xt) for all
t ≥ 0. After observing the first measurement y0, a numerical integration procedure
is applied to the Bayesian recursion of Theorem 3.3. The normalizing factor of the
posterior is determined by the integral

α =
∫
Rn
p(y0 |x0)p(x0) dx0.

This integral can be numerically evaluated using any suitable method from [45, 46],
since the integrand consists of analytically known functions from the model of the
inference problem. The time update integral at this early stage of the recursive
inference is also an integral with an analytically known expression for the integrand,

p(x1 | y0) =
∫
Rn
p(x1 |x0)p(x0 | y0) dx0 = α−1

∫
Rn
p(x1 |x0)p(y0 |x0)p(x0) dx0.



5.1 The Curse of Dimensionality 85

However, this integral has no single numerical solution since it is parameterized
in the state vector x1. The integration result is the posterior density function
which will be approximately updated by the numerical integration method in future
iterations of the Bayesian recursion. A linear combination of local basis functions
is commonly used to approximate this posterior density,

p(x1 | y0) ≈
N∑
i=1

wigi(x1). (5.1)

Independent of whichever numerical integration method used, the prior at the next
iteration is only known approximately. During all future iterations of the Bayesian
recursion, the integrals that should be approximately evaluated will all have inte-
grands that are not analytically known. Most results on numerical integration rely
on the assumption that the integrand that can be evaluated without error at any
point in the integration region. In recursive estimation, an approximation of the
type (5.1) must be used instead of the actual integrand. The weights wi, and pos-
sible scale and location parameters of the basis functions in (5.1) constitute a finite
set of parameters that are updated with each iteration of the Bayesian recursion.
Usually, the basis functions are chosen from a fixed or adaptively determined grid
mesh over the interesting part of the state space. The grid based methods utilize
numerical integration to solve the integrals of the Bayesian recursion and function
approximation procedures to describe the posterior density.

The practical choice of interpolation function and numerical integration method
will always be problem specific. To illustrate the techniques of grid based numerical
integration, Section 5.2 contains a detailed description of a numerical integration
procedure specifically developed for the terrain navigation problem. The same grid
based procedure was briefly described in Chapter 2. In Section 5.3, we briefly
discuss how to increase the efficiency of the grid approach by introducing spatial
adaptation of the grid mesh.

5.1 The Curse of Dimensionality

The main argument against attacking Bayesian estimation problems by direct nu-
merical approximation of the involved integrals is that numerical integration in
general d-dimensional Euclidean space is computationally expensive. It can be
shown that, for a given level of accuracy, the computational requirements grow
exponentially with the state dimension when applying a rudimentary integration
method. A justification of this effect, originally due to Davis and Rabinowitz [45],
follows.

As a simple example to illustrate the complexity issues of multivariate integra-
tion we consider the problem of determining the “volume” V of a region B ⊆ Rd,
where B ⊃ Rn for all n < d. That is, we seek an approximation to the multidi-
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mensional integral

V =
∫

B

dx.

Divide the space Rd into a cubical grid of atomic regions with side h, and let N
denote the number of cubes that fall inside the region B. A primitive numerical
integration algorithm could determine the number N by exhaustively counting
every box inside B and estimating V by V̂ = Nhd. Thus, with some abuse of
notation we may write

V = O(Nhd).

Let S denote the surface measure of the boundary of B,

S =
∫
∂B

dx.

The error ε = V − V̂ is approximately the volume of all boxes that pass through
the boundary ∂B,

ε = O(hS).

The value of S relative to V may be found by considering that the “average volume
per dimension” is of the order V 1/d, and therefore we write

S = O(V (d−1)/d).

Combining the estimates above yields that the relative error made during a brute
force numerical integration by applying a grid to the space, is of the order

ε

V
= O(N−1/d). (5.2)

From this relation it is obvious that in order to retain the same level of relative error
for numerical integrations in different dimensions the number of grid points N must
increase substantially when the dimension d is increased. The exponential relation
between N and d in (5.2) is usually referred to as the curse of dimensionality.

The error estimate (5.2) holds true for the rather primitive way of applying a
uniform grid in the space Rd over the area B. Some of the effect of (5.2) can be
alleviated by adaptively choosing the grid point locations and thereby introducing
more advanced quadrature formulas. However, general guidelines towards such an
approach are hard to set. We return to this topic in Section 5.3.

In conclusion, the relative error for any numerical integration method using
a uniform mesh to approximate the integration behaves as O(N−1/d). We will
show in Chapter 6 that there are alternative methods that do not suffer from this
limitation. The simulation based methods of Chapter 6 have a relative error of the
order O(N−1/2), which does not explicitly depend on the state dimension. Note
though that these results are asymptotic and there may very well be practical
cases, especially of low dimension, where direct numerical integration is superior
to simulation based integration. This fact is illuminated in Chapter 7, where an
evaluation of different algorithms for terrain navigation is presented.
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5.2 The Point-Mass Filter

Uniform grid approximation in recursive estimation dates back to the seminal work
of Bucy and Senne [34]. The curse of dimensionality implies that these uniform
mesh approximations cannot be applied in very high dimensions without adaptively
choosing the grid points. Still, low dimensional problems are commonly solved
using a uniform grid over the interesting part of the state space. It is mainly the
ease of implementation and compact description of the grid nodes that speaks in
favor of a uniform grid mesh over a non-uniform, adaptively chosen, grid. Some
general guidelines on the description and construction of the grid mesh in recursive
estimation are given by Simandl and Královec [133], Sorenson [137], and by Bucy
and Senne [34].

Any guide to practical recursive estimation using numerical integration will be
more or less problem specific. The more general class of recursive estimation prob-
lems studied, the less precise and detailed can the given guidelines be made. The
reason for this trade-off between generality and explicitness is that the most effi-
cient algorithms need to explore every detail in the structure of the problem. Most
of the suggested algorithms found in the literature have been developed with a
specific recursive estimation problem in mind. The proposed methods are still very
similar and mainly differ only in the way that the grid is described and updated.
Instead of giving a review over many different but similar grid-based algorithms
for recursive estimation, we choose to present a detailed description of a numerical
integration method tailor-made for the terrain navigation application. The algo-
rithm applies a uniformly adaptive grid to the part of the state space where the
filter density has its main support. Elementary masses placed in this grid nodes
gives an approximative description of the posterior filter density. The method was
briefly described in Chapter 2 under the name Point-Mass Filter (PMF). The grid
is automatically refined and updated with each new measurement. The aim has
been to design an update with a minimum of design parameters that in a natural
way trade off accuracy against computational complexity.

5.2.1 Background

The concept of terrain navigation was described in some detail in Chapter 2. This
navigation principle demands the recursive solution of a nonlinear estimation prob-
lem. With xt denoting the sought aircraft position in the terrain map the under-
lying state space estimation model is given by (2.4),

xt+1 = xt + ut + vt

yt = h(xt) + et
t = 0, 1 . . . (5.3)

Since the PMF algorithm is tailor-made for the terrain navigation application, the
grid update and propagation have been biased towards a grid solution well suited
for this problem. This involves, e.g., the possibility to handle multi-modal filtering
distributions. There are only some minor additional restrictions introduced by the
PMF implementation itself. It can in general be straightforwardly applied to any
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recursive estimation problem that is given by a model equivalent to (5.3). With
minor adjustments, all problems with linear state transition and possibly nonlinear
measurement relation can be handled with the technique of this section. The
noises acting on the model may be non-Gaussian but are required to be white and
independent. However, due to the implementational complexity and the curse of
dimensionality it is not advisable to apply the PMF to high dimensional problems
even if they fit this model structure.

The Bayesian solution to (5.3) consists of a recursive propagation of the density
function for the aircraft position given the terrain elevation measurements. An
estimate of the aircraft position and its corresponding error covariance is calculated
from this density. These quantities are sent to a central Kalman filter that fuses
navigation information from several different sources. The role of this Kalman
filter is to track the internal integration errors in the Inertial Navigation System
(INS) and to check the overall integrity of the navigation system by detecting
malfunctions of the separate navigation sensors. The estimate from the terrain
navigation filter is used as a component in the measurement vector of this central
Kalman filter, and the estimation error covariance is used as the corresponding
measurement error covariance. The recursive expressions for the posterior density
are therefore augmented with expressions for the calculation of an estimate and its
estimation error covariance. In summary, the expressions that should be computed
at each iteration of the Bayesian solution to terrain navigation are given by (2.6)–
(2.8),

αt =
∫
R2
pet(yt − h(xt)) p(xt |Yt−1) dxt (5.4a)

p(xt |Yt) = α−1
t pet(yt − h(xt)) p(xt |Yt−1) (5.4b)

x̂MS
t =

∫
R2
xtp(xt |Yt) dxt (5.4c)

Ct =
∫
R2

(xt − x̂MS
t )(xt − x̂MS

t )T p(xt |Yt) dxt (5.4d)

p(xt+1 |Yt) =
∫
R2
pvt(xt+1 − ut − xt) p(xt |Yt) dxt. (5.4e)

The nonlinear recursive inference is performed as described by the update of the
conditional density using (5.4b) and (5.4e). These expressions need to be evalu-
ated upon reception of every new measurement yt. The expressions (5.4a), (5.4c)
and (5.4d) only have to be calculated when an estimate of the position is needed
in the central Kalman filter. In the sequel it will be assumed that the estimate
calculations are done at the same rate as the conditional density is updated, even
though this is not a necessity.

The total algorithm of (5.4) will consist of solving four generalized integrals over
R2. One obvious way to reduce the number of integrals in each iteration is to choose
the maximum a posteriori (MAP) estimate instead of the MMSE estimate. For the
computation of the MAP estimate the normalization integral (5.4a) is redundant,
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and the estimate is recursively found from the unnormalized density

p(xt |Yt) = pet(yt − h(xt)) p(xt |Yt−1) (5.5a)

x̂MAP
t = arg max

xt
p(xt |Yt) (5.5b)

p(xt+1 |Yt) =
∫
R2
pvt(xt+1 − ut − xt) p(xt |Yt) dxt. (5.5c)

However, normalization is still needed for the computation of the estimation error
covariance. Focus will here be on the MMSE estimate, i.e., a numerical a grid
based numerical integration approximation to the recursion (5.4).

5.2.2 Point-Mass Approximation

There are a number of approximation schemes that will turn the Bayesian func-
tional propagation in (5.4) into a point-mass equivalent. The common unifying
factor of these schemes is that the propagation of the continuous probability den-
sity function p(xt |Yt) is replaced by a propagation of the probability in a finite set
of grid points spread over the region of interest in the state space. Some approaches
to the approximation that will end up as point-mass algorithms are:

• Discretization of the state space. Limit the range of values of xt from the
continuum R2 to a finite number of levels.

• Numerical approximation of the integrals. Replace the infinite integrals with
Riemann sums over finite intervals.

• Probability region equivalent. Divide the state space into regions and express
the probability of being in each region. Use this probability as a weight on
each region.

• Piecewise constant approximation of the posterior. Numerically approximate
the posterior as a sum of weighted and shifted indicator functions.

• Nyquist approach. Assume that the posterior is band-limited, i.e., has an
upper bound on the frequency of spatial variation. Sample the function
spatially and update these samples.

Whatever approach used to find the approximate solution, almost identical ex-
pressions for the point-mass algorithm are obtained. The integrals must naturally
turn into sums over the grid point positions and specially, the convolution time
update (5.4e) will turn into a discrete convolution.

In the PMF we utilize a simple numerical integration method with quadrature
points given in a grid mesh of uniform resolution. The posterior density is approx-
imately described by point-mass values located in the nodes of this grid. Assume
that N grid points in R2 have been chosen for the approximation of p(xt |Yt).
Introduce the notation

xt(k) k = 1, 2, . . . , N
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for these N vectors in R2. Each of these N grid points are equipped with a
corresponding probability mass weight

p(xt(k) |Yt) k = 1, 2, . . . , N.

The grid points are chosen from a uniform mesh over R2. The mesh has resolution
δ and an outer boundary of the grid point support defined by an (n ×m) matrix
sparsely occupied by grid point values. Figure 5.1 exemplifies the structure of
this grid point approximation. The lower left corner of the outer boundary of the

n

m

s s s s ss s s s s s s s ss s s s s s s s s s ss s s s s s s s s s s ss s s s s s s s ss s s s ss s s s
s s

δ

δ

Figure 5.1: Example constellation of the two dimensional grid. The N grid points
• are arranged in a mesh of size (n×m) with resolution δ.

mesh is used as a reference point x̄t ∈ R2 that defines the absolute grid mesh
location in the state space. The reference vector, the scalar resolution factor and
a matrix with N nonzero positive values uniquely define a data structure for the
grid approximation.

The position of an arbitrary grid point xt(k) in the mesh can be found from its
relative coordinates in the mesh, the grid resolution, and the reference vector. The
grid mesh defines an approximation of the conditional density given by a point-
mass value in each grid node position. This description induces an approximation
of each integral in (5.4) by a finite sum over nonzero grid point values∫

R2
f(xt) dxt ≈

N∑
k=1

f(xt(k)) δ2.

Inserting this expression into (5.4) yields the Bayesian point-mass recursion:

αt =
N∑
n=1

pet(yt − h(xt(n))) p(xt(n) |Yt−1) δ2 (5.6a)

p(xt(k) |Yt) = α−1
t pet(yt − h(xt(k))) p(xt(k) |Yt−1) (5.6b)

x̂MS
t =

N∑
n=1

xt(n)p(xt(n) |Yt) δ2 (5.6c)
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Ct =
N∑
n=1

(xt(n)− x̂MS
t )(xt(n)− x̂MS

t )T p(xt(n) |Yt) δ2 (5.6d)

xt+1(k) = xt(k) + ut k = 1, 2, . . . , N (5.6e)

p(xt+1(k) |Yt) =
N∑
n=1

pvt(xt+1(k)− xt(n)) p(xt(n) |Yt) δ2. (5.6f)

Due to the simple state evolution in terrain navigation, the time update has been
split into two parts. First the grid points are updated with the movement of the
aircraft ut in (5.6e), and then the filter density is convolved with the density for vt,
in (5.6f). The update (5.6e) is effectively performed by adding ut to the reference
vector x̄t of the approximation mesh in Figure 5.1.

As new measurements are processed, the conditional density will concentrate
in an area of the aircraft position. For an efficient grid implementation, the grid
mesh should also adapt its support and resolution in order to meet this contin-
uous evolution of the conditional density. In general, the grid adaption must be
considerably more elaborate than (5.6e).

5.2.3 Grid Adaption

The measurement update will decrease the value of the conditional density in areas
with low likelihood while the time update will smooth the conditional density and
increase its support. The grid should be adapted accordingly, removing values
with low probability from the grid and increase the grid support through the time
update. The resolution should be increased when enough grid points have been
removed from the mesh and when measurements with low information content are
received, the grid resolution should be decreased again so that the computational
requirements stay inside som predefined limits. This refinement and adjustment
of the grid is of great importance for an efficient algorithm implementation with
small approximation errors.

Approximation errors in the numerical implementation demand a frequent nor-
malization of the point-mass weights. Since the posterior density should integrate
to unity, a consistent point-mass approximation satisfies∫

R2
p(xt |Yt) =

N∑
k=1

p(xt(k) |Yt) δ2 = 1. (5.7)

The average value of a set of point-mass weights satisfying the normalization con-
straint depends on the number of grid points in the mesh and the mesh resolution,

1
N

N∑
k=1

p(xt(k) |Yt) =
1

Nδ2
.

A truncation parameter ε > 0 is introduced to control the reduction of points with
low probability from the mesh. Every grid point with a weight less than ε times
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the average mass value is removed from the grid after each measurement update.
The new set of grid points is defined by{

xt(k) : p(xt(k) |Yt) > ε/Nδ2
}
.

This can also be interpreted as removing the grid points that only contribute to the
normalization sum (5.7) by some fraction ε. Let N denote the new number of grid
points left in the mesh after the truncation. The weights need to be normalized
after this operation in order to retain a consistent point-mass approximation,

p(xt(k) |Yt) :=
p(xt(k) |Yt)∑N

n=1 p(xt(n) |Yt) δ2
k = 1, . . . , N. (5.8)

The truncation of small mass points will make holes in the mesh, but the mesh will
still have the resolution δ. If grid points at the borders of the mesh are removed
the size and reference position of the mesh have to be adjusted accordingly. That
is, n and m in Figure 5.1 will have to be decreased, and possible x̄t adjusted.

The truncation can only decrease the number of grid points N while the time
update convolution in general will increase the number N while enlarging the grid
support. The time update will thus also increase the bounding mesh size, i.e.,
both n and m in Figure 5.1 will increase. This will be the case since the PDF
p(xt+1 |Yt) is a function of wider support than p(xt |Yt). It might happen that
the measurement and time update operations will balance each other, leaving the
number of grid points N from one iteration to the next almost constant. However,
such a stationary state of operation will not be held for a long time since the
amount of grid points that are reduced through the truncation depends on the
amount of variation in the terrain. Flying from rough to flat terrain, the number
of grid points will naturally increase. The opposite is true when flying from flat to
rough terrain.

When the algorithm is initialized, the uncertainty about the aircraft position
is high and thus the prior will have a wide support. Then it is not interesting to
have a dense grid. It is more appealing to start with a sparse grid and run the
algorithm until the number of remaining grid points falls below some threshold.
Then the mesh resolution can be increased and the algorithm continued to process
new measurements updating the PDF in the new dense grid. The denser the
grid is, the better will the approximation be, which in turn will yield a higher
estimation accuracy. It is also desirable, for computational load reasons, to be able
to control the number of grid points used in the approximation. Let N0 and N1

be some lower and upper limits on the number of nonzero grid points in the mesh.
These can be found from the hardware requirements put on the implementation,
or seen as tuning parameters for a trade-off between algorithm performance and
computational requirements. A simple control law that will try to keep the number
N inside the interval [N0, N1] is:

• If N > N1 decimate the mesh, i.e., remove every second row and column in
the matrix in Figure 5.1. The new resolution will be 2δ.
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• If N < N0 interpolate one new point-mass between every neighboring pair in
the matrix in Figure 5.1. The new resolution will be δ/2.

This simple law is used in the PMF for controlling the mesh resolution. The
resampling of the mesh is thus only performed when the number N falls outside
the user defined interval [N0, N1]. Thus, the adaption procedure of the grid in the
PMF consists of two separate steps. First, grid points with low probability mass
are removed from the grid, and then the grid resolution is adjusted if necessary.

5.2.4 Implementation

The point-mass values in the approximation shown in Figure 5.1 are stored in a
matrix of dimension (n ×m). The mesh itself is defined by a reference vector x̄t
for positioning the matrix in R2 and a grid resolution variable δ. In summary, the
point-mass approximation is described by nm+ 3 real values. However, due to the
truncation operation there will be several big holes of zero probability mass inside
the matrix of dimension (n×m). It would be convienient not to have to compute,
e.g., the measurement update multiplication in the areas of zero probability.

Our implementation of the PMF utilizes the special purpose low level operations
available for sparse matrices in the numerical package MATLABTM [114]. Instead of
storing and operating on the complete (n×m) matrix, only the nonzero elements
and their indeces are stored and operated on. There is a number of overloaded
low level operations available in MATLABTM, e.g., regular and element-wise matrix
multiplication. Additional functions can count the number of nonzero elements in
the matrix and find the indices of the nonzero elements.

All operations in (5.6) except (5.6f) are straightforward to implement using
a matrix representation of the grid mesh. The measurement update (5.6b) will
be an element-wise multiplication between the point-mass matrix approximation
of p(xt |Yt−1) and the a matrix containing the likelihood for yt evaluated at
the nonzero grid points of this approximation. Let � denote element-wise, or
Hadamard [90], multiplication between matrices of the same dimensions. Let Pt|t−1

be the matrix of point-masses in the approximation of p(xt |Yt−1) and Ht be a
matrix of terrain elevation values in the positions xt(k). Then the unnormalized
measurement update can be written

Pt|t = pet(yt1n×m −Ht)� Pt|t−1

where the evaluation of the PDF of et is performed element-wise on the matrix
argument. The normalization (5.6a) is performed as in (5.8) by computing the
sum of all entries in Pt|t. The estimate and error covariance computations in (5.6)
are easily expressed as weighted sums along the columns and rows of Pt|t. The
truncation of grid points with low probability is a simple search in the matrix for
grid points satisfying the truncation condition.

The time update convolution (5.6f) and the interpolation scheme introduced
in the adaptation of the grid are the computationally most cost-some operations
of the PMF algorithm. In order to implement these operations efficiently, some
additional features of the terrain navigation application need to be explored.
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Convolution

The convolution is the computationally most burdensome operation in (5.6). How-
ever, the sparse matrix representation and the structure of the problem can be
utilized to reduce the computational burden somewhat.

The convolution is performed between the point-mass approximation to p(xt |Yt)
and the PDF p(vt). The system noise vt models the drift in the INS between two
measurements. There is no reason to believe that the probability of a drift in one
direction is higher that in another. Thus, the PDF for the system noise is assumed
to be rotational invariant. For a Gaussian distribution this means that it has a
diagonal covariance matrix, and that the two-dimensional Gaussian PDF can be
written as a product of two one-dimensional Gaussian PDFs. This makes it pos-
sible to perform the convolution in two steps, first along the rows of the matrix
and then along the columns. Convolution kernels with this property are sometimes
labeled separable, see [122] for more background on two-dimensional convolution.

The Gaussian PDF needs to be truncated to yield a finite convolution kernel.
This truncation level can be chosen such that it will be far below the effect of the
truncation variable ε introduced to adapt the grid support. Let the (1 × l) row
vector v = [v1, v2, . . . , vl] be the truncated one dimensional Gaussian distribution
used as a convolution kernel. The convolution along the rows of the matrix can be
written as the matrix multiplication

(n×m)


︸ ︷︷ ︸
Pt|t

·

(m×m+l−1)
v1 v2 . . . vl

v1 v2 . . . vl
. . . . . . . . .

v1 v2 . . . vl


︸ ︷︷ ︸

Dr

=

(n×m+l−1)


︸ ︷︷ ︸
Pt|tDr

see [122] for details. Here Dr denotes the matrix above of dimension (m×m+ l−1)
with m repeated versions of the row vector v along the diagonal. Similarly let Dc

denote an (n + l − 1 × n) matrix with n repeated versions of the column vector
vT along the diagonal. Then the two dimensional time update convolution can be
written as a matrix multiplication

Pt+1|t = DcPt|tDr,

where Pt|t is the sparse matrix of point-masses in the approximation of p(xt |Yt)
and Pt+1|t is the point-mass matrix for p(xt+1 |Yt). Utilizing the sparse functions
in MATLABTM this convolution will demand approximately 2Nl + l2 operations,
this should be compared with nml2 operations for the direct application of the
convolution double sum. Since the dimensions n and m are much larger than l,
and N ≤ mn by construction, this is a considerable computational gain.
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Interpolation

As soon as the number of nonzero grid points falls under N0, bilinear interpolation
is used to increase the number N and the resolution of the mesh. Bilinear inter-
polation is obtained by first performing linear interpolation along the rows of the
matrix followed by linear interpolation along the columns. The scheme is depicted
in Figure 5.2. The empty circles ◦ denotes the original grid points while the filled

b b b b b
b b b b bb b

b br r r b b br r r r
b b b b br r r r r rb br r r

b br r rr r r r rr r r r r
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Figure 5.2: Illustration of sparse bilinear interpolation.

circles • denotes the interpolated values. If there were no holes in the grid, this
interpolation would increase the number of grid points by at least a factor of four,
hence the design parameters N0 and N1 should be more than a factor four apart.

The linearly interpolated values, • in Figure 5.2, are found by convolving the
original matrix with the kernel v = [0.5, 0.5]. Thus, for an efficient implementation,
the same algorithm as was used for the time update convolution is used for the
implementation of the interpolation.

Summary of the Algorithm

The point-mass filter algorithm is initiated by an off-line computed grid mesh
approximation of p(x0). The approximation of this prior density defines the initial
grid mesh through the sparse matrix of point-mass values P0|−1, the reference point
x̄0 and the resolution parameter δ. After every approximative update of the grid
points, a normalization step guarantees that the approximation is consistent with
a density function integrating to unity.

Algorithm 5.1 (The Point Mass Filter (PMF))

1. Interpolate in the terrain map to find the matrix Ht of terrain elevation sam-
ples h(xt(k)) with the same support as Pt|t−1.

2. Compute Pt|t = pet(yt1n×m −Ht)� Pt|t−1. Normalize the result.

3. Calculate the estimate x̂MS
t and its error covariance Ct according to (5.6c)

and (5.6d).
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4. Truncate all weights that are less than ε/Nδ2, where N is the number of
nonzero weights in Pt|t. Normalize the remaining weights and adjust x̄t if
needed.

5. Determine N , the number of nonzero weights after the normalization.

(a) If N > N1, remove every second row and column in Pt|t. Set δ := 2δ.
Adjust x̄t if needed.

(b) If N < N0, use sparse bilinear interpolation to increase the resolution.
Set δ := δ/2. Adjust x̄t if needed.

6. Move the grid, x̄t+1 = x̄t + ut.

7. Build the sparse convolution matrices Dc and Dr.

8. Compute the sparse convolution Pt+1|t = DcPt|tDr.

9. Output the estimate x̂MS
t and its error covariance Ct. Increase the time step

t := t+ 1 and continue at item 2 above.

Several features makes this algorithm well suited for use in terrain navigation and
similar applications. The general description of the grid mesh allows for a posterior
filter density support of very general shape. The grid can approximately describe
multi-modal distributions with virtually no extra computational requirements or
elaborate detections of the number of modes. The nonlinear and unstructured
terrain map yields that such general distributions are very common in the terrain
navigation application. The uniform grid resolution yields a simple implementation
of the convolution operation which is important for real time application. In the
simulations performed with our implementation, the filter runs in real time on a
standard workstation. In the terrain navigation application, real time is approxi-
mately ten iterations per second. Simulations using the PMF are presented both
in Chapter 2 and in Chapter 7.

5.3 Spatially Adaptive Grid

The grid resolution in the PMF is sporadically adjusted during the recursive prop-
agation of the algorithm. At the instants of resampling, the grid mesh resolution
is either divided in half, or increased to the double using a linear interpolation
scheme. Thus, the resolution of the grid mesh in the PMF is adaptive with time,
but uniform in space. An efficient representation of the posterior density is ob-
tained by truncating grid points with small probability values at each algorithm
recursion. The point-mass approximation is thus constrained to the uniform mesh,
but is allowed to contain large areas of zero probability that do not need to be
updated by the algorithm.

An even more compact description of the posterior filter density can be obtained
by allowing for adaptively determined grid point locations in the state space. A grid
of higher resolution would then be applied in regions where the posterior density
function rapidly changes from high to low probability, or from low to high. Such
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spatial adaptation would certainly be valuable in higher dimensional problems,
when the curse of dimensionality comes into play.

The issue of determining a spatially adaptive grid is strongly connected to
general theory of function approximation. The key is to compactly describe the
filtering density, e.g., in a linear expansion such as

p(xt |Yt) ≈
N∑
i=1

wigi(xt) (5.9)

using as few terms as possible. The point-mass filter can be interpreted as a rudi-
mentary function approximation scheme having thin indicator functions as basis
elements. An adaptive grid method would correspond to using basis functions gi(·)
adaptively chosen to the function p(xt |Yt). However, we are not solely interested
in minimizing N in (5.9) but also need to update this description through the
Bayesian recursive solution. This puts a complicated constraint on the choice of
approximation method in (5.9). Generally, this imposes that the basis functions
themselves must have known analytical or approximative solutions to the propaga-
tion thorough the Bayesian recursion. From Theorem 3.3 we have the conceptual
update

p(xt |Yt) ∝ p(yt |xt)p(xt |Yt−1)

p(xt+1 |Yt) =
∫
Rn
p(xt+1 |xt)p(xt |Yt) dxt

t = 0, 1, . . . (5.10)

In the point-mass approach the basis functions can be regarded as infinitely thin
delta measures which neither are affected by the multiplication operation nor the
convolution operation in this recursive update.

Wavelet multiresolution theory [42] yields a general framework for function ap-
proximation with spatially adaptive basis functions. Moreover, wavelet techniques
have also been utilized in numerical analysis for numerical solution of partial dif-
ferential equations, see e.g., [27, 74, 89, 141]. The operations encountered in this
application are similar to the multiplication and convolution operations in the
Bayesian recursion. Thus, combining the wavelet approach to numerical solution
of partial differential equations with the function approximation theory of wavelet
bases would yield a general approach to adaptive grid methods in recursive Bayesian
estimation. The prior density would have to be expanded in a wavelet basis, in-
serted into the Bayesian solution (5.10), and approximately propagated through
this recursion. A wavelet basis expansion generally has the form

p(xt |Yt−1) =
∑
k

βj0,kϕj0,k(xt) +
j1∑
j=j0

∑
k

αj,kψj,k(xt) (5.11)

where ϕj,k(·) are scaling functions, while ψj,k(·) are the wavelets . The indices j and
k define a dyadic grid mesh and the spatial adaptation is obtained by removing
coefficients αj,k of small magnitude, by some wavelet shrinkage procedure [57].



98 Grid Based Methods

General concepts in wavelet theory are presented by Daubechies [42], Mallat [113],
and Kaiser [97], while Sweldens [141] provides a presentation oriented towards
wavelet applications in numerical analysis.

Assume that the prior density is given in a sparse wavelet basis, on the form
given in (5.11). The measurement update step in the Bayesian recursion (5.10)
consists of a multiplication with the likelihood of the observed measurement. Mul-
tiplication of functions in wavelet bases has been studied by Beylkin [26], who
proposes to perform the multiplication by uncoupling the inherent connection be-
tween wavelet coefficients of different scale. The methods in [26] can be utilized for
the measurement update step by first expanding the likelihood in a wavelet basis,
similar to the form used for the prior (5.11).

The time update step in the recursive Bayesian solution consists of a convolution
with the prior density of the process noise. This convolution time update step
generally falls into a class of integral operators on the form

(Tf)(x) =
∫
K(x, y)f(y) dy (5.12)

extensively studied by Beylkin et al. [28] in the case of orthogonal wavelet ex-
pansions. The operator kernel K(x, y) is expressed in a wavelet basis where the
location of the signification wavelet coefficients are known a priori. Both the ex-
pansion of the kernel, and the application of the operator in the wavelet basis can
be performed efficiently using algorithms provided by Beylkin et al. [28].

Both Goedecker [74] and Holmström [89] emphasize the class of interpolating
wavelets for numerical solution of partial differential equations. The interpolating
wavelets are designed to have a strong connection between the wavelet coefficients
and the interpolation error of the studied function. This connection yields some ad-
vantages when considering both local nonlinear operators, such as multiplications,
and linear operators, such as (5.12). The interpolating wavelets were introduced by
Deslauriers and Dubuc [54], and later reinvented and extended by Donoho [58, 59].
A practically oriented introduction to interpolating wavelets, along with a frame-
work for design of new wavelet bases in this class, are provided by Sweldens and
Schröder [142]. In [20], we present some suggestions on how to utilize interpolating
wavelets in the terrain navigation application. However, the general conclusion
from this work is that these methods are very complicated to implement and the
overhead computations required for the adaptive grid mesh update often compen-
sate the gains of the adaptive mesh.

In the literature utilizing wavelet techniques for the numerical solution of par-
tial differential equations, the reported examples almost unexceptionally deal with
scalar or possibly two-dimensional problems. The reason for this is not that the
computational complexity grows with the dimension of the problem. Instead, it
is the implementational constraints that become severe when applying the wavelet
techniques to problems of high dimension. This fact is evident already in the the
correspondingly low dimensional algorithms for multiplication and convolution out-
lined in [20], which are much more complicated than the operations in the PMF of
Algorithm 5.1.
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5.4 Conclusion

A numerical implementation of the Bayesian solution to recursive estimation in-
volves numerical evaluation of integrals and integral operators. The PMF of Al-
gorithm 5.1 as been specifically designed with the terrain navigation application
in mind to yield a reasonable trade-off between an accurate density description
and an efficient implementation. Each recursive estimation problem needs to be
investigated in depth for the design of a corresponding point-mass filter. This will
generally yield different approaches to the grid design and update rules for each ap-
plication. In some cases, an adaptive grid mesh will prove to increase the algorithm
performance considerably, while the gain will be less clear in other applications.

Any numerical integration method based on uniform mesh approximation will
suffer from a computational penalty that increases exponentially with the state di-
mension. An adaptive grid mesh, e.g., introduced by wavelet shrinkage techniques,
will to some extent alleviate this effect. However, the sole implementation com-
plexity of the operations on the wavelet representations may very well overshadow
the gains in effectiveness that such an approach promises.
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Simulation Based Methods

In Chapter 3, general Bayesian estimation theory was posed as a problem of nu-
merical integration or optimization. The standard numerical integration methods
from Chapter 5 have the major limitation that the computational complexity grows
exponentially with the dimension of the integration region. It was shown in Chap-
ter 5 that the relative error of the brute force techniques is of the order O(N−1/d),
where d is the state dimension. One way to alleviate this “curse of dimensionality”
was exemplified in Section 5.3. However, these adaptive methods generally lead
to complicated algorithms with severe implementational difficulties. The optimiza-
tion problems can of course be attacked using classical iterative techniques, like
Gauss-Newton and related methods. However, the demand for good initialization
of these local search methods will in general make them application specific.

Simulation based Monte Carlo integration and optimization form a suite of
methods that promise general solutions to complex and high dimensional problems
of numerical integration and optimization. The methods have the main advan-
tage over classical numerical integration that the relative error is of the order
O(N−1/2), not explicitly depending on the state dimension. Still, these methods
remain computer-intensive and generally put high demands on both the computa-
tional resources and the available memory size.

The simulation based methods were developed in the 1950’s but it is only re-
cently that they have been practically applied to problems of statistical inference
and signal processing. In the late 1980’s the introduction of cheap high performing
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personal computers brought a newborn interest into numerical approximation for
Bayesian inference in general, and for Monte Carlo methods in particular. This
has led to a Bayesian revolution in applied statistics. Today, a large fraction of
papers published in applied statistics regard topics of Monte Carlo integration and
particularly Markov Chain Monte Carlo (MCMC) methods.

Monte Carlo methods have also started to appear in the signal processing and
system identification literature with applications such as detection and estimation
of sinusoids in noise [3, 55], and estimation of parameters in ARMA models [11, 12].
A general discussion on the applicability of Monte Carlo methods to problems
in automatic control has recently been presented by Vidyasagar [153]. The field
of Markov chain Monte Carlo methods is currently very active with both new
theoretical and applied results appearing constantly. The latest additions on The
MCMC Preprint Service [145] provide an up-to-date insight into this progressing
research field.

This chapter provides a survey over the field of Monte Carlo methods in Bayesian
statistics, and particularly applied to recursive estimation. The following section
gives a general background to the fundamental concepts of Monte Carlo integration
and optimization methods. Section 6.2 presents the classical methods of rejection
and importance sampling, while Section 6.3 gives a review over Markov chain Monte
Carlo methods. Finally, some Monte Carlo methods for recursive estimation are
given in Section 6.4. We present Monte Carlo algorithms for terrain navigation in
Chapter 7 and for target tracking in Chapter 8.

The summary of simulation based techniques for Bayesian estimation presented
in this chapter is by no means a complete survey over this vast field of applied
statistics. The results presented here have been gathered from several sources.
The tutorial of Andrieu et al. [4] gives a detailed survey over Bayesian signal pro-
cessing using simulation based techniques. Theoretical issues as well as pseudocode
for several classical algorithms are presented, and examples from different applica-
tions are highlighted. A less mathematical but nevertheless utterly detailed and
comprehensive review of Monte Carlo methods is given by Neal [117]. Monte Carlo
inference with application to artifical intelligence and neural networks with some
connections to statistical physics and a long annotated bibliography can be found
in [117]. The basic technique of Monte Carlo integration, not necessarily applied
to Bayesian estimation, is covered by textbooks on numerical integration such
as [45, 46].

6.1 Monte Carlo Integration and Optimization

For simplicity and notational conveniency, the presentation given herein assumes
integration over the total range of the Euclidean space while the general theory
deals with more abstract spaces in a measure theoretic fashion, see [4] for such
a presentation. One example where integration is performed over non-Euclidean
space is in Bayesian model selection problems where parameters in the space ∪kRk
are considered.
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6.1.1 Integration

Numerical integration deals with the problem of numerically evaluating general
integrals,

I =
∫
Rn
g(x) dx. (6.1)

Monte Carlo methods for numerical integration regard problems on the form

I =
∫
Rn
f(x)π(x) dx, (6.2)

where π(x) is a positive function that integrates to unity,

π(x) ≥ 0,
∫
Rn
π(x) dx = 1.

Most problems on the form (6.1) can be transformed into an integral for Monte
Carlo evaluation through a suitable factorization of the integrand g(x) = f(x)π(x).
The assumptions on the factor π(x) impose a natural interpretation of π(x) as a
probability density function. In a Bayesian context, the density of interest is the
posterior density of the parameters given the observed data, i.e., π(x) = p(x | y),
and considering, e.g., the mean square estimate, we identify f(x) = x , and I =
x̂MS, in (6.2).

The Monte Carlo methods rely on the assumption that it is possible to draw
N � 1 samples {xi}Ni=1 distributed according the probability density π(x). Al-
gorithms that achieve this for general classes of distributions π(x) are presented
in Section 6.2 and Section 6.3. The Monte Carlo estimate of the integral (6.2) is
formed by taking the average over the set of samples

fN =
1
N

N∑
i=1

f(xi) (6.3)

where N is assumed to be large. If the samples in the set {xi}Ni=1 are independent,
fN will be an unbiased estimate and will almost surely converge to I,

Pr
(

lim
N→∞

fN = I
)

= 1 (6.4)

by the strong law of large numbers. Moreover, if the variance of f(x),

σ2 =
∫
Rn

(f(x) − I)2π(x) dx =
∫
Rn
f2(x)π(x) dx − I2 (6.5)

is finite, the central limit theorem yields convergence in distribution of the error

lim
N→∞

√
N(fN − I) ∼ N(0, σ2). (6.6)



104 Simulation Based Methods

Note that the notation N(µ, P ) is used for the Gaussian distribution, while N(x;µ, P )
is the Gaussian density, regarded as a function of the indeterminate x. Even in
cases when the samples in the set {xi}Ni=1 are dependent it is possible to obtain a
law of large numbers and a central limit theorem under weak assumptions. Details
are given in [148], but also further discussed in Section 6.3.

The convergence results (6.4) and (6.6) are asymptotic. This means that as
N → ∞ we know that the error of the approximation will tend to zero. With
support from this asymptotic result we usually assume that a large but finite N
will lead to a small error. In practical applications the number of samples might
have to be very large for a given error bound. The Monte Carlo methods may
therefore be regarded as brute force algorithms of the type presented in Chapter 5.
There are, however, two main advantages of Monte Carlo integration compared
to straightforward numerical integration. The methods in Chapter 5 generally
suffer from intractable demands for computational resources and implementational
complexity when applied in high dimensional spaces. The expression (6.6), on the
other hand, yields that the error ε = fN − I of the Monte Carlo estimate is of the
order

ε = O(N−1/2), (6.7)

independently of the state dimension, n. Moreover, while the numerical integration
methods require the user to define a grid over the integration area that naturally is
dependent of the integrand, the estimate (6.3) is obtained using the same technique
for any function f(x). One should note though, that even if the error will tend to
zero asymptotically in N at a rate that is independent of the state dimension, the
constant factor hidden behind the expression (6.7) usually will depend on the state
dimension. A given bound on the error ε will often demand more samples in high
dimensional problems than in low dimensional ones.

The origin of the positive effects of Monte Carlo integration can be found in
the fact that for these methods, the set of samples {xi}Ni=1 is automatically chosen
in the parts of the state space that are important for the integration result. Since
the samples are chosen according to the density π(x), which is a factor of the
integrand, one can conclude that the effectiveness of the method depend on how
the factorization g(x) = f(x)π(x) is performed. The more informative, or varying,
π(x) is compared to f(x), the better will this automatic choice of sample locations
be. This claim is verified by (6.5) since the relative smoothness of f(x) compared
to π(x) determines the size of the variance σ2. This variance directly affects the
size of the error through (6.6). Assuming a positive integrand, the ultimate choice
naturally consists of having π(x) as the complete integrand, i.e., f(x) = α. This
would yield σ2 = 0, but the estimated integral is then of course known analytically.
Usually, however, there is no choice of the factorization of the integrand. In the
case of Bayesian estimation, it is natural to consider integration with respect to the
posterior density, i.e., π(x) = p(x | y) and no other option is in general available.
However, reduction of the variance (6.5), and thereby reduction of the estimation
error, can be achieved in several ways, see [45, 46]. The techniques for variance
reduction usually rely on approximation of the integrand by functions that may
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be handled analytically. Therefore, these methods may not be applicable when
the dimension is high or the integrand has no closed form analytical expression,
see [45, 46].

The numerical integration methods generally approximate the integral by a
summation over a grid of regular discretization manually chosen at the support
set of the integrand. The Monte Carlo methods utilize the fact that, under the
assumption that it is possible to generate N samples from a density given as a
factor of the integrand, an adaptive grid well suited for integral approximation is,
more or less, automatically obtained. This, in a sense, is the way these methods
beat the curse of dimensionality and is the core difference between straightforward
numerical integration and Monte Carlo integration methods.

Actually, the efficiency of Monte Carlo integration can be raised beyond (6.7),
and an error which asymptotically is inversely proportional to N achieved. This
is obtained by using, not independent random variables in the set {xi}Ni=1, but
choosing each new sample xi sufficiently far away from the former ones, so that
any potential clustering of the samples in the sum (6.3) is alleviated. The means
for obtaining such pseudo random variables rely on the theory of equidistant se-
quences [45, 46], and these methods are sometimes labeled quasi Monte Carlo
methods [118]. However, generating equidistant sequences with distribution ac-
cording to an arbitrary density π(x) is in general rather difficult. Moreover, the
quasi Monte Carlo algorithms often show an initial error of the order given by (6.7)
and only for very large N an error of O(N−1) is obtained, see Fearnhead [66].

6.1.2 Optimization

Considering Bayesian MAP estimators, the sought estimate is the location of the
maximum peak of the posterior, i.e., the mode of the density. Occasionally, it is
only some elements of the posterior parameter vector that are interesting. Then,
the location of the maximum peak of one of the marginals of the density is sought.
The framework of Monte Carlo integration covers this kind of optimization as well.
The MAP estimate takes the form

arg max
x

q(x) (6.8)

where we require q(x) ∝ p(x | y). In a Monte Carlo framework, samples {xi}Ni=1

distributed according to the, possibly unnormalized, density q(x) may be generated.
With high probability, these samples will naturally be located in the areas of the
state space where q(x) is large. Hence, a straightforward maximization can be
performed with respect to the sample set,

arg max
{xi}Ni=1

q(xi).

As N increases it will be more and more probable to find the mode in the set
{xi}Ni=1. However, this optimization method requires that the function to maximize
can be evaluated, at least up to a normalizing factor. When this is intractable, one
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has to resort to maximization of the Monte Carlo estimate of the density, i.e., the
histogram of the Monte Carlo samples. This will yield a discretization of the state
space and thus require even higher values of N for reliable results.

A more appropriate way to solve (6.8) would be to sample from a distribution
with support at the global maxima of q(x). One way to achieve this approximately
is by simulated annealing techniques [150]. After each new generation of a sample
point xi, the distribution generating the samples is altered so that it concentrates
successively more and more on the set of global maxima of the distribution q(x).
For Bayesian MAP estimation the density that generates sample number i is then
chosen according to a distribution qi(x) satisfying

qi(x) ∝ p(x | y)
1
Ti

where Ti is a cooling sequence, satisfying Ti+1 ≤ Ti and limi→∞ Ti = 0. Under weak
regularity assumptions on p(x | y), the limiting density q∞(x) will be a probability
measure concentrated on the set of global maxima of q(x), see [81, 92].

6.2 Classical Methods of Sampling

The Monte Carlo framework for numerical integration and optimization rests on the
assumption that N � 1 samples from a generic density π(x), are easily obtained in
practice. For standard distributions such as uniform, Gaussian, Gamma, Student
etc. several perfect random sampling algorithms exist. Uniform i.i.d. random vari-
ables can be generated by some pseudo random sequence with very long repetition
time, see [126]. Other standard distributions are generally obtained by feeding
a, possibly approximative but often exact, inverse of the cumulative distribution
function with a pseudo random sequence. Higher dimensional random variables
and more general distributions can be generated by combinations and mixtures of
basic distributions, see Ripley [126] for a thorough treatment of random number
generation. A short summary of classical random number generators is also given
in Robert [127, Appendix B].

Usually, the density under consideration is not a familiar combination or mix-
ture of the basic distributions, and it is not possible to directly generate samples
from π(x). When there is a known upper bound on the density function values,
and it is possible to evaluate the density pointwise, it is still possible to gener-
ate samples from π(x). The rejection sampling procedure, presented in the next
subsection, attains this although perhaps rather inefficiently. When it is possible
to generate samples from a density similar to the desired one, a correct weighting
of the sample set makes Monte Carlo estimation possible. The importance sam-
pling methods of Section 6.2.2 assumes that it is possible to evaluate π(x) up to
a normalization constant, and that the proposal distribution covers the support of
π(x).
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6.2.1 Rejection Sampling

When an upper bound on the range of the generic density function π(x) is known
and it is possible to evaluate π(x) everywhere up to a normalizing constant, a
simple rejection procedure can be applied. Let q(x) be a proposal distribution
from which samples are easily generated, and assume that there exists a known
constant M < ∞ such that π(x) ≤ Mq(x) for every x ∈ Rn. The procedure is to
draw a candidate sample x′ from q(x) and accept it with probability π(x′)

Mq(x′) . If x′

is rejected, the procedure continues to draw samples from q(x) until an accepted
sample is obtained. The finally accepted candidate will be an exact draw from
π(x).

Algorithm 6.1 (Rejection Sampling)

1. Sample x′ ∼ q(x) and u ∼ U(0, 1).

2. If u < π(x′)
Mq(x)′ return x, otherwise goto step 1.

To see that this algorithm actually generates samples from π(x) consider the scalar
case, and study a generic candidate draw x′

Pr(x′ ≤ t, and x′ is accepted) =
∫ t

−∞

π(x)
Mq(x)

q(x) dx =
1
M

∫ t

−∞
π(x) dx.

The acceptance probability of a generic x′ is found by setting t =∞,

Pr(x′ is accepted) =
∫
R

π(x)
Mq(x)

q(x) dx =
1
M
. (6.9)

Hence,

Pr(x′ ≤ t |x′ is accepted) =
∫ t

−∞
π(x) dx

which shows that the accepted x′ is exactly a draw from π(x). However, to bound
π(x) over the complete state space is in many cases impossible. If a bounding
function q(x) can be found, the constant M may need to be very large and thus
will lead to an inefficient algorithm since the probability of accepting a candidate
draw (6.9) will be low.

In a Bayesian framework, the normalizing constant of the desired posterior
density is generally unknown,

π(x) = p(x | y) ∝ p(y |x)p(x)

and difficulties to evaluate the acceptance rate of the candidate draw in Algo-
rithm 6.1 may arise. Fortunately, the rejection procedure can be applied by in-
corporating the unknown constant into the average acceptance probability (6.9).
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Assume that global bound on the likelihood p(y |x) ≤ C for all x ∈ Rn is known,
and use, e.g., the prior as proposal distribution q(x) = p(x). Since the bound on
the posterior density is

π(x) =
p(y |x)p(x)

p(y)
≤ Cp(x)

p(y)
= Mp(x),

the acceptance probability for a specific candidate draw x becomes

π(x)
Mq(x)

=
p(x | y)p(y)
Cp(x)

=
p(y |x)
C

.

This probability can be computed even though the normalization constant of the
posterior density is unknown. The average acceptance probability p(y)

C is, however,
not known and can be arbitrarily low depending on the observation.

6.2.2 Importance Sampling

Importance sampling also deals with a proposal distribution q(x) which is easy to
generate samples from. However, the only general assumption on the importance
function q(x) is that its support set covers the support of π(x), i.e., that π(x) >
0⇒ q(x) > 0 for all x ∈ Rn. Under this assumption, any integral on the form (6.2)
can be rewritten

I =
∫
Rn
f(x)π(x) dx =

∫
Rn
f(x)

π(x)
q(x)

q(x) dx. (6.10)

A Monte Carlo estimate is computed by generating N � 1 independent samples
from q(x), and forming the weighted sum

fN =
1
N

N∑
i=1

f(xi)w(xi), where w(xi) =
π(xi)
q(xi)

(6.11)

are the importance weights . It is straightforward to verify that (6.4) and (6.6) are
satisfied for the importance sampling Monte Carlo estimate (6.11).

If the normalizing factor of the target density π(x) is unknown, the importance
weights in (6.11) can only be evaluated up to a normalizing factor. Then, the
weights can be formed using a function proportional to the target density and then
normalized afterwards, forming the estimate

fN =
∑N

i=1 f(xi)w(xi)∑N
j=1 w(xj)

, where w(xi) ∝
π(xi)
q(xi)

. (6.12)

This technique is practically applied in the Bayesian framework and therefore often
referred to as Bayesian importance sampling. The estimate (6.12) is biased for finite
N , but asymptotically both a law of large numbers and a central limit theorem hold.
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Theorem 6.1 (Geweke [72])
When (6.10) exists and is finite, the estimate (6.12) converges almost everywhere

Pr
(

lim
N→∞

fN = I
)

= 1.

Additionally, if E(w(x)) <∞ and E
(
f2(x)w(x)

)
<∞,

lim
N→∞

√
N(fN − I) ∼ N(0, σ2) (6.13)

where σ2 = E
(
(f(x) − I)2w(x)

)
. All expectations above are performed w.r.t. the

density π(x).

Geweke [72] also gives a sufficient condition for satisfying the second assumption
in the theorem above. Geweke states that (6.13) holds if w(x) < C < ∞ for any
x ∈ Rn and the variance of f(x), w.r.t. π(x), is finite. In the Bayesian framework,

π(x) = p(x | y) =
p(y |x)p(x)

p(y)
∝ p(y |x)p(x).

The prior p(x) will suffice as a choice for importance distribution yielding that the
unnormalized weights are given by w(x) = p(y |x). With a bounded likelihood and
some weak regularity conditions on Eπ f(x) and Eπ f

2(x), the Bayesian importance
sampling procedure will thus yield asymptotically consistent estimates of (6.10).
A more cleverly chosen importance function would depend on the observation.

The importance sampling procedure yields a Monte Carlo estimate of the inte-
gral (6.10). The Sampling Importance Resampling (SIR) algorithm of Rubin [129]
is a procedure for generating an approximately independent draw from π(x) using
its weighted approximation. The independent draw from π(x) is obtained by in-
serting a resampling step in the spirit of Effron’s Bootstrap [121] after the weight
calculations.

Algorithm 6.2 (Sampling Importance Resampling, SIR)

1. Generate M independent samples {xi}Mi=1 with common distribution q(x).

2. Compute the weight wi ∝ π(xi)/q(xi) for each xi.

3. Normalize the weights wi := γ−1wi, where γ =
∑M
j=1 wj .

4. Resample with replacement N times from the discrete set {xi}Mi=1 where
Pr(resampling xi) = wi.

For reliable results, M should be chosen greater than N . The guideline of Rubin
[129] is to choose at least M = 10N . With the SIR procedure, an independent draw
from an approximation of π(x) is produced. Only asymptotically, as M →∞, will
a draw from π(x) be obtained. The rejection sampling procedure, on the other
hand, yields exact draws from π(x), without approximations.
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The choice of importance function is crucial for successful application of the
technique presented in this subsection. Apart from having a support that covers
π(x), the general suggestion found in most works applying importance sampling
is to choose an importance function that mimics the density π(x) but has thicker
tails. A justification of this choice is that with π(x) as importance function one may
need a very large N to get any support in its tails. It is thus better to pull samples
more frequently from the tails and downweight them. By tailoring the importance
function q(x) to the integrand f(x), the variance in (6.6) can actually be reduced
below the one obtained if perfect Monte Carlo simulation was possible, i.e., if q(x) =
π(x). Thus, importance sampling can also be regarded as a variance reduction
scheme for general Monte Carlo integration, as done by Davis and Rabinowitz
[45, 46]. However, we will usually be more interested in the weighted approximation
of the density itself, and not in a specific integral with respect to the density. These
variance reduction techniques are therefore of less interest to us.

6.2.3 Summary

The success of applying either of the rejection sampling or importance sampling
methods relies on determining good proposal distributions and importance func-
tions, respectively. A badly chosen proposal distribution yields a low acceptance
rate in the rejection sampling algorithm. Likewise, choosing the wrong importance
function yields a large variance of the importance weights with only some sam-
ples contributing to the sum (6.11), and thus a slow convergence of the estimate.
These problems frequently arise in high dimensional problems when the approx-
imate shape of the posterior is unknown. The general guideline is to use these
methods when the dimension of the state space is less than 10 [4, 46]. The Markov
chain Monte Carlo (MCMC) methods of the following section are a suite of sim-
ulation based algorithms that are applicable to much more general and complex
models and in particular to higher dimensional problems.

6.3 Markov Chain Monte Carlo

The MCMC algorithms are iterative procedures that output a sequence of random
samples by simulating a Markov chain tailored to have a limit distribution given
by the density π(x). By discarding an initial burn in phase of the Markov chain,
ergodic averages of the chain realization can be used to estimate integrals with
respect to π(x).

There are several references that treat the topic of Markov chain Monte Carlo
estimation with greater depth and in more detail than the presentation given here.
A detailed, yet compact, review over MCMC methods with signal processing appli-
cations is provided by Andrieu et al. [4]. A comprehensive set of separate articles
covering a wide variety of both theoretical and practical guidelines towards applying
MCMC methods is found in the volume edited by Gilks et al. [73]. The survey arti-
cle of Tierney [148] presents comprehensibly the theoretical foundations of Markov
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chain Monte Carlo methods. The presentation that follows below only considers
the case with Markov chains defined over Euclidean space Rn. Moreover, we will
assume all random variables x to have well defined probability density functions
p(x) < ∞ for all x ∈ Rn. A more thorough presentation in a measure-theoretic
framework is given in either of [4, 148, 149].

6.3.1 Theory

A Markov chain is a sequence of random variables {xt}t≥0 such that

Pr(xt ∈ A |x0, . . . , xt−1) = Pr(xt ∈ A |xt−1)

for all A ⊂ Rn. The transition kernel of the Markov chain is the conditional density
function

K(xt−1, xt)
M= p(xt |xt−1). (6.14)

A time-homogenous Markov chain is one where the transition kernel is explicitly
independent of the time index t. In the case of Markov chains over discrete state
spaces, the transition kernel (6.14) is a discrete transition probability matrix. The
p-step transition kernel is given by

Kp(xt−p, xt) = p(xt |xt−p).

The initial distribution of the Markov chain is p(x0) and may, in the general case,
be a Dirac delta measure indicating that the initial state of the Markov chain is
deterministic.

The idea behind Markov chain Monte Carlo methods is to construct a transition
kernel such that the limiting, or stationary, distribution of the output from the
Markov chain is some desired probability density function π(x). In order to fulfill
this requirement, a condition of invariance must hold between the transition kernel
K(xt−1, xt) of the Markov chain and π(x).

Definition 6.1
The probability density function π(x) is said to be invariant (or stationary) with
respect to the transition kernel K if

π(x) =
∫
Rn
K(xt−1, x)π(xt−1) dxt−1

for all x ∈ Rn.

The density π(x) being invariant with respect to the Markov chain implies that if
xt ∼ π(·) for some t, the output of the chain will remain marginally distributed
according to π(·) for all future time instants. A sufficient condition to ensure
π-invariance is to assure that the Markov chain is π-reversible.
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Definition 6.2
A transition kernel K is π-reversible if, it satisfies

K(x, y)π(x) = K(y, x)π(y). (6.15)

Condition (6.15) is called the detailed balance condition, weaker conditions for re-
versibility can be defined, e.g., in [148]. Generally, the reversibility condition should
say that the probability of the Markov chain moving from a region A to a region B
is equal to the probability of moving from B to A. This should hold whenever the
state is in the stationary regime, i.e., under the assumption that it is distributed
according to π(x) before the move takes place.

Most MCMC algorithms are π-reversible by construction, and therefore π(x) is
an invariant distribution of the Markov chain. Hence, the reversibility condition
does often not need to be verified in practical application of MCMC algorithms.
Suppose that we know how to construct a Markov chain with transition kernel K
having π(x) as its invariant density. In order to apply this Markov chain to Monte
Carlo integration we need to assure that the sample path average of the output
from this chain

fN =
1
N

N∑
i=1

f(xi), (6.16)

possibly discarding a burn-in phase, converges to the expectation E(f(x)) when it
exists. Since the initial distribution p(x0) 6= π(x0) in general, convergence should
be attained for any suitable initial distribution p(x0). A minimal requirement for
this is that all interesting parts of the state space can be reached by the Markov
chain.

Definition 6.3
A Markov chain is ϕ-irreducible if for any A ⊂ Rn∫

A

ϕ(y) dy > 0 ⇒ ∃p ∈ N such that

∫
A

Kp(x, y) dy > 0

for any x ∈ Rn.

Irreducibility defines the regions of the state space which the chain can move around
in, but never leave. A sufficient condition for a kernel K to be ϕ-irreducible is that
for some p ≥ 1 the kernel Kp can be factorized by ϕ(y), i.e., that there exists a
positive function f(x, y) > 0 such that Kp(x, y) = f(x, y)ϕ(y), see Tierney [149].
If a chain is irreducible with respect to some density ϕ and has invariant density
π, then the chain is π-irreducible according to Tierney [149]. This leads to the
existence of a strong law of large numbers for Markov chain Monte Carlo methods.

Theorem 6.2 (Theorem 4.3 of Tierney [149, p. 65])
Let {xt}Nt=0 be a π-irreducible Markov chain with transition kernel K having in-
variant density π. Let f : Rn → R be such that Eπ(f(x)) <∞. Then

Pr
(

lim
N→∞

fN = Eπ(f(x))
)

= 1



6.3 Markov Chain Monte Carlo 113

where fN is the Monte Carlo estimate (6.16). The claim holds for chains initialized
at π-almost all x0.

As long as the chain is initialized in the support set of π(x), the theorem says
that the average proportion of time spent in any region A ⊂ Rn will converge to
π(A). Additional assumptions on the Markov chain can be used to alleviate the
restriction of the initial states, see [148, 149].

Stronger results on the limiting distribution of the chain can be obtained by
restricting the chain from exploring the state space in a periodic manner. The
chain is then said to be aperiodic, and Theorem 4.4 of Tierney [149, p. 65] gives
that the transition kernel KN (x0, ·) tends to π(·) in total variation norm as N
tends to infinity, for all x0 in the support set of π(x). Practically, the main interest
lies in the convergence of the sample path average (6.16) rather than assuring the
limiting distribution of the chain, and therefore the demand for an aperiodic kernel
can often be relieved. Still, many MCMC algorithms are aperiodic by construc-
tion. This includes the large class of Metropolis–Hastings algorithms presented in
Section 6.3.2.

The simulated output from the Markov chain is a statistically dependent set of
samples where the marginal distribution of the output approaches π(x) under the
invariance, irreducibility and aperiodicity conditions. Contrary to the central limit
theorem result (6.6) for the case of estimates (6.16) based on independent sets of
samples, the MCMC convergence results cited above do not give any information
about the rate of convergence towards the invariant distribution. In order to estab-
lish such bounds, the issue of ergodicity of the Markov chain must be addressed. A
central limit theorem can be established if the chain is uniformly ergodic and the
variance of f(x) is finite. Then, the dimension independent error rate (6.7) holds
for the sample path averages of MCMC algorithms, see [148, 149].

To summarize this section, a Markov chain having π(x) as a stationary den-
sity being aperiodic and irreducible will asymptotically generate an output with
distribution π(x). The invariance with respect to π(x) is usually assured by the
MCMC procedure from the construction of the transition kernel, while irreducibil-
ity and aperiodicity need to be investigated for each application. In summary,
the irreducibility condition assures that all areas in the support set of π(x) may
be reached by the chain, and the aperiodicity condition that the kernel does not
exhibit any periodic behavior that would induce undesirable dependencies in the
chain output.

6.3.2 Algorithms

Most algorithms for Markov chain Monte Carlo estimation are based on the al-
gorithm of Hastings [85], which is a generalization of the algorithm of Metropolis
et al. [116]. The Metropolis–Hastings algorithm resembles the previously described
algorithms of this chapter in that a proposal distribution is used to generate the
samples. However, the output of the algorithm is a Markov chain so the proposal
density may depend on the current state of the chain. Let x denote the current
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state of the chain, during each iteration of the Metropolis–Hastings algorithm a
candidate sample z is drawn from the proposal q(z |x) and accepted with a prob-
ability given by

α(x, z) = min
(

1,
π(z)q(x | z)
π(x)q(z |x)

)
. (6.17)

If the candidate is accepted the chain moves to the new position, while a rejection
of the candidate leaves the chain at the current position in the state space. An
interpretation of (6.17) is that all candidates that yield an increase of π(·), and is
not too unlikely to return from, are accepted.

Algorithm 6.3 (Metropolis–Hastings)

1. Initialize by setting t = 0 and choosing x0 randomly or deterministically.

2. Sample z ∼ q(z |xt).
3. Sample u ∼ U(0, 1).

4. Compute the acceptance probability α(xt, z) in (6.17).

5. If u ≤ α(xt, z) accept the move and set xt+1 = z. Otherwise set xt+1 = xt.

6. Increase t and return to item 2.

One very important feature of the Metropolis–Hastings algorithm is that the distri-
butions π(x) only need to be known up to a normalizing constant. The normalizing
factor of π(x) cancels in the expression for the acceptance probability (6.17), which
thus may be evaluated even if

∫
π(x) dx is unknown.

Example 6.1
Consider the general case of Bayesian estimation where

π(x) = p(x | y) =
p(y |x)p(x)

p(y)
.

After generating a candidate sample from a suitable q(z |x), this sample is accepted
with probability

α(x, z) = min
(

1,
p(y | z)p(z)q(x | z)
p(y |x)p(x)q(z |x)

)
.

Using the prior as proposal distribution q(z |x) = p(z), the acceptance probability
simplifies to

α(x, z) = min
(

1,
p(y | z)
p(y |x)

)
.

And thus the candidate is always accepted if it increases the likelihood.
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By construction, an MCMC algorithm should ensure the desired density π(x) to
be invariant with respect to the kernel of the chain. To verify that the Metropolis–
Hastings algorithm satisfies this assumption, study the transition kernel

p(xt+1 |xt) = q(xt+1 |xt) Pr(accepting xt+1 |xt) +
δ(xt+1 − xt) Pr(rejecting xt+1 |xt),

which straightforwardly can be written

p(xt+1 |xt) = q(xt+1 |xt)α(xt, xt+1) +

δ(xt+1 − xt)
(

1−
∫
q(z |xt)α(xt, z) dz

)
. (6.18)

The acceptance probability (6.17) yields the detailed balance relation

π(xt)q(xt+1 |xt)α(xt, xt+1) = π(xt+1)q(xt |xt+1)α(xt+1, xt).

Inserting this into (6.18) we obtain

π(xt)p(xt+1 |xt) = π(xt+1)p(xt |xt+1)

which yields that the kernel of the Metropolis–Hastings algorithm is π-reversible
for almost any choice of q(z |x). Note that this only proves that π(x) is a stationary
distribution of the Metropolis–Hastings algorithm. For the sample path average to
actually converge, and for the samples from the chain to converge in distribution,
additional requirements of irreducibility and aperiodicity must be justified. A sim-
ple condition that ensures these properties is that the proposal q(· |x) is continuous
and strictly positive on the support of π(·) for any x, see [4]. Details regarding
Metropolis–Hastings convergence can be found in Roberts [128].

Even though the Metropolis–Hastings algorithm will be π-invariant for many
choices of q(z |x), the choice of proposal distribution will naturally affect the con-
vergence of the chain.

Example 6.2
Figure 6.1 illustrates the effect of choosing different proposal distributions to sample
from a Gaussian mixture using the Metropolis–Hastings algorithm. The chain is
deterministically initialized between the modes of π(x), and the proposal q(z |x)
yields a random walk, i.e., the proposal point is chosen as an independent zero
mean addition to the current state of the chain. Different behavior is obtained
depending on the average size of the steps proposed by q(z |x). With too small
steps the chain gets stuck around a local mode of π(x) and with too large steps the
proposal will often end up in the tails of π(x) and thus frequently be rejected by
the Metropolis–Hastings algorithm. The cases in Figure 6.1(a) and 6.1(b) are often
referred to as slowly mixing chains, while Figure 6.1(c) shows a choice of proposal
yielding a good mixing of the chain.
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(a) σ = 0.1, only one mode of π(x) is
explored.

(b) σ = 20, many candidates are re-
jected.

(c) σ = 2, both modes are visited while
the acceptance probability still is
high.

Figure 6.1: Sampling from a Gaussian mixture using Metropolis–Hastings algo-
rithm with Gaussian random walk proposal q(z |xt) = N(z;xt, σ2). The plots
show π(x), 300 samples generated by the algorithm and a histogram over the chain
output for different choices of σ.
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It is obvious from this example that the choice of proposal distribution determines
the efficiency of the algorithm. Apart from choosing different proposal densities,
several other approaches to updating the chain have been presented in the litera-
ture.

Common proposal choices

A simplistic way to choose the proposal is to have it fixed, and independent of
the current state of the chain. The independence sampler [148] with a proposal
distribution q(z |x) = q(z) yields an acceptance probability (6.17) of

α(x, z) = min
(

1,
w(z)
w(x)

)
where w(x) =

π(x)
q(x)

,

which is the type of proposal that was used in Example 6.1.
In the original algorithm of Metropolis et al. [116], symmetric proposals are

considered, i.e., proposal distributions such that q(x | z) = q(z |x). The acceptance
probability then simplifies to

α(x, z) = min
(

1,
π(z)
π(x)

)
.

Example 6.2 shows an example of such a proposal choice.

Blocking

An alternative way to propose a new candidate vector z is to update scalar or
low dimensional subcomponents of x, in a blocking scheme. This was actually the
framework proposed for MCMC methods by Metropolis et al. [116], and is often
referred to as single-component, or one-at-a-time Metropolis–Hastings. This can
be an particularly efficient approach in high dimensional problems where it often
is hard to choose good proposal distributions.

In single-component Metropolis–Hastings each component of x is updated ac-
cording to a Metropolis–Hastings step where the invariant distribution is the full
conditional distribution of that component. The full conditional distribution for
entry number i is

π(xi |x¬i) =
π(x)∫

R π(x) dxi

where x¬i is the vector consisting of all entries of x except for entry number i,

x¬i = [x1, . . . , xi−1, xi+1, . . . , xn]T .

A unique proposal qi(zi |xi, x¬i) can be used for each entry i. The algorithm cycles
through the entries of x sampling from each proposal and accepts the candidate
entry zi with probability

α(x¬i, xi, zi) = min
(

1,
π(zi |x¬i)qi(xi | zi, x¬i)
π(xi |x¬i)qi(zi |xi, x¬i)

)
. (6.19)
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The newly accepted or rejected entry is then inserted into x and the next candidate
component is sampled from the proposal distribution of that entry.

Gibbs sampling

The Gibbs sampling algorithm by Geman and Geman [71] is the most commonly
applied MCMC algorithm. The Gibbs sampling algorithm can be seen as a blocking
Metropolis–Hastings procedure where proposal samples are drawn directly from the
full conditional distributions. Inserting

qi(zi |x¬i) = π(zi |x¬i)

into (6.19) yields an acceptance probability of one. Hence, all candidates are ac-
cepted and no acceptance probability has to be evaluated.

Algorithm 6.4 (Gibbs sampling)

1. Initialize by setting t = 0 and choose x(0) randomly or deterministically.

2. Cycle through the entries of x and sample from the full conditionals,

• x(t)
1 ∼ π(x1 |x(t)

¬1)

• x(t)
2 ∼ π(x2 |x(t)

¬2)
...
• x(t)

n ∼ π(xn |x(t)
¬n)

3. Output x(t), increase t and return to item 2.

Above, x(t)
¬i
M= [x(t)

1 , . . . , x
(t)
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
n ]T .

The algorithm presented here is the deterministic version of the Gibbs sampler.
Alternatively, one can cycle through the entries of x in a random fashion. Moreover,
other partitions of x can be used, e.g., one can choose to sample highly correlated
entries as one block. The Gibbs sampler is applied to a measurement association
problem in Chapter 8.

6.4 Recursive Monte Carlo Methods

Recursive, or sequential, Monte Carlo methods is the unifying name for those
algorithms that deal with the recursive estimation problem using a Monte Carlo
integration approach. The main difference between the Monte Carlo algorithms
described previously in this chapter and the algorithms for recursive estimation
is that the target density for the recursive case is time dependent, and that in
general no explicit expression for the density exists. Most algorithms cited above
for generating i.i.d. samples from a generic distribution π(x) relied on being able
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to evaluate π(x) exactly for any x ∈ Rn, at least up to a normalizing factor. This
assumption cannot be met for most recursive estimation problems.

In the case of recursive Bayesian estimation the distribution of interest is the
posterior filter density, i.e.,

πt(xt) = p(xt |Yt). (6.20)

For each time t, we seek to evaluate integrals with respect to (6.20), e.g., its first
and second central moments,

x̂MS
t =

∫
Rn
xtπt(xt) dxt and

∫
Rn

(xt − x̂MS
t )(xt − x̂MS

t )Tπt(xt) dxt. (6.21)

In Theorem 3.3, a conceptual expression for the recursive update of the posterior
filter density was given,

p(xt |Yt) ∝ p(yt |xt)p(xt |Yt−1) (6.22a)

p(xt+1 |Yt) =
∫
Rn
p(xt+1 |xt)p(xt |Yt) dxt. (6.22b)

Above, the integral for computing the normalizing factor of (6.22a) has been hid-
den behind the proportionality relation ∝. It was also noted in Chapter 3 that
in general there exists no explicit analytical expression for propagating p(xt |Yt)
through (6.22). Hence, apart from numerically evaluating integrals such as (6.21),
the recursive methods must also propagate an approximative description of the
posterior density itself, simply because there is no analytical expression for this
function. The recursive Monte Carlo methods achieve this by applying Monte
Carlo approximation techniques to all the integrals of (6.22) and (6.21). Straight-
forwardly, performing these approximations yields a recursive propagation of a set
of samples approximately drawn from the posterior filter density, and possibly a
probability weight assigned to each sample. This cloud, or swarm, of particles
adapts and evolves with time and incoming observations yt, so that the number of
particles in each subregion of the state space reflects the probability of finding the
true state in that region. Due to this analogy, recursive Monte Carlo methods are
sometimes referred to as particle filters .

The sequel of this section is devoted to algorithms for recursive Monte Carlo
estimation. We present the most commonly applied procedures and give some
implementational guidelines for these algorithms. Several surveys over sequential
Monte Carlo methods have appeared lately in the literature. The material in this
section is mainly based on the compact and comprehensive reviews presented by
Doucet [60] and Liu and Chen [110]. Both these references focus on importance
sampling methods while the thesis of Fearnhead [66] gives some alternative ap-
proaches and more background to the general filtering problem.

6.4.1 Algorithms

In all recursive Monte Carlo filters the posterior density is approximated by a
swarm of N � 1 points {xit}Ni=1 in the state space Rn. The number of points in
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each subregion of Rn reflects the probability for finding the true state in this region.
The algorithms differ in the way this swarm of particles is recursively propagated
and affected by the measurements.

The Bayesian Bootstrap Filter

The Bayesian bootstrap filter, or recursive SIR, is an application of the SIR pro-
cedure Algorithm 6.2 to the recursive propagation (6.22). The original application
of the SIR procedure to recursive estimation by Handschin and Mayne [84], and
Handschin [83] focused on computing approximations to the conditional mean and
covariance. The Bayesian Bootstrap filter of Gordon et al. [78] applies the same
idea but uses the SIR to recursively compute an approximation to the complete
posterior distribution. It was the seminal paper of Gordon et al. [78] which, to-
gether with the advent of cheap high performing computers, initiated the rapid
growth of the research field of Monte Carlo approximation methods for recursive
estimation.

The algorithm starts with a prior cloud of particles {xit}Ni=1 assumed to be an
i.i.d. sample from p(xt |Yt−1) such that it can be used to approximate the prior
filter density,

p(xt |Yt−1) ≈ 1
N

N∑
i=1

δ(xt − xit).

Inserting this approximation into (6.22a) and applying the SIR procedure, a similar
sample from p(xt |Yt) is obtained by resampling with replacement as follows. A set
of N new samples {xi?t }Ni=1 is produced by resampling with replacement from the
set {xit}Ni=1 where the probability of resampling state xit is proportional to p(yt |xit).
After this resampling operation, multiple copies of those samples in {xit}Ni=1 that
correspond to a large likelihood are found in the new set {xi?t }Ni=1, while some
of the samples with a comparatively low likelihood are not resampled at all. The
resampled set of points is an approximate i.i.d. draw from the filter density p(xt |Yt)
and hence, applying a Monte Carlo approximation to (6.22b) yields that

p(xt+1 |Yt) ≈
1
N

N∑
i=1

p(xt+1 |xi?t ). (6.23)

A fresh, unweighted, set of N i.i.d. samples from this mixture density is needed in
order to close the recursion loop by increasing t and continue updating the particle
cloud with the next measurement. The most straightforward and computationally
efficient way to produce this set is to generate one sample from each term in the
sum (6.23). Hence, a new set {xit+1}Ni=1 is formed by generating N independent
draws from p(xt+1 |xi?t ), one for each i. Through this prediction the resampled
copies in {xi?t }Ni=1 will naturally explore the state space independently and assign
probability mass to a region in the state space corresponding to the multiply re-
sampled candidate. The prediction step yields an approximately i.i.d. draw from
p(xt+1 |Yt) which can be used in the next iteration of the algorithm.
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In accordance with the SIR procedure, one can choose to base the resampling
on a set of M = rN samples for some r ∈ N. An algorithmic summary of the
recursive SIR procedure follows.

Algorithm 6.5 (Recursive SIR, or Bayesian Bootstrap)

1. Set t = 0, and generate M samples {xi0}Mi=1 from p(x0).

2. Compute the likelihood weights wi = p(yt |xit) for i = 1, . . . ,M .

3. Normalize the weights wi := γ−1wi, where γ =
∑M
j=1 wj .

4. Generate a new set {xi?t }Ni=1 by resampling with replacement N times from
the discrete set {xjt}Mj=1 where Pr(xi?t = xjt ) = wj .

5. Predict each of the resampled states independently r times. Thus, generating
the set {xjt+1}Mj=1, where

x
(i−1)r+k
t+1 ∼ p(xt+1 |xi?t ) for all k = 1, . . . , r and i = 1, . . . , N .

6. Increase t and iterate to item 2.

The mean-square error estimate and its estimation error covariance is given by
importance weighted Monte Carlo estimates of (6.21). In Algorithm 6.5 the calcu-
lations

x̂MS
t =

N∑
i=1

wix
i
t and Pt =

N∑
i=1

wi(xit − x̂MS
t )(xit − x̂MS

t )T

are inserted between items 3 and 4. In the original presentation, Gordon et al.
[78] actually choose to calculate the estimate after the resampling step. If the
factor between M and N is large, this will considerably decrease the computational
burden.

Figure 6.2 shows an illustration of one iteration of the recursive SIR procedure.
With a flat prior at time t, the samples are uniformly distributed over the state
space. Evaluating the likelihood on this set and resampling with respect to this
weight, the dark circles indicate the size of the likelihood and hence reflects the
average number of resampled offsprings. The offsprings are predicted forward in
time and it is illustrated how they explore the state space in such a manner that
the resulting set of points gives a good approximation to the posterior.

The main advantages of Algorithm 6.5 is its ease of implementation and its
applicability to a very large class of recursive estimation problems. The mild
assumptions for applying this algorithm are that i.i.d. samples from p(x0) and
from p(xt+1 |xt) are easy to generate, and that it is possible to evaluate likelihood
p(yt |xt) for any yt and xt. However, problems do occur, e.g., in fixed parame-
ter estimation when the state transition density p(xt+1 |xt) is singular. Then the
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x

p(y  x)

resampling

prediction

{xit}Ni=1

{xit+1}Ni=1

Figure 6.2: Illustration of the recursive SIR procedure. The uniformly distributed
prior samples are resampled according the their likelihood value. In the prediction
step they diffuse independently and the resulting sample set gives an approximate
description of the posterior. Modified from Figure 1 of de Freitas et al. [48], used
with permission.

multiple copies after the resampling step will not explore the state space but re-
main at the same positions. The problem arises from the fact that the discrete set
{xit}Mi=1 is not representable for the prior density, and therefore can be alleviated
by increasing M . Alternatively, a kernel density estimation step can be inserted.

The recursive SIR procedure summarized in Algorithm 6.5 is a fundamental ver-
sion of several similar SIR procedures for recursive estimation. These are mainly
enhancements of the original algorithm, developed to overcome some of its weak-
nesses. When fixed parameters are estimated recursively, the information about
them can only increase with time. With particle filters such as the Bayesian boot-
strap, this will have the effect that after some iterations only one candidate state
vector value will be present in the particle set. Extreme outlier observations can
render the same type of behavior. Either the outlier is due to a large measure-
ment error or it is a true outlier with valuable state information. Regardless of
the origin of the outlier, the likelihood of the outlying measurement will have its
main support on the tail of the prior distribution. This tail is represented by only
a few samples of the particle cloud. The resampling step will therefore severely
impoverish the particle representation of the posterior. Increasing the number of
samples representing the prior by choosing a large value of r in Algorithm 6.5 will
alleviate these effects. This idea is sensible even in the non-recursive case and was
proposed in the original SIR procedure by Rubin [129]. The technique is some-
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times referred to as prior boosting. The article of Gordon et al. [78], where the
Bayesian bootstrap was originally presented, includes some suggestions that at-
tenuate the sample impoverishment problems. For fixed parameter estimation a
small amount of synthetic Gaussian noise is added to jitter the resampled points
away from each other. An interpretation of this approach is that a Gaussian kernel
estimate is used to smooth the particle representation of the posterior. The width
of the kernel can be chosen using standard kernel smoothing rules. To overcome
the problem induced by outlier measurements, Gordon et al. [78] suggests to intro-
duce a prior editing in the sample prediction step. The editing procedure decides
only to include the updated sample in the set if its likelihood is large enough. The
algorithm keeps generating samples until N candidates have been accepted. The
risk of filter divergence is reduced since the samples are focused on an area of high
future likelihood. Since a future measurement is needed in order to evaluate this
likelihood, this technique will delay the state estimate calculations for one time
step. Carpenter et al. [37, 38] suggests using stratified sampling as a mean to
overcome some of the problems with the original algorithm. Instead of sampling
one element from each term in the mixture density (6.23), a mixture density of the
posterior is formed and a random number of samples is generated from each term
of this mixture. The random integer number of draws from each term is chosen
such that it is on the average proportional to the normalized weight of this term
in the mixture and such that the total number of samples equals N . An efficient
algorithm for this stratified sampling technique is given in [37, 38].

Sequential Importance Sampling

The Bayesian importance sampling procedure of Section 6.2.2 can straightforwardly
be extended to recursive estimation. In general, the integrals of the Bayesian
recursion (6.21)–(6.22) all have the form

I(xt+1) =
∫
Rnt

f(xt+1, xt)p(Xt |Yt) dXt.

An importance sampling approximation to this integral is obtained by generating
samples from a proposal q(Xt |Yt) and estimating the integral with a weighted
Monte Carlo sum. By choosing a recursively updated proposal distribution

q(Xt |Yt) = q(xt |Xt−1,Yt)q(Xt−1 |Yt−1) (6.24)

it is possible to obtain a recursion for the cloud of particles {xit}Ni=1 and the cor-
responding set of importance weights {wit}Ni=1 that can be used for Monte Carlo
approximation with respect to the marginal filtering density

p(xt |Yt). (6.25)

Both Doucet [60] and Liu and Chen [110] develop general frameworks based on
importance sampling with respect the complete history of the state Xt. Practically
one often refrains from this for computational reasons. Moreover, the main interest
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often lies in estimates given by integrals with respect to (6.25) or some equivalent
prediction density. Thus, we trade some generality for notational conveniency and
practical applicability and study the propagation of the marginal distribution (6.25)
instead of the complete history of the states, as given in [60, 110].

The recursion is initiated by assuming that a cloud of particles representative
for the filter density p(xt−1 |Yt−1) is given. In the Bayesian importance sampling
framework this cloud of particles is supposed to be an i.i.d. draw from the proposal
q(xt−1 |Yt−1), yielding the weighted approximation

p(xt−1 |Yt−1) ≈
N∑
i=1

wit−1δ(xt−1 − xit−1), (6.26)

where wit−1 are the normalized importance weights

wit−1 ∝
p(xit−1 |Yt−1)
q(xit−1 |Yt−1)

.

One key feature with the importance sampling procedure is that the proportionality
constant of the desired density does not necessarily have to be known in order to
compute the importance weights. This makes the importance sampling method
extra interesting in Bayesian frameworks. From the Bayesian recursion (6.22) the
desired unnormalized density is conceptually given by

p(xt |Yt) ∝ p(yt |xt)
∫
Rn
p(xt |xt−1)p(xt−1 |Yt) dxt−1.

Inserting the estimate (6.26) yields that approximately,

p(xt |Yt) ∝ p(yt |xt)
N∑
i=1

p(xt |xit−1)wit−1

which can be regarded as a mixture density with N terms. An importance weighted
approximation to this density is obtained by drawing one proposal sample for
each term in this mixture sum and calculating an appropriately chosen importance
weight for this sample. Hence, given (6.26) we generate

xit ∼ q(xt |xit−1,Yt) i = 1, . . . , N

from a suitable proposal q(xt |xt−1,Yt) that may be conditionally dependent on
the particle xit−1 used in term i. The resulting estimate of the filter density is

p(xt |Yt) ≈
N∑
i=1

witδ(xt − xit),

where the normalized importance weight for each term is given by

wit ∝ wit−1

p(yt |xit)p(xit |xit−1)
q(xit |xit−1,Yt)

. (6.27)
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The Sequential Importance Sampling (SIS) algorithm thus consists of recursively
generating N sample paths using the proposal q(xt+1 |xt,Yt) and propagating the
importance weights according to (6.27).

A generic weight used in the sequential importance sampling algorithm is a
function of the collected measurements Yt, and hence can be regarded as a random
variable if the measurement are given a stochastic interpretation. The variance
of this random variable is a measure of the efficiency of the importance sampling
algorithm. Optimally, the posterior distribution should be used as importance
sampling distribution at each iteration. If this was possible, all weights would be
equal to one and hence the variance of the weights would be zero. However, with
an importance function on the form (6.24), the variance of the importance weights
can only increase with time [60, 101]. This degeneracy of the algorithm practically
appears after a few iterations, and will result in a particle cloud where only one
candidate state has a non-negligible weight. This effect is suppressed by inserting
a resampling step using the SIR procedure whenever a significant degeneracy of
the particle weights is observed. The resampling step eliminates the trajectories
that have very small normalized importance weights and multiplies the trajectories
with high normalized weights.

The effective sample size is a measure for determining the degeneracy of the
particle cloud introduced by Kong et al. [101]. The relative efficiency of the im-
portance sampling procedure is reflected by the ratio between the variance of the
importance sampling estimate, and the variance of the estimate fopt

N obtained if
perfect Monte Carlo simulation had been possible. In the sequential framework,
the importance sampling estimate is computed using N � 1 i.i.d. samples from
q(xt |Yt),

fN =
∑N
i=1 wt(x

i
t)f(xit)∑N

i=1 wt(x
i
t)

, where wt(xit) ∝
p(xit |Yt)
q(xit |Yt)

,

while the perfect Monte Carlo estimate is formed using N � 1 i.i.d. samples from
p(xt |Yt),

fopt
N =

1
N

N∑
i=1

f(xit).

For smooth functions f(·) Kong et al. [101] show that

Covq(·|Yt) (fN )

Covp(·|Yt)
(
fopt
N

) ≈ 1 + Covq(·|Yt) (wt(xt)) ,

where

wt(xit) =
p(xit |Yt)
q(xit |Yt)

and xit ∼ q(· |Yt).
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The effective sample size is defined by

Neff
M=

N

1 + Covq(·|Yt)
(
wt(xit)

) =
N

Eq(·|Yt)

(
wt(xit)

2
) .

It determines the degeneracy of the importance sampling procedure. This quantity
is impossible to evaluate analytically, but may be estimated by

N̂eff =
1∑N

i=1 w
i
t
2 (6.28)

where wit are the normalized importance weights of the particle cloud. When N̂eff

falls below some user defined threshold Nthres, the SIR resampling procedure is
applied to the set {xit}Ni=1. The Sequential Importance Sampling (SIS) procedure
with resampling test, using the effective sample size, is summarized in the algorithm
below.

Algorithm 6.6 (SIS with Resampling)

1. Set t = 0, wi−1 = 1
N and generate N samples {xi0}Ni=1 from q(x0 | y0).

2. Update the weights

wit = wit−1

p(yt |xit)p(xit |xit−1)
q(xit |xit−1,Yt)

i = 1, . . . , N.

3. Normalize the weights wit := γ−1wit, where γ =
∑N

j=1 w
j
t .

4. If N̂eff ≥ Nthres jump to item 6.

5. Generate a new set {xi?t }Ni=1 by resampling with replacement N times from
the discrete set {xjt}Nj=1 where Pr(xi?t = xjt ) = wj . Reset the weights wit = 1

N .

6. Predict the resampled states xit+1 ∼ q(xt+1 |xi(?)t ,Yt+1), increase t and iterate
to item 2.

The framework of sequential importance sampling is very general. Many proce-
dures proposed in the literature are generalizations or developments based on the
simple algorithm above. In fact, the major differences between this algorithm and
Algorithm 6.5 is that in Algorithm 6.6, the importance weights are calculated se-
quentially and resampling is only performed when actually needed. However, the
general choice of importance distribution yields greater possibilities to affect the
character of the algorithm. By applying importance sampling to trajectories of
state sequences the procedure can also be more general than presented in Algo-
rithm 6.6. The sequential importance sampling method described in Algorithm 6.6
is in general computationally less demanding than Algorithm 6.5. This may enable
the use of larger N and thus better Monte Carlo approximation.
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Other recursive Monte Carlo approaches

The recursive SIR and the sequential importance sampling filters are the by far
most common particle filters for recursive estimation. A few alternative Monte
Carlo approaches are summarized below.

Bølviken et al. [30] argue in favor of the rejection sampling method over the
importance sampling techniques described above. Their main argument is that
with rejection sampling, a draw exactly from the posterior density is obtained,
and no weighting of the candidate set is needed. But with the rejection sampling
procedure it is impossible to predict the number of iterations of the algorithm for
obtaining a sample of fixed size N . Hence, it is not advisable to use rejection
sampling in on-line implementations.

Tanizaki [143] propose a non-recursive Monte Carlo filter and compares it with a
numerical integration method and an importance sampling algorithm. The evalua-
tion is performed using low dimensional linear and non-linear state space estimation
benchmark problems. The conclusion drawn by Tanizaki is that the proposed pro-
cedure does not work well when the range of the state variables is unrestricted.
Since the method is non-recursive it is not interesting for on-line applications.

The branching and interacting particle filters of Crisan et al. [41], and Del Moral
[49] are similar to the algorithms presented in this subsection. The interacting
particle filters have a random number of particles that represent the posterior at
each iteration. The interacting particle filters coincide with the Bayesian bootstrap
and the sequential importance sampling methods from a practical viewpoint, but
are more restricted in the choice of proposal distribution. Greater emphasis is
instead put on theoretical considerations within this framework. Both Crisan et al.
[41], and Del Moral [49] present several convergence results and they utilize a
rather general measure theoretic presentation. The framework is also applied to
continuous time filtering. Some aspects on regularization of the particle methods
for continuous time filtering are given by Le Gland et al. [108]. The regularization
is introduced to overcome problems with divergence of the particle cloud in prior
importance sampling.

6.4.2 Implementational Issues

Resampling

Resampling is required every iteration of the Bayesian Bootstrap filter, and when-
ever N̂eff < Nthres in the sequential importance sampling procedure. A direct
implementation of this resampling would consist of generating N i.i.d. variables
from U(0, 1), sort these in ascending order and compare them with the cumulative
sum of the normalized weights. The best sorting algorithms has a complexity of
O(N logN), and it has been noted in practical applications that this severely limits
the range of how far N can be increased.

Several approaches to suppress the complexity of the resampling step has been
suggested. Beadle and Djurić [10] decreases the computational burden by sampling
every candidate with equal probability but inserting several copies of the resampled



128 Simulation Based Methods

candidate each time it is chosen. The number of copies is proportional to the
weight of the chosen candidate. The authors do issue a warning that samples with
very small weight will never be resampled at all using their method. However, as
noted by Doucet [60], the following classical algorithm for sampling N ordered i.i.d.
variables {ui}Ni=1 from U(0, 1) can be used to implement exactly the resampling in
O(N) time.

Algorithm 6.7 (Sampling of ordered U(0, 1) variables [126, p. 96])

1. Sample ũi ∼ U(0, 1), for i = 1, . . . , N .

2. Set uN = N
√
ũN .

3. Compute ui = ui+1
i
√
ũi, for i = N − 1, . . . , 1.

In Matlab syntax this algorithm simply becomes

>> u = fliplr(cumprod(rand(1,N).^(1./(N:-1:1))));

which obviously is an O(N)-calculation. With an ordered i.i.d. sample from U(0, 1)
at hand, the resampling is straightforwardly implemented by comparing this sample
with the cumulative sum of the normalized weights.

Optimal Importance Function

The choice of importance distribution will generally determine the performance of
the algorithm and particularly the speed of degeneracy of the normalized weights.
One way to choose a suitable q(xt |xt−1,Yt) is to select the function that minimizes
the degeneracy introduced in each iteration of the algorithm. The importance
sampling distribution should thus minimize the variance of the importance weights
{wit}Ni=1, given the set of candidates at the previous step of the algorithm {xit−1}Ni=1,
and the measurements Yt. Doucet [60] shows that the optimal choice for this
criterion is given by

q(xt |xit−1,Yt) = p(xt |xit−1, yt).

With this choice of optimal importance function the importance weight recursion
becomes

wit ∝ wit−1

p(yt |xit)p(xit |xit−1)
p(xit |xit−1, yt)

= wit−1 p(yt |xit−1).

In order to use the optimal importance function, one has to be able to sample from
p(xt |xit−1, yt) and to evaluate

p(yt |xit−1) =
∫
p(yt |xt)p(xt |xit−1) dxt,
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at least up to a normalization constant. In the general case this is impossible, but
for problems that can be written on the form

xt+1 = ft(xt) + wt

yt = Htxt + et
(6.29)

with Gaussian independent noises, the optimal importance function is straightfor-
wardly derived, see [60]. Doucet [60] suggests to utilize local linearization tech-
niques when the problem is not on the form (6.29). We conclude the discussion on
optimal importance functions with an example of such techniques.

Example 6.3
Consider the bearings-only tracking problem from Example 3.2. The state space
model for this recursive estimation problem is

x
(1)
t+1 = x

(1)
t + w

(1)
t

x
(2)
t+1 = x

(2)
t + w

(2)
t

yt = tan−1
(
x

(2)
t /x

(1)
t

)
+ et.

This model is linear in the state update and nonlinear in the measurement rela-
tion. A change to polar coordinates gives a nonlinear state update and a linear
measurement relation

rt+1 =
√
r2
t + w

(1)
t rt sinϕt + w

(2)
t rt cosϕt + w

(1)
t w

(2)
t

ϕt+1 = tan−1

(
rt sinϕt + w

(2)
t

rt cosϕt + w
(1)
t

)
yt = ϕt + et.

The range state rt does not enter the likelihood, so the optimal proposal distri-
bution for rit is the state transition equation given the candidate rit−1 and ϕit−1.
The optimal proposal for the bearings state does not have a simple form, but a
linearization of the coordinate transformation around rit−1 and ϕit−1 yields that

λit = Cov
(
ϕt | rit−1, ϕ

i
t−1

)
≈ 2002

((
sin(2ϕit−1)

2

)2

+
(

cosϕit−1

rit−1

)2
)
,

where the covariance matrix of the process noise wt from Example 3.2 has been
inserted. This suggests an approximatively optimal importance density given by
the Gaussian distribution

ϕt | rit−1, ϕ
i
t−1, yt ∼ N

(
0.1ϕit−1 + λityt

0.1 + λit
,

0.1λit
0.1 + λit

)
where the measurement noise covariance from Example 3.2 has been used. The ap-
proximatively optimal importance distribution above can also be used to compute
importance weights.
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Parallelizing the calculations

The weight update and particle diffusion can straightforwardly be calculated inde-
pendently for each candidate state vector in the set. The resampling is however
not possible to parallelize and this is also the part that is most time-consuming.
Therefore it is of most importance that a good proposal is chosen to minimize the
frequency of resampling.

One way to achieve a parallel implementation is to run several particle filters
in parallel. A very high degree of parallelism cannot be achieved since each filter
still must have a rather large sample size N , so that the particle cloud of each filter
resembles the posterior and does not diverge. The state estimates are based on a
Monte Carlo average over the total set of all points in all filters, with the weights
appropriately normalized so that all the weights sum to unity.

6.4.3 Applications

The particle filters above have lately been applied to several recursive estimation
problems. Target tracking applications are very common to benchmark new ideas
for recursive estimation. Avitzour [5], Gordon [76], and the original article of
Gordon et al. [78], use different versions of the recursive SIR. Other Monte Carlo
algorithms for sequential target tracking in clutter is covered by Liu et al. [111],
while target tracking in glint noise is considered by Gordon and Whitby [77].

In Chapter 7 the sequential algorithms above are applied to the terrain nav-
igation application. Nonlinear recursive estimation problems arise frequently in
navigation applications. Integration of inertial navigation system information with
position fixes from satellite systems such as GPS have been studied extensively
and mainly tackled with extended Kalman filter techniques. Recently, Carvalho
et al. [39] presented simulation results using particle filters. Their conclusion is that
the particle filters are greatly superior to the standard linearization techniques of
extended Kalman filtering.

6.5 Summary

The simulation based methods are general numerical integration and optimization
tools that are tightly coupled to the type of problems often occuring in Bayesian
estimation. Integral estimation is performed by sample averaging over a large
number of random samples generated from a desired distribution. The methods of
importance and rejection sampling are suitable when an approximate description of
the desired density is available. The suite of Markov Chain Monte Carlo methods
offer solutions to problems of higher dimension, when it is harder to approximately
describe the density of interest.

For recursive estimation, the numerical integration methods of Chapter 5 and
the particle filters of this chapter are in several aspects very similar. Both represent
the posterior density by a set of weighted points in the state space, and both
update this representation with respect to the incoming measurements. The main
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difference though, is that for the numerical integration methods the grid is chosen
by the user, while in the Monte Carlo methods it is more or less automatically
chosen by the model of the problem. The computational complexity of the standard
numerical integration methods grows exponentially with the size of the problem,
while the particle filters in general do not suffer from such a limitation. Moreover,
the particle filters are very simple to implement compared to the numerical, grid
based, methods.
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7

Terrain Navigation

The terrain navigation application requires an on-line solution of a highly nonlinear
recursive estimation problem. In this work, we emphasize the statistical approach
to recursive estimation in general, and the Bayesian paradigm in particular. The
basic concept of terrain navigation is depicted in Figure 7.1. Measurements of ab-
solute altitude, ground clearance, along with heading and speed information from
the inertial navigation system are compared to a terrain reference map with the
objective of autonomously generating reliable position estimates of the aircraft in
real time. Chapter 2 presented a background to the terrain navigation application,
the stochastic modeling of the problem, the optimal but intractable Bayesian solu-
tion, and an approximative implementation. The point-mass implementation was
further detailed in Chapter 5. A simulation study presented in Chapter 2, showed
that the suboptimal Bayesian point-mass filter (PMF) yields high navigation per-
formance in realistic simulations. The recursive estimation model for the terrain
navigation problem was given in (2.4),

xt+1 = xt + ut + wt

yt = h(xt) + et
t = 0, 1, . . . (7.1)

accompanied by density functions for the initial position x0, and the disturbances
et and wt, respectively. It is the unstructured nonlinear terrain map, entering the
measurement equation of the model (7.1), that makes this problem challenging.

133
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Altitude Ground clearance

Mean sea-level

Terrain elevation

Figure 7.1: The principle of terrain navigation.

The general overview of the terrain navigation application given in Chapter 2 is
complemented by some additional background material in Section 7.1. The section
contains a discussion regarding the concept of integrating the position estimates
from the terrain navigation system with the inertial navigation system. A detailed
description of previously presented approaches to this application is also given in
Section 7.1. A much more detailed description of the terrain navigation application
can be found in Bergman [16]. Characteristics of the sensors, and discussions
regarding methods for estimating the vertical bias error are some of the topics
handled in [16]. In Section 7.2, we utilize both the parametric and the posterior
Cramér-Rao bounds from Chapter 4 in a Monte Carlo evaluation of the PMF
implementation. The posterior Cramér-Rao bound is also linked to the information
content in the terrain map in Section 7.3. Section 7.4 presents three particle filters
from Chapter 6 applied to terrain navigation. These filters are evaluated against
the Cramér-Rao bounds and the PMF implementation.

7.1 Application Background

The main advantage with the principle of terrain navigation, depicted in Figure 7.1,
is that it yields position estimates autonomously. This navigation principle does
not have to rely on support of any satellite or terrestrial radio system broadcast-
ing information to the aircraft. However, terrain navigation will not work over
the sea, over big lakes, over very flat terrain or while flying at large ground clear-
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ance distances. It does, on the other hand, perform equally well under electronic
countermeasure conditions, during day or night, and in all possible weather condi-
tions [135]. There are several ways to utilize the components of a terrain navigation
system for other tasks than sole support for an inertial navigation system. Sug-
gestions of using terrain navigation for ground obstacle collision avoidance, terrain
following and mission planning are given in [86, 87].

7.1.1 Integration of Navigation Systems

In the aircraft navigation application, ensuring the safety of the passengers is a
critical issue. Errors in the construction of the navigation system or physical mal-
functions of sensors may cause severe damage with risk for human life. Modern
aircraft navigation systems therefore consist of several separate or partly separate
navigation devices, where each device produces estimates of a subset of the needed
navigation parameters. The output from the individual devices are combined,
usually by means of a Kalman filter, to generate the complete set of navigation pa-
rameters of the aircraft. The redundancy between the devices can also be utilized
to detect and isolate malfunctions in the different systems and thereby increase
the overall system integrity. A comprehensive treatment of integrity monitoring of
navigation systems is given by Palmqvist [119].

Inertial navigation systems can track highly dynamical motion very well over
limited time intervals. However, the open loop configuration of inertial systems
yields an inevitable, slowly varying, and growing error in the system output. A
terrain navigation system supporting the inertial system with frequent position
updates will limit this long term divergence while retaining the autonomous feature
of the navigation application. On the other hand, the terrain navigation system
demands heading and velocity information for maximum performance. Thus, a
symbiosis constellation between an inertial navigation and a terrain navigation
system will yield an integrated system with high performance on both a long and
a short time scale.

The inertial system determines the aircraft position by integrating measure-
ments of the aircraft acceleration in real time. The integration result is trans-
formed into a fixed coordinate system using measurements of the aircraft angular
rates. Let a(t) denote a vector of measured acceleration and angular rates, and x(t)
denote the state vector of the inertial navigation system (INS). The state vector
typically consists of the aircraft position, velocity and attitude together with the
gyro and accelerometer states. The dynamic integration performed by the INS is
described by a nonlinear differential equation,

ẋ(t) = ft
(
x(t)

)
+ gt

(
a(t)

)
. (7.2)

where the nonlinear functions ft(·) and gt(·) involve different coordinate transfor-
mations [99]. If the acceleration and gyro measurements were noiseless, the INS
state would be in perfect resemblance with the true state of the aircraft, denoted
by x0(t). Likewise, letting a0(t) denote the actual acceleration and angular rates
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of the aircraft the true state evolves according to a similar differential equation

ẋ0(t) = ft
(
x0(t)

)
+ gt

(
a0(t)

)
. (7.3)

Denote the aircraft position estimates produced by the terrain navigation system
by y(t). Neglecting that these are driven by the velocity estimates from the INS,
the relation between the aircraft state vector and the position “measurement” from
the terrain navigation algorithm can be described as

y(t) = ht
(
x0(t)

)
+ e(t). (7.4)

Above, the nonlinear function ht(·) is the coordinate transformation of the position
elements in x0(t) to the navigation frame of the terrain navigation filter. The
measurement noise, e(t), in (7.4) is the estimation error in the position estimate of
the terrain navigation filter.

Let xδ(t) and aδ(t) be the errors in the INS state vector and the acceleration
measurements, i.e.,

x0(t) = x(t) + xδ(t)
a0(t) = a(t) + aδ(t).

(7.5)

Assuming that these errors are small, we neglect the second and higher order terms
in a Taylor expansion of (7.3) and (7.4) around x(t) and a(t). Using (7.2) and (7.5)
yields that the error state satisfies a linearized dynamical model

ẋδ(t) =
∂ft(x)
∂x

∣∣∣
x=x(t)

xδ(t) +
∂gt(a)
∂a

∣∣∣
a=a(t)

aδ(t)

y(t)− ht
(
x(t)

)
=
∂ht(x)
∂x

∣∣∣
x=x(t)

xδ(t) + e(t).
(7.6)

This model describes the errors dynamics in the inertial navigation system, and
how the terrain navigation estimate can be used as a measurement of these errors.
Modeling the acceleration error aδ(t) by a fixed Gaussian distributed vector over a
small time interval, the system (7.6) is discretized and can be used to implement
an extended Kalman filter estimator for xδ(t). Figure 7.2 shows a schematic block
diagram of the integration of terrain navigation and inertial navigation, and the
system output is labeled x̂0(t). Since the terrain navigation filter is driven by the
velocity estimate of the INS, the estimated error in this velocity is fed back from
the Kalman estimator to the terrain navigation filter. In Figure 7.2, the notation
v̂δ(t) has been adopted for the estimated error in the velocity used in the terrain
navigation algorithm, and the abbreviation TNF stands for terrain navigation filter.
Note that in the linearization scheme in the extended Kalman filter, the system
matrices should be evaluated at x(t) and a(t) and thus the Kalman filter actually
depends on the INS state vector. This has not been depicted in Figure 7.2.

The integration, using terrain information to estimate the INS errors, demands
a quantization of the estimation error covariance, utilized as measurement error
covariance in the Kalman filter. Since this estimation error will depend on the
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Figure 7.2: Integration of terrain information and INS.

terrain variations, the terrain navigation algorithm must calculate this estimation
error on-line. Hence, the terrain navigation filter needs to output an estimate of
the covariance of its estimation error,

R(t) = E
{

(y0(t)− y(t))(y0(t)− y(t))T
}
,

which should be used as the measurement error covariance in the Kalman filter.
Problems of instability might occur in the constellation of Figure 7.2 due to

the feedback from the Kalman filter to the terrain navigation filter. A terrain
navigation algorithm leaving bad position estimates while estimating a small error
covariance R(t) will result in an incorrect velocity correction v̂δ(t) from the Kalman
filter. Since this correction is fed back to the terrain navigation algorithm, this will
probably imply an even worse estimate from the terrain navigation filter. Thus,
the system in general needs to be more elaborate than indicated in Figure 7.2. The
terrain navigation procedure needs to be supervised so that its position updates
are used only when it is known that the filter produces reliable position estimates.

7.1.2 Approaches to Terrain Navigation

The abbreviation TAN (Terrain Aided Navigation) is commonly used for systems
of the type depicted in Figure 7.2, i.e., for the concept of aiding an INS with
terrain information. A brief review over some suggested approaches to terrain
aided navigation was presented in Chapter 2. A survey over these methods is
provided anew in this section, but here the methods are explained in greater detail
and compared to the Bayesian approach.

Terrain Contour Matching

Due to limited computational resources, the initial approaches to terrain navigation
relied on batch correlation between collected measurements and the digital map.
The procedure of terrain contour matching (TERCOM) is such an early batch
oriented techniques for navigation using terrain information.
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Prior to the flight mission, several areas with high terrain variations are iden-
tified along the aircraft flight path. Reference matrices of the terrain elevation in
these areas are stored in the system computer. These matrices are interpolated
and aligned according to the planned vehicle orientation so that the correlation
can be performed easily along the columns of the corresponding reference matrix
H . Hence, the system demands that the vehicle does not manoeuvre during the
data gathering, and that it has approximately correct orientation. During flight,
the radar altimeter is tuned to sample the terrain elevation with a sample period
adjusted so that the collected terrain elevation profile will have the same distance
between consecutive samples as the distance between samples in the reference ma-
trix H .

The most common way to perform the correlation in the TERCOM systems
is to find the position in the reference matrix that minimizes the mean absolute
difference (MAD) between the terrain elevation profile and the reference matrix.
The MAD value is computed by calculating the absolute value of the errors along
the profile and taking the mean of these absolute errors. Gathering N samples,
the algorithm computes the MAD for the profile of every column m and every row
displacement k in the matrix H ,

MADk,m =
1
N

N∑
n=1

|yn −Hm,n+k|.

The algorithm chooses the position with best correlation

(k̂, m̂) = arg min
k,m

MADk,m.

Even if the technique is old and puts severe restrictions on the manoeuvres of the
aircraft, the basic TERCOM-approach is still used in several applications today.
The TERCOM system is mainly used for unmanned and rarely manoeuvring vehi-
cles such as cruise-missiles, detailed descriptions of this algorithm are provided by
Baker and Clem [6], Golden [75], Siouris [135].

Sandia Inertial Terrain Aided Navigation

Sandia Inertial Terrain Aided Navigation (SITAN) is the label on a terrain navi-
gation scheme developed at Sandia Laboratories in the late 1970s. SITAN is the
earliest reported approach of a recursive solution to the terrain matching problem.
The algorithm uses a modified version of an extended Kalman filter (EKF) in its
original formulation by Hostetler [91]. In order to diminish the effect of terrain
nonlinearities, a certain adaptive stochastic linearization technique is used in the
algorithm of [91].

Several modifications of the original SITAN approach have been proposed. In
order to overcome divergence problems in the filter estimates parallel EKFs have
been used by Hollowell [88], and Boozer and Fellerhoff [31]. The rationale behind
these extensions is that while linearizing the filters in different positions over an
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area where the aircraft is supposed to be, the sensitivity to the nonlinear terrain is
limited. In [31] each Kalman filter has three error states; the navigation system’s
easting, northing and vertical error. The idea is that as the measurements are
processed, some filters will cluster around the true position and an estimate of the
navigation errors can be formed. In the highly manoeuvring helicopter application
considered by Hollowell [88], the filters are scalar and it is only the vertical bias that
is estimated. Here, the grid of filters is fixed but translated with the movement of
the helicopter, and an estimate of the position is formed by averaging over estimates
from certain filters with small estimation error.

Terrain Profile Matching

The British Aerospace system Terrain Profile Matching (TERPROM) is commonly
used in several military aircraft. A rather brief, and not very detailed, description of
the TERPROM system is given by Davies [44]. The algorithm is a hybrid solution
which in acquisition-mode correlates measurements in batch to find an initial posi-
tion, and in track-mode processes measurements recursively using Kalman filtering
techniques.

Viterbi Algorithm Terrain Aided Navigation

Enns and Morrell [64] propose to use a discretized version of the continuous Viterbi
algorithm in the terrain navigation application. Their Viterbi Algorithm Terrain
Aided Navigation (VATAN) algorithm computes approximatively a maximum a
posteriori estimate of the aircraft horizontal position. The implementation uses
a grid over the area of interest and translates this grid along with measurements
from the inertial navigation system. The metric Lt(xt) is initiated by the prior
description of the aircraft position, L0(x0) = log p(x0), and calculated for each
grid point according to the recursion

Lt+1(xt+1) = log p(yt+1 |xt+1) + max
xt
{log p(xt+1 |xt) + Lt(xt)} .

The position maximizing this metric is used as an estimate of the aircraft position

x̂t = arg max
xt

Lt(xt).

The algorithm has not been reported used in any field tests, but in simulations
described in [64] it outperforms the single EKF version of the SITAN algorithm.

Bayesian Terrain Navigation

The Bayesian solution to terrain navigation was presented in Chapter 2. The
idea behind this approach is to model the recursive nonlinear inference problem
in terrain navigation as accurately as possible in a statistical framework, and to
compute a good approximation to the optimal Bayesian solution of this model.
The main difference between this approach and the ones described previously is
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that no linearization of the nonlinear terrain elevation map is needed. Instead, an
approximate description of the unstructured posterior density is recursively propa-
gated by the numerical integration method of Algorithm 5.1, the point mass filter
(PMF). The PMF computes a discretized approximation to the probability density
function of the aircraft position and recursively updates this discrete density with
each new measurement from the radar altimeter and with the aircraft movement
estimate from the inertial navigation system. The grid mesh resolution and support
is controlled through three design parameters.

The main advantages of this approach were reviewed in Chapter 2. The most
important issue for the terrain navigation application is the ability of the PMF to
track several position hypotheses in parallel. An illustration of this ability is given
in Figure 7.3 which depicts six consecutive point-mass approximations from the
realistic simulations presented in Chapter 2. The point-mass approximations are

Iteration t
Iteration t+ 1

Iteration t+ 2 Iteration t+ 3

Iteration t+ 4
Iteration t+ 5

Figure 7.3: The point-mass approximation of the posterior will have several peaks
if the terrain is repetitive.

extracted from a section of the simulations performed over the track in Figure 2.5
having informative, but repetitive, terrain characteristics. At iteration t the condi-
tional density approximation has a unique maximum but a rather wide support of
low, but not negligible, point mass values. Due to the underlying terrain charac-
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teristic, the density splits up into two equally high peaks during the following two
iterations. When the aircraft reaches an area of less repetitive terrain, a few more
measurements are processed and the false peak is effectively attenuated.

The effects depicted in Figure 7.3, and the realistic simulation study described
in Chapter 2 justify that the PMF solution is well suited for the terrain navigation
application. The PMF has also been verified against real flight test data, reported
in the Master Thesis work of Svensson [140]. According to Svensson [140], the
PMF yields equally good navigation performance in the realistic simulations as
on real data. It is mainly the possibility to utilize a detailed model of the noise
distributions p(et) and p(wt), and the ability of the point-mass density to accurately
describe the position information, that yield the encouraging results of the PMF.
Still, in a practical application it is not fully understood how to model the noise
distributions p(et) and p(wt), and how to maximize the utility of the point-mass
density. In [140], the PMF is working in conjunction with a Kalman filter for
estimating the vertical position error. This constellation is suggested in [16], and
based on the principle of certainty equivalence.

In the following section we evaluate the average performance of the PMF using
Monte Carlo simulations of the terrain navigation application. Less emphasis has
here been put on the realism of the simulation conditions, and the resulting navi-
gation error therefore only plays a minor role. Instead, we use noise distributions
for which the Cramér-Rao bound for the estimation problem is easily determined
and the Monte Carlo performance is compared to this fundamental bound.

7.2 Cramér-Rao Bound Evaluation

The PMF computes an approximative description of the posterior density. In this
section we apply the fundamental Cramér-Rao bounds from Chapter 4 to verify that
the effect of this approximation does not seriously alter the algorithm performance.
We utilize Monte Carlo simulations to determine the average performance of the
algorithm in two different areas, having smooth and rough terrain, respectively.

Even if the PMF is derived in a Bayesian framework, it can be evaluated in a
parametric or Bayesian Monte Carlo setting. In the parametric setting, the state
trajectory is fixed {x?i }Ni=1, and independent measurement noise is generated in M
identical Monte Carlo runs. The navigation filter is applied to these data, resulting
in the estimated tracks {x̂it}Mi=1. Considering the one step ahead prediction of
the aircraft position, the Monte Carlo approximation to the Cramér-Rao bound
inequality was provided in Section 4.5 as√√√√ 1

M

M∑
i=1

‖x̂it − x?t ‖
2 &

√
trPt t = 1, . . . , N (7.7)

where Pt is given by Theorem 4.3. We use a Gaussian distributed initial position
with covariance P0, and Gaussian noises wt and et, with covariance Q and R,
respectively. The parametric Cramér-Rao bound then follows by inserting the
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model (7.1) and these noise distributions into Theorem 4.3,

Pt+1 = Pt − PtHt(HT
t PtHt +R)−1HT

t Pt + Q where Ht = ∇xh(x)
x=x?t

is the gradient of the terrain evaluated at the true aircraft positions along the fixed
track.

In the Bayesian Monte Carlo evaluation, M independent tracks are generated
from (7.1) yielding M random walk realizations in two dimensions. The filter
is applied to each of these tracks using measurements of the ground clearance
corrupted by independently distributed measurement noise. The resulting one step
ahead position estimate at time t in Monte Carlo run i is denoted x̂it. Section 4.5
yields the Cramér-Rao bound inequality√√√√ 1

M

M∑
i=1

‖x̂it − xit‖
2 &

√
trPt t = 1, . . . , N (7.8)

where Pt is given by Theorem 4.5. With the Gaussian noise assumption inserted
into the model (7.1) we have that

P−1
t+1 = Q−1 −Q−1(P−1

t + Zt +Q−1)−1Q−1 (7.9a)

where

Zt = R−1 E
(
∇xth(xt)(∇xth(xt))T

)
(7.9b)

since R is scalar and constant. The Monte Carlo estimate of this quantity is given
by the sample average over the M independent tracks. The posterior bound is
thus computed by averaging the terrain gradient over all the M tracks, while the
parametric bound is computed from the terrain gradient at the positions given in
a single track.

The minimum mean-square error, or minimum variance, estimate is the con-
ditional mean of the posterior density. In the PMF approximation, it is given by
the center of gravity of the point mass approximation. If the posterior density was
perfectly described by the PMF, the minimum variance estimate would by con-
struction satisfy the Cramér-Rao bound inequalities (7.7) and (7.8). The observed
discrepancy from the Cramér-Rao bound in the Monte Carlo evaluation below can
therefore be traced to the approximative point-mass density.

Table 7.1 summarizes the actual noise levels, track duration and Monte Carlo
iterations used in the simulations. Two different parts of the terrain map were used
in these simulations. These terrain areas are shown in Figure 7.4. The figure also
depicts 200 of the tracks used in both the smooth and rough posterior Cramér-Rao
bound evaluations. One of these tracks was extracted for the respective parametric
Cramér-Rao bound evaluation, this track is highlighted in Figure 7.4. The PMF
performance naturally depends on the parameters that affect the grid resolution
and update. The chosen settings are summarized in Table 7.2. The grid truncation
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Figure 7.4: The rough and smooth simulation areas, the axes are labeled in meter
scale. The first 200 simulation tracks used in the posterior simulations are shown
over each map, the track used for the parametric evaluation is highlighted in white.
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Initial covariance P0 = 2002I2 m2

State noise covariance Q = 52I2 m2

Measurement noise covariance R = 4 m2

Track length 300 samples
Monte Carlo runs 1000

Table 7.1: The simulation settings.

Initial grid resolution δ = 50 m
Resampling limits N0 = 1000

N1 = 5000
Truncation parameter ε = 0.001

Table 7.2: Filter parameters.

and resampling parameters are identical to the ones used in the realistic simulation
evaluation presented in Chapter 2.

The simulation results in the parametric Monte Carlo evaluations are depicted
in Figure 7.5. Initially, a sparse grid with 50 m space between each grid point is
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Figure 7.5: Monte Carlo root mean square error (solid) compared to the parametric
Cramér-Rao bound (dashed) for the rough (left) and smooth (right) simulation
areas.

used in the point-mass approximation. The grid resolution is successively increased
by the PMF grid update when more information becomes available, and, after
convergence, the grid resolution keeps oscillating between 6.25 m and 3.125 m. Over
the rough terrain area, each measurement yields valuable information about the
aircraft position and the PMF rapidly converges to a stationary error level. After
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the convergence, remains in the vicinity of the bound for the remaining simulation
time. Over the smooth terrain area, the less informative measurements yield a less
rapid increase of the grid resolution. The sparse initial mesh, with 50 m between
each grid point, clearly yields suboptimal performance during the first third of
the simulation track. However, when the grid resolution increases, the algorithm
performance reaches the bound and stays close to it for the remaining simulation
time. During both the rough and the smooth case, the error occasionally reaches
below the bound. This effect may origin from a bias towards the fixed unknown
aircraft track. The effect does not seem to disappear by increasing the number of
Monte Carlo iterations.

Applying the PMF to 1000 different aircraft trajectories, the Monte Carlo RMS
error and corresponding posterior Cramér-Rao bound are shown in Figure 7.6.
Since both the bound and the Monte Carlo RMS error are averaged over the ter-
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Figure 7.6: Monte Carlo root mean square error (solid) compared to the posterior
Cramér-Rao bound (dashed) for the rough (left) and smooth (right) simulation
areas.

rain area in this case, the plots show a smoother behavior than the parametric
counterpart. In all other aspects, the results shown in Figure 7.6 indicate a similar
pattern to the parametric case. The rough terrain case gives a fast convergence
and close to optimal mean square error, while the smooth terrain area yields a
slower convergence but equally good steady state performance. The error does not
reach below the posterior bound in either the rough or the smooth case. Since the
posterior Cramér-Rao bound does not assume an unbiased estimator, this indicates
that the explanation of the super-effectiveness in the parametric case is sound.

The Cramér-Rao bound has been applied to the evaluation of a point-mass
approximation to the Bayesian approach to terrain navigation. In several exhaus-
tive Monte Carlo simulations over different types of terrain, the point-mass filter
is shown to meet the bound as the approximation grid becomes dense. The filter
performance is suboptimal during the settling phase, but after the initial conver-
gence, the filter yields near optimal performance. In the parametric evaluation, it
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occasionally happens that the mean square estimation error falls slightly below the
Cramér-Rao bound. This probably origins from a bias-variance tradeoff since such
behavior is not observed in the posterior case.

The Monte Carlo simulations presented above reveal the average performance
of the approximate Bayesian inference procedure given in Algorithm 5.1. The fact
that the mean square error of the PMF reaches the Cramér-Rao bound when the
grid resolution becomes sufficiently dense, shows that the point-mass description
succeeds in approximating the conditional filter density.

7.3 Terrain Information

The absolute performance of any terrain navigation filter will inevitably depend
on the amount of information about the aircraft position revealed by the terrain
elevation measurements. This fact is clearly obvious in the simulation results of
the previous section. In this section, we connect the posterior Cramér-Rao bound
to the scalar terrain information measure (2.1), suggested in Chapter 2.

Let S be an arbitrary region of size A inside the terrain elevation map. Consider
the Bayesian estimation problem with an initial position, uniformly distributed over
the region S,

p(x) =

{
A−1 for x ∈ S

0 elsewhere.

and a single measurement from the relation

y = h(x) + e

available. Let the additive scalar measurement noise be Gaussian distributed with
zero mean and variance λ. The joint density of the states and the measurement is

p(x, y) = p(y |x) p(x) =

{
A−1 N(y;h(x), λ) for x ∈ S

0 elsewhere.

Taking the logarithm of this density yields

log p(x, y) =

{
− 1

2λ (y − h(x))2 + C for x ∈ S

−∞ elsewhere,

where C is a constant, not depending on x. Hence, the “information matrix” for
the Bayesian estimation problem outlined above becomes

J = E(−∆x
x log p(x, y)) =

1
λ

E
(
∇xh(x)∇Tx h(x)− (y − h(x))∆x

xh(x)
)
.

Since the measurement noise e is assumed to have zero mean, we have that

J =
1
λ

E
(
∇xh(x)∇Tx h(x)

)
=

1
λA

∫
S

∇xh(x)∇Tx h(x) dx,



7.4 Monte Carlo Filters 147

since the prior distribution of the states is uniform over the region S. With a Monte
Carlo approximation of this expression, a scalar terrain information measure is
given by the expression suggested in (2.1),

√
tr J ≈

√√√√ 1
N

N∑
i=1

‖∇xih(xi)‖2,

where the points xi are uniformly distributed over the area of interest. This infor-
mation measure coincides with the one proposed in (2.1).

7.4 Monte Carlo Filters

The simulation based algorithms for recursive estimation presented in Chapter 6
utilize Monte Carlo integration techniques for approximative Bayesian estimation.
Applied to terrain navigation, these filters will recursively generate a large number
of candidate positions of the aircraft and determine likelihood weights assigned
to each candidate trajectory. In this section we present extensive Monte Carlo
evaluations using three different simulation based particle filters from Chapter 6.
The Bayesian bootstrap, the sequential importance sampling and the linearized
optimal importance sampling methods are studied. The simulation results are
compared to the Cramér-Rao bound and the point-mass filter of Algorithm 5.1
from Section 5.2.

Assuming that the absolute altitude of the aircraft is known, or has been esti-
mated with a small error, the objective of the terrain navigation procedure is to
determine the aircraft position projected on the terrain map. The two dimensional
model for this recursive estimation problem is,

xt+1 = xt + ut + vt

yt = h(xt) + et
t = 0, 1 . . . (7.10)

For simplicity, the noises vt and et are chosen to be Gaussian distributed, yielding
that the posterior Cramér-Rao bound for the estimation problem is given by (7.9).
The noise distributions and parameters in this evaluation are not primarily chosen
to give realistic results for the navigation application. This is less important since
comparisons are made relative to the Cramér-Rao bound. Here, we are primarily
interested in the average relative performance of the different algorithms studied.
The chosen parameters are summarized in Table 7.3. Gaussian distributed initial
positions of the Monte Carlo tracks were generated with a fixed average position
x̂0, and covariance P0 given in Table 7.3. The resulting tracks generated from
independent realizations of the system and measurement noises are depicted in
Figure 7.7. The terrain map is shown as a contour plot behind the tracks. This
is a part of the same commercial map used in the previously presented terrain
navigation simulations. The posterior Cramér-Rao bound (7.9) was computed using
these simulated tracks over the map.
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Initial covariance P0 = 1002I2 m2

State noise covariance Q = 52I2 m2

Measurement noise covariance λ = 16 m2

Track length 150 samples
Aircraft velocity ut = [25, 25]T m/sample

Monte Carlo runs 100

Table 7.3: Parameters for the simulated tracks.

Figure 7.7: The 100 simulated aircraft tracks are depicted over a contour map of
the commercial terrain map. The simulated aircraft tracks start in the lower left
corner and ends in the upper right corner of the map.

The Bayesian bootstrap filter, Algorithm 6.5, performs resampling after each
measurement update. Applying this algorithm to the terrain navigation model (7.10)
with parameters given in Table 7.3 yields the procedure summarized below.

Algorithm 7.1 (Bayesian bootstrap)

1. Set t = 0, and generate N samples {xi0}Ni=1 from N(x̂0, P0).
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2. Compute the normalized weights

wi =
N(yt;h(xit), λ)∑N
j=1 N(yt;h(xjt ), λ)

i = 1, . . . , N

and determine the estimate x̂t =
∑N
i=1 wix

i
t.

3. Generate a new set {xi?t }Ni=1 by resampling with replacement N times from
the discrete set {xjt}Nj=1 where Pr(xi?t = xjt ) = wj .

4. Generate vit ∼ N(0, Q) for i = 1, . . . , N , and predict the particle cloud

xit+1 = xi?t + ut + vit i = 1, . . . , N.

5. Set t := t+ 1 and repeat at item 2.

In comparison to a Kalman filter algorithm, item 2 and 3 correspond to a mea-
surement update step, while item 4 is the time update. Identical Monte Carlo
simulations were performed over the tracks in Figure 7.7 using sample sizes N
ranging from 50 to 800. Figure 7.8 shows the resulting Monte Carlo root mean
square error using Algorithm 7.1. The figure also shows the fundamental posterior
Cramér-Rao bound for the set of simulation tracks. The Monte Carlo root mean
square error naturally decreases with increasing sample size N , although not mono-
tonically. For the sample sizes 200 and higher, the average error after convergence
is almost equal, while the speed of convergence still increases for higher sample
sizes. The reason for this effect is that the aircraft position is very uncertain and
the posterior filter density has a large support at the initialization of the algo-
rithms. A large set of samples is better at approximating this posterior with wide
support during the settling phase, while the algorithms using fewer samples yield
a less correct description of the filter density. In the extreme case, few samples
will even lead to algorithm divergence due to an incorrect description of the filter
density. After half sample number 100, the filter density has become rather nar-
row and comparable result are obtained at almost all sample sizes. Algorithm 7.1
converges to an average error very close to the Cramér-Rao bound for all sample
sizes N > 50.

In the sequential importance sampling algorithm, Algorithm 6.6, the degeneracy
of the weights determines when to perform resampling. The algorithm described
below, is the sequential importance sampling method with importance function
given by the approximative prior p(xt |Yt−1) from the last iteration.

Algorithm 7.2 (Importance Sampling)

1. Set t = 0, wi−1 = 1
N and generate N samples {xi0}Ni=1 from N(x̂0, P0).
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Figure 7.8: Monte Carlo RMS error and posterior Cramér-Rao bound for the
Bayesian bootstrap filter, Algorithm 7.1.

2. Update the weights

wit = wit−1 N(yt;h(xit), λ) i = 1, . . . , N

and normalize them

wit :=
wit∑N
j=1 w

j
t

i = 1, . . . , N.

Compute the estimate x̂t =
∑N

j=1 w
i
tx
i
t.

3. If N̂eff < Nthres resample with replacement from the set {xit}Ni=1 where wit is
the probability of resampling the state xit. Reset the weights wit = 1

N .
4. Generate vit ∼ N(0, Q) for i = 1, . . . , N , and predict the particle cloud

xit+1 = xit + ut + vit i = 1, . . . , N.

5. Set t := t+ 1 and repeat at item 2.

The effective sample size was defined in (6.28), as

N̂eff =
1∑N

i=1 w
i
t
2
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The threshold for the resampling operation was set to Nthres = 2N/3. The main
difference between this algorithm and Algorithm 6.5, is that the weights are com-
puted sequentially. The simulation results using this sequential importance filter
are depicted in Figure 7.9. The sequential importance filter has a similar perfor-
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Figure 7.9: Monte Carlo RMS error and posterior Cramér-Rao bound for the se-
quential importance sampling filter. Prior importance function, Algorithm 7.2.

mance compared to the results of the Bayesian bootstrap presented in Figure 7.8.
The filter performance increases almost monotonically with the sample size, and
it is mainly the speed of convergence that is affected by the sample size param-
eter. However, the main difference between the algorithms is that the sequential
importance sampling procedure has substantially less computational requirements
for a given sample size. The resampling operation is the computationally most
burdensome operation of the particle filters. Resampling of the weights needs only
be performed when N̂eff < Ntresh in the importance sampling algorithm due to the
sequential update of the weights, while in the bootstrap filter it is a mandatory
operation. In the simulations, it was observed that the resampling step is invoked
on the average every fourth iteration using the importance sampling method. If
the algorithms are compared on the basis of a requirement to pass a computational
load limit, the results of Algorithm 7.2 for a given N should be compared to the
results of Algorithm 7.1 for N/4. Still, the error curves of Figure 7.8 and Figure 7.9
are almost identical for the same sample size. This fact strongly speaks in favor of
the importance sampling method compared to the Bayesian bootstrap. After the
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settling phase, the RMS error of Algorithm 7.2 converges to a level close to the
Cramér-Rao bound for all sample sizes studied.

The use of the posterior density as importance function can make the sequential
importance sampling filter sensitive to outlier measurements. A better choice of
importance function can also decrease the rate of the inevitable weight degeneracy.
The optimal importance function, presented in Section 6.4.2, is chosen to minimize
the weight degeneracy at each algorithm recursion. For the terrain navigation
problem, given on the form (7.10), it is not possible to exactly sample from the
optimal distribution. In the local linearization techniques promoted by Doucet
[60], each sample candidate is drawn from a distribution that is a local Gaussian
approximation to the true optimal distribution. In the particle prediction step, the
candidate xit is generated from a Gaussian distribution with covariance and mean
given by

Σit = Q−Qht,ihTt,iQ/(hTt,iQht,i + λ)

µit = Σit(Q
−1(xit−1 + ut−1) + ht,i(yt − h(xit) + hTt,i(x

i
t−1 + ut−1))/λ)

(7.11)

where ht,i = ∇h(xit), λ and Q are noise covariances from Table 7.3. The derivation
is straightforward and can be found in [60]. Note though, that this technique only
works with Gaussian noises et and vt. Hence, the linearized optimal importance
function is not applicable in the true terrain navigation application without some
additional approximations since at least the measurement noise et is regarded as
non-Gaussian. The resulting importance filter using a locally Gaussian optimal
importance function follows.

Algorithm 7.3 (Optimal Importance Sampling)

1. Set t = 0, wi−1 = 1
N and generate N samples {xi0}Ni=1 from N(x̂0, P0).

2. For each i = 1, . . . , N compute µit and Σit. Generate new samples

xit ∼ N(µit,Σ
i
t) i = 1, . . . , N

3. Update the weights

wit = wit−1

N(yt;h(xit), λ) N(xit;x
i
t−1 + ut−1, Q)

N(xit;µit,Σit)
i = 1, . . . , N

and normalize them

wit :=
wit∑N
j=1 wj

i = 1, . . . , N.

Compute the estimate x̂t =
∑N

j=1 w
i
tx
i
t.

4. If N̂eff < Nthres resample with replacement from the set {xit}Ni=1 where wit is
the probability of resampling the state xit. Reset the weights wit = 1

N .
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Figure 7.10: Monte Carlo RMS error and posterior Cramér-Rao bound for the
sequential importance sampling filter. Locally linearized optimal importance sam-
pling function, Algorithm 7.3.

5. Set t := t+ 1 and repeat at item 2.

The simulation result using this filter is shown in Figure 7.10. The optimal im-
portance function renders the same characteristics as the previously described al-
gorithms. With increasing sample size, the filter performance increases in general,
and the speed of convergence increases in particular. However, the local lineariza-
tion operation (7.11) demands a substantially larger amount of computations than
either of the previously described algorithms, given a fixed sample size.

During all simulations with small sample size, the algorithms occasionally lost
track of the true state evolution. In the previously commented plots in Figures 7.8–
7.10, the lost track runs have been manually removed and the Monte Carlo root
mean square error computed using the remaining filter estimates. Table 7.4 sum-
marizes the number of lost tracks during the evaluation. The divergence of the
algorithms occurs rather seldom for the small sample sizes and not at all with a
larger chosen number of particles N . Algorithm 7.2 seems to be the choice with
the best robustness against sample divergence. However, all algorithms yield a
comparable number of lost tracks for a given sample size and are equally robust
using large N .
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N Algorithm 7.1 Algorithm 7.2 Algorithm 7.3
50 2 2 1
100 0 0 1
200 1 0 1
400 0 0 0
800 0 0 0

Table 7.4: Percentage of lost tracks during the Monte Carlo evaluations.

It is hard to draw any general conclusions about the differences in algorithm
robustness based in the limited experience from this simulation evaluation. More
importantly, the frequency of resampling increased substantially in the cases when
the particle cloud diverged from the true state. It is therefore advisory to monitor
this frequency in an on-line implementation of Algorithm 7.2 and Algorithm 7.3.
Table 7.5 shows the frequency of resampling operations during the Monte Carlo
evaluation after removing the simulations when the filters diverged. In the Bayesian

N Algorithm 7.1 Algorithm 7.2 Algorithm 7.3
50 100 23 21
100 100 23 22
200 100 23 21
400 100 23 21
800 100 23 22

Table 7.5: Average resampling frequency during the Monte Carlo evaluation. The
table shows the average percentage of iterations when resampling was performed.

bootstrap filter, resampling is a mandatory operation and thus Algorithm 7.1 has
100% resampling frequency. The optimal importance function generates candidate
trajectories such that the sample degeneracy is minimized at each iteration. The
rationale behind such a choice is to make the resampling step less frequent and
thereby be able to increase the sample size. Algorithm 7.3 yields a few percent
decrease in resampling frequency for the sample sizes studied, compared to Algo-
rithm 7.2. The overhead computations required to evaluate the linearized optimal
importance function (7.11) does not level this minor decrease in resampling fre-
quency. Instead, there is a net increase in computational load when comparing
Algorithm 7.2 to Algorithm 7.3. It is the very nonlinear and unstructured terrain
elevation map in the terrain navigation application that diminishes the gains of
this local linearization approach. The reduction in resampling frequency might be
greater in problems with smoother nonlinearities, but this will naturally have to be
inspected for each application. The conclusion from Table 7.5 is that Algorithm 7.2
has lowest average computational requirements due to the infrequent resampling
and simple algorithm update. However, in a real time implementation one might
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have to design the algorithms such that they allow for resampling at every algo-
rithm recursion. In such a case, the importance sampling filter and the Bayesian
bootstrap yield comparable performance.

The three simulation based filters were also compared to the Point-Mass Filter
(PMF), given in Algorithm 5.1. A fixed grid resolution of δ = 12.5 m was used in
the PMF, and the truncation parameter was set to ε = 10−3. With these parameter
settings the average number of grid points used by the PMF during the 100 Monte
Carlo simulations was 339. Tests with higher resolution showed no significant
improvement in the PMF estimate. No lost tracks were detected using the PMF.
The chosen settings for the PMF make it possible to perform a fair comparison
between the results using this numerical integration method and the simulation
based algorithms with sample size 400. The computational load requirements for
the Bayesian bootstrap algorithm and the PMF were approximatively equal at
this sample size. Figure 7.11 summarizes the resulting comparison between the
simulation based algorithms of this section and the PMF algorithm of Section 5.2.
All filters have comparable performance, their Monte Carlo RMS error all meet the
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Figure 7.11: Monte Carlo RMS error and posterior Cramér-Rao bound, comparison
between the three particle filters and the grid based PMF. The particle filters with
sample size 400 are shown, the point-mass filter used on the average 339 grid points.

posterior Cramér-Rao bound after less than half of the simulation time. Neither
the PMF nor any of the simulation based filters experienced any divergence from
the true aircraft track during these simulations. The prior importance sampling
method of Algorithm 7.2 gives the best performance for a given computational
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requirement, while Algorithm 7.1 and the PMF demand a somewhat higher number
of floating point operations. The optimal importance filter of Algorithm 7.3 puts
substantially greater demands on the computational resources.

The main disadvantage with the PMF is that it is considerably more complex
to implement in higher dimensions than the simulation based filters. Moreover,
the growth in computational complexity makes it intractable to run the PMF in
dimensions greater than three. However, since the grid in the PMF is subjectively
chosen by the algorithm designer, the user has a greater potential to affect the mesh
update. This may be of practical interest since, e.g., spurious outlier measurements
might cause the particle cloud in the Monte Carlo algorithms to diverge as was
experienced in Table 7.4.

7.5 Conclusion

The terrain navigation problem consists of intimately combining measurements
from a radar altimeter, an inertial navigation system and a terrain map. This
demands an unorthodox solution due to the unstructured nonlinear effects induced
by the terrain map. The general Bayesian approach to this nonlinear estimation
problem yields a recursive update of the complete conditional density of the aircraft
position. The shape and support size of this conditional density will inevitably
depend on the terrain variations.

The numerical integration point-mass approach given in Algorithm 5.1 is an
approximative implementation of the Bayesian recursive solution. In extensive
simulations of the terrain navigation application over different terrain types, this
point-mass filter has been shown to yield approximately optimal estimation per-
formance. It has also been shown to give encouraging results using real flight test
data.

The Monte Carlo filters are alternative solutions, also generating point-mass ap-
proximations to the filter density. They show a similar near optimal performance
in simulation studies compared to the Cramér-Rao bound. The Monte Carlo fil-
ters are considerably less complicated to implement than the numerical integration
procedure. Particularly, they are much easier to apply in problems of higher di-
mension. The sequential importance sampling algorithm is the one that yields best
performance at lowest computational load.
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Target Tracking

This chapter contains illustrations of Bayesian inference in some target tracking
applications. The target tracking algorithms presented in this chapter are batch
oriented and therefore mainly suggested to use for off-line data analysis. Some
work on recursive algorithms for target manoeuvre detection is presented in [93].

The problem of target manoeuvre detection is briefly studied in Section 8.1,
while a measurement association problem is analyzed in greater detail in Sec-
tion 8.2. Section 8.1 is initiated by a review of the Expectation Maximization
(EM) algorithm. The EM algorithm is a procedure for computing either Bayesian
MAP estimates or perform maximum likelihood estimation based on a set of incom-
plete, or partially unobserved, data. The technique of expectation maximization
is illustrated with application to detection of target manoeuvres, at the end of
Section 8.1.

The EM algorithm is also utilized for measurement-to-model association in tar-
get tracking. In Section 8.2, we consider linear Gaussian state estimation with a
finite set of known linear observation models. The correspondence between the
observations and the models is assumed unknown, and some of the measurements
may originate from false detections, or clutter, that do not reveal anything about
the true state of the system. Practically, this problem occurs in over the horizon
target tracking where several layers in the ionosphere may yield more than one
echo from a single target. We develop a Gibbs sampling algorithm for the joint
estimation of the measurement to model association and the state sequence. The

157
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algorithm can yield either minimum mean square error (MMSE) estimates or maxi-
mum a posteriori (MAP) estimates. This Gibbs sampler is evaluated in simulations
along with two previously suggested approaches to this problem, one is based on
the EM algorithm and the one other uses approximative Bayesian association. The
Gibbs sampler and the EM-based algorithms are both batch oriented, while the
approximative Bayesian algorithm is recursive in time.

8.1 The Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm of Dempster et al. [53] is an it-
erative algorithm for parameter estimation when part of the measurements are
unknown. The algorithm can either be used for maximum likelihood estimation
or in a Bayesian framework to obtain maximum a posteriori estimates. The para-
metric, maximum likelihood, formulation dates back to the work of Baum et al.
[8].

Consider the maximum likelihood framework where we seek the parameter vec-
tor θ ∈ Ω that maximizes the likelihood p(y | θ) of the observed measurement vector
y. Often this function has a rather complicated structure and the maximization is
hard to perform. The idea behind the EM algorithm is that there might be some
hidden or unobserved data x that, if it were known, would yield a likelihood func-
tion p(y, x | θ) which is much easier to maximize with respect to θ ∈ Ω. Introduce
the notation z = [y, x] for the complete data where y are the actual measurements
and x are the unobserved measurements. Since

p(z | θ) = p(y, x | θ) = p(x | y, θ) p(y | θ),

the log likelihood splits into two terms

log p(y | θ) = log p(z | θ)− log p(x | y, θ).

Integrating both sides with respect to a measure f(x) such that
∫
f(x) dx = 1 will

not affect the left hand side,

log p(y | θ) =
∫

log p(z | θ)f(x) dx −
∫

log p(x | y, θ)f(x) dx.

Choosing f(x) as the conditional density of x given y and some candidate parameter
vector θ′ yields

log p(y | θ) = E (log p(z | θ) | y, θ′)︸ ︷︷ ︸
Q(θ,θ′)

−E (log p(x | y, θ) | y, θ′)︸ ︷︷ ︸
H(θ,θ′)

. (8.1)

The EM algorithm only considers the first term, it is defined as alternating between
forming Q(θ, θ′) and maximizing it with respect to its first argument. Initializing
with some θ0, one pass of the algorithm is defined as

Q(θ, θp) = E (log p(z | θ) | y, θp) (E-step)
θp+1 = arg max

θ
Q(θ, θp) (M-step)
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The algorithm keeps alternating between expectation and maximization until no
significant improvement of Q(θp+1, θp) is observed in two consecutive iterations.
A fundamental property of the EM algorithm is that for each pass through the
algorithm the log likelihood (8.1) will monotonically increase. Below follows a brief
justification of this claim, the results have been borrowed from [53].

Lemma 8.1

H(θ, θ′) ≤ H(θ′, θ′)

Proof Using Jensen’s inequality [40] we have that

H(θ′, θ′)−H(θ, θ′) = E

(
− log

p(x|y, θ)
p(x|y, θ′) | y, θ

′
)
≥ − log E

(
p(x|y, θ)
p(x|y, θ′) | y, θ

′
)

= − log

∫
p(x|y, θ)
p(x|y, θ′)p(x|y, θ

′) dx = − log

∫
p(x|y, θ) dx = 0

since − log(x) is convex. Equality is obtained above whenever p(x | y, θ′) ∝ p(x | y, θ)
where the proportionality constant must be unitary since both densities must integrate
to unity. �

Theorem 8.1
For any θ0 ∈ Ω

p(y | θp+1) ≥ p(y | θp) p = 0, 1, . . .

with equality if and only if both

Q(θp+1, θp) = Q(θp, θp)

and

p(x | y, θp+1) = p(x | y, θp)

Proof From (8.1) we have that

p(y | θp+1)− p(y | θp) = Q(θp+1, θp)−Q(θp, θp) +H(θp, θp)−H(θp+1, θp).

Since θp+1 in the EM algorithm is the maximizing argument of Q(θ, θp) the difference of
Q-functions is non-negative. By Lemma 8.1 the difference of H-functions is positive with
equality if and only if p(x | y, θp+1) = p(x | y, θp). �

The theorem proves that the log likelihood function will increase at each iteration of
the EM algorithm. Assuming that the likelihood function is bounded for all θ ∈ Ω
the algorithm yields a bounded monotonically increasing sequence of likelihood
values and thus it must converge to a fixed point where the conditions for equality
given in Theorem 8.1 are met. Let θ? be a maximum likelihood (ML) estimate
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of θ such that p(y | θ?) ≥ p(y | θ) for all θ ∈ Ω. Then it follows that θ? is a fixed
point of the EM algorithm. Adding some regulatory conditions, one can also prove
the converse statement, that the fixed points of the EM algorithm are in fact ML
estimates, at least in a local sense [53]. One can also derive expressions for the rate
of convergence of the EM algorithm, the details can be found in [53]. In general,
the statement about the convergence of the EM algorithm is that it converges to a
local maxima of the likelihood function p(y | θ).

The discussion above hold equally true under a Bayesian framework where the
maximum a posterior (MAP) estimate is considered instead of the ML estimate.
We simply replace the log likelihood by the posterior density

p(θ | z) =
p(z, θ)
p(z)

=
p(z | θ)p(θ)

p(z)

and since the maximization is with respect to θ, either of

Q(θ, θp) = E (log p(z | θ) + log p(θ) | y, θp)

or

Q(θ, θp) = E (log p(z, θ) | y, θp)

will yield an EM algorithm having MAP estimates as fixed points.

8.1.1 A Target Tracking Example

As an illustration of the expectation maximization technique, we present an algo-
rithm for segmentation of batch data. The observations are modeled as originating
from a linear Gaussian state space model with abruptly changing system matrices.
We consider detection of target manoeuvres as an application of this EM algorithm.

Consider a linear Markovian state space model for the sought nx-dimensional
target state vector xt where the dynamics depend on the unknown binary segmen-
tation sequence δt ∈ {0, 1},

xt+1 = Ft,δxt +Gt,δwt,δ

yt = Ht,δxt + et,δ
t = 1, 2, . . . , N (8.2)

Here, {wt,δ} and {et,δ} are two independent i.i.d. sequences of zero mean Gaussian
random variables with known full rank covariances Qt,δ and Rt,δ, respectively.
The notation above indicates that the system parameters may have a known time
dependency as well as that they depend on the current segmentation parameter δt.

In the manoeuvring target tracking application we consider in this work, the
segmentation parameter δt typically affects only the process noise covariance, e.g.,
increasing it with a scalar fudge factor γ � 1 at the change instant

Qt,δ = (1 − δt)Qt + γδtQt. (8.3)
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The algorithm described in this work applies to general r-valued segmentations, i.e.,
for δt ∈ {0, 1, . . . , r}, and hence the model (8.2) can be seen as a mode jumping or
switching model.

The initial state x1 is Gaussian with known mean x̂1 and covariance P1, the
noise sequences {wt,δ}, {et,δ} and the initial state x1 are mutually uncorrelated. In
the data segmentation problem, a length N batch of measurement data is available
for off-line processing in order to determine the corresponding length N segmenta-
tion sequence,

Y = [yTt , y
T
2 , . . . , y

T
N ]T ∆ = [δ1, δ2, . . . , δN ]T .

We consider the Bayesian framework and seek the segmentation vector that maxi-
mizes the posterior density p(∆ |Y), by treating the state sequence {xt}Nt=1 as the
unobserved measurement set. The prior distribution of ∆ must also be specified.
Explicitly, we model the prior distribution of the segmentation parameters ∆ as
independent Bernoulli variables,

δt =

{
0 with probability q
1 with probability 1− q

t = 1, 2, . . .N. (8.4)

The resulting EM algorithm for MAP estimation of the segmentation sequence is
given by the iterative procedure

∆p+1 = arg max
∆
Q(∆,∆p)

where the return function is

Q(∆,∆p) =
N∑
t=1

(
2δt log

(
1−q
q

)
− ‖yt −Ht,δx̂

p
t ‖

2
R−1
t,δ
− log |Rt,δ| −

− tr
(
HT
t,δR

−1
t,δHt,δP

p
t,t

))
+
N−1∑
t=1

(
− ‖G†t,δ(x̂

p
t+1 − Ft,δx̂

p
t )‖

2

Q−1
t,δ

− log |Qt,δ| −

− tr
(
G†Tt,δQ

−1
t,δG

†
t,δ(P

p
t+1,t+1 − 2Ft,δP

p
t,t+1 +Ft,δP

p
t,tF

T
t,δ)
) )
. (8.5)

Above, tr(A) is the trace of the matrix A, |A| is the determinant, ‖x‖2A is the
quadratic norm xTAx, A† = (ATA)−1AT is the Moore-Penrose pseudo inverse,
and

x̂pt = E (xt |Y,∆p)

P pl,t = E
(
(xl − x̂pl )(xt − x̂

p
t )
T |Y,∆p

)
.

(8.6)

The quantities in (8.6) are computed by fixed interval Kalman smoothing based
on the segmentation sequence ∆p and the measurement set Y. A derivation of the
return function (8.5) is provided in Appendix 8.A.



162 Target Tracking

Due to the prior (8.4), there is no dependency between δt for different t in the
functional (8.5). Hence, the maximization step in this EM algorithm is performed
for each δt independently. Given the estimates x̂pt and covariances P pl,t the maxi-
mizing argument of (8.5) is found by comparing the return value with and without
a jump at each time instant. More complicated segmentation priors would yield
a maximization where there is a dependency between segmentation parameters at
different times. Refer to [19] for the case of having a Poisson prior for the sequence
∆. If the segmentation sequence is Markovian, the maximization would call for dy-
namical programming, e.g., using the Viterbi algorithm in the maximization step.
This case is thoroughly studied by Logothetis and Krishnamurthy [112].

The EM algorithm for segmentation is summarized below.

Algorithm 8.1 (EM segmentation)

1. (Initialize, p = 1)
Assume no jumps by setting ∆1 = 0N×1.

2. (Expectation)
Compute the estimates x̂pt and the error covariances P pt,t, and P pt,t+1 using
fixed interval Kalman smoothing based on the segmentation sequence ∆p.

3. (Maximization)
Compute the next segmentation sequence ∆p+1 as the maximizing argument
of (8.5) by choosing the alternative with highest return for each t.

4. Set p := p+ 1 and return to item 2.

The iterations are halted when no significant improvement of (8.5) is obtained. An
example of an application of the segmentation algorithm is provided below, see [22]
for more details and background to this target tracking example.

Example 8.1 (Manoeuvre Detection)
A simulation example with a five state nonlinear model of an aircraft making four
abrupt changes in turn rate is depicted in Figure 8.1(a). The aircraft starts to
the right in the figure and flies towards the left. The position measurements are
generated using a sampling period of 5 seconds and independent additive Gaussian
noise with standard deviation 300 m in each channel. The target is turning during
sample 15–18 and sample 35–38. Figure 8.1(b) presents the result of applying
Algorithm 8.1 to the batch of data depicted in Figure 8.1(a). In the filter, a four
dimensional linear model of the aircraft movement was used together with the
manoeuvring model (8.3). The simulation model is nonlinear with aircraft turns
modeled by distinct jumps in the turn rate of the model. There is a trade-off
between detection sensitivity and non-manoeuvre performance since the first turn
is less distinct with smaller turn rate than the second. The trade-off is controlled by
choosing the three filter parameters: process noise covariance Qt, the fudge factor
γ, and the probability of not manoeuvring q. After some fine tuning of the filter
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(a) Target trajectory.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

3

x 10
4

True position
Estimated pos.

(b) Typical result using Algorithm 8.1.

Figure 8.1: Manoeuvring target trajectory and the result of applying Algorithm 8.1.

parameters the filter detected manoeuvres at sample 15 and during samples 32–40.
As seen in Figure 8.1(a), the signal to noise ratio is rather high in this simulations
study. Convergence is therefore obtained in only a few iterations. However, the
algorithm showed a sensitivity to measurement noise and had severe problems to
detect the manoeuvres in cases with smaller signal to noise ratio.

8.2 Multiple Measurement Data Association

The performance of inference under the constraint of uncertain measurement origin
depends critically on the data to model association. This is, e.g., the case when
tracking single or multiple targets in the presence of clutter. The nearest-neighbor
Kalman filter, the Probabilistic Data Association (PDA) filter, and the optimal
Bayesian filter [7] are commonly applied recursive algorithms for tracking a single
target in clutter. These algorithms are applicable when there is a single model
of the target measurement relation. In this section we consider an application,
when several measurements from different models of the same target are detected.
The problem arises in over the horizon target tracking applications where several
ionospheric layers can lead to more than one resolvable echo from a single target,
see Figure 8.2. We study three algorithms developed for this application. The first
algorithm is a sub-optimal recursive Bayesian solution, the Multiple Simultaneous
Measurement Filter (MSMF) [123]. The MSMF is based on techniques similar to
the PDA filter, and is described in Section 8.2.2. The second algorithm applies
the EM procedure of the last section to this tracking problem. The Expectation
Maximization Data Association (EMDA) algorithm [124] treats the state sequence
as the unobserved measurements and the possible association hypotheses as pa-
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Target

Platform

Ionospheric layers

Figure 8.2: The multiple measurement data association problem arises in over the
horizon target tracking.

rameters, this algorithm is detailed in Section 8.2.3. Finally, we apply the Gibbs
sampler of Chapter 6 to this association problem. The derivation of this Monte
Carlo algorithm is provided in Section 8.2.4. The three algorithms are compared
through simulations of the tracking problem, presented in Section 8.2.5.

8.2.1 Problem Formulation

Consider a linear dynamical target state model

xt+1 = Ftxt +Gtwt, t = 0, 1, . . . (8.7)

where Ft ∈ Rnx×nx , and Gt ∈ Rnx×nu are known matrices, and wt is a zero mean
white Gaussian sequence with known covariance Qt of full rank. At time t a set of
µt ≥ 0 measurements Yt = {yi(t)}µti=1 are detected, where each measurement either
originate from one of n known linear measurement models or is a false detection,
or clutter point. Explicitly, we let the received measurement be given by

yi(t) =



H1xt + e1(t) for model 1
H2xt + e2(t) for model 2

...
...

Hnxt + en(t) for model n
clutter otherwise

(8.8)

where yi(t) ∈ Rny and ei(t) is a white, zero mean Gaussian sequence with known
covariance Ri of full rank. The sequences ei(t), i = 1, . . . , n are mutually indepen-
dent and uncorrelated with the process noise wt. The algorithms presented below
admit an explicitly known time variation in all system parameters. We refrain
from introducing a known time variation in the measurement models, Hi(t), and
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Ri(t), solely to limit the notational complexity. Each measurement model in (8.8)
produces a measurement with a probability PD, which for simplicity is assumed
identical for all n models. The number of clutter detections in each measurement
set is Poisson distributed

pc(q) =
(λVS)q

q!
exp(−λVS) q = 0, 1, . . .

and the actual clutter measurements are uniformly distributed in the observation
volume, above labeled VS .

An explicit enumeration and description of all possible association events is
needed for sake of the trailing discussion. Denote a generic association event, or
hypothesis, at time t by the µt-tuple

ψt = (i1, i2, . . . , iµt),

the indicator element ij is zero if the corresponding measurement yj(t) is supposed
to be due to clutter, and a non-zero value, say q, indicates that yj(t) is due to
model q, where 1 ≤ q ≤ µt. There is no repetition of nonzero elements in ψt, i.e.,
we assume that a measurement can be due to at most one model. We also define
the target index set by Tt = {j ∈ {1, 2, . . . , n} : ij > 0}. To exemplify, consider the
case of µt = 6 received measurements at time t and n = 3 measurement models.
The association event ψt = (0, 0, 1, 0, 3, 0) would specify that measurement y3(t)
originates from model number 1 and y5(t) originate from model number 3, while
the remaining measurements are due to clutter. Model number 2 has failed to
detect any measurements in this case and the target index set is Tt = {3, 5}.

Let mt denote the number of measurements originating from the target, i.e.,
the number of elements in Tt. The number of possible association hypotheses for
a given number of mt target measurements follows by combinatorics as

rt(mt) =
n!µt!

mt!(n−mt)!(µt −mt)!
mt = 0, 1, . . . , νt (8.9)

where νt
M= min{µt, n}. The total number of association hypotheses for the mea-

surement set received at time t is thus the sum

πt =
νt∑

mt=0

rt(mt).

Hence, there are πt possible association events at time t. From (8.9) it is obvious
that the number of association events grows very fast with the number of received
measurements. In the simulations presented in Section 8.2.5, we use n = 3 mea-
surement models. Figure 8.3 shows the number of possible association hypotheses
for different numbers of received measurements. Receiving five or more measure-
ments results in more than a hundred different association events, only at that time
instant.

We introduce a generic enumeration of the πt association events, and let ψ(i)
t

explicitly denote the ith association event. The number of target measurements,
m

(i)
t , and the target index set, T

(i)
t , are defined correspondingly.
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Figure 8.3: The number of possible association events πt versus the number of
received measurements for the case of n = 3 measurement models.

8.2.2 Multiple Simultaneous Measurement Filter

Let ψ(i)
t explictly denote the ith association event. The conditional filter density

of the states xt given the measurement set Yt = {Yi}ti=0 is the mixture density

p(xt |Yt) =
πt∑
i=1

ci(t)p(xt |ψ(i)
t ,Yt) (8.10)

where ci(t) is the association probability of event ψ(i)
t ,

c
(i)
t
M= Pr(ψ(i)

t |Yt), i = 0, 1, . . . , πt. (8.11)

Under each association hypothesis the conditional density is Gaussian, the optimal
solution consists of applying a Kalman filter to each hypothesis sequence. This
will lead to a mixture (8.10) where the number of terms grows exponentially with
time [7]. The MSMF [123] limits this growth by replacing the Gaussian mixture
in (8.10) by a single Gaussian density at each algorithm iteration t in the spirit of
the Probabilistic Data Association (PDA) filter [7].

Denote the conditional mean and covariance of the state by x̂t|t = E(xt |Yt)
and Pt|t = Cov(xt |Yt). The recursive MSMF algorithm computes approximations
to this mean vector and covariance matrix, given by computing the first and second
central moments of (8.10),

x̂t|t =
πt∑
i=1

c
(i)
t x̂

(i)
t|t (8.12a)

Pt|t =
πt∑
i=1

c
(i)
t

(
P

(i)
t|t + x̂

(i)
t|t (x̂

(i)
t|t )

T
)
− x̂t|tx̂Tt|t. (8.12b)

The state estimates x̂(i)
t|t and error covariances P (i)

t|t are computed under the associ-
ation event i at time t. Using the information form of the Kalman filter [2], they
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are determined by

x̂
(i)
t|t = x̂t|t−1 + P

(i)
t|t

∑
j∈T

(i)
t

HT
ijR
−1
ij

(yj(t)−Hij x̂t|t−1) (8.13a)

(P (i)
t|t )−1 = P−1

t|t−1 +
∑
j∈T

(i)
t

HT
ijR
−1
ij
Hij . (8.13b)

The association probabilities (8.11) are given by the prior probability of the asso-
ciation event and the likelihood of each Kalman filter,

c
(i)
t = κ−1 pc(µt −mt)PmtD (1− PD)n−mt

rt(mt)

∏
j∈T

(i)
t

N(yj(t);Hij x̂t|t−1, Sj)

Above, κ is a normalization constant, ensuring that
∑πt

i=1 c
(i)
t = 1, mt is the number

of target measurements, and

Sj = HijPt|t−1H
T
ij +Rij .

The MSMF given by Pulford and Evans [123] assumes that the full rank covariance
state noise enters purely additively in the estimation model, i.e., that Gt = I. This
simplifies the algorithm since it ensures that P−1

t|t−1 exists and therefore enables the
use of the information form of the measurement updates in (8.13). This assump-
tion can be removed, and the measurement update (8.13) can, e.g., be performed
by sequential processing of the measurements in T

(i)
t , see [2]. The time update

prediction of the estimate and error covariance is solved by a conventional Kalman
step

x̂t+1|t = Ftx̂t|t

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t

This completes one iteration of the recursive MSMF, a detailed derivation of this
recursion is provided in [123].

8.2.3 Expectation Maximization Data Association

In the EMDA algorithm of Pulford and Logothetis [124], the complete batch of
measured data YN = {Y (t)}Nt=0 is considered for off-line processing and the EM
algorithm is applied to this estimation problem. The EMDA algorithm is obtained
by treating the target state sequence XN = {xt}Nt=0 as the missing data and the
sequence of association events ΨN = {ψt}Nt=0 as the sought parameters. This yields
the EM iteration

Ψ̂(p+1)
N = arg max

ΨN
E
(

log p(XN ,YN ,ΨN ) |YN , Ψ̂(p)
N

)
(8.14)

where expectation is performed with respect to the unobserved data XN .
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In [124], a target existence model is included which leads to dynamic program-
ming via the Viterbi algorithm in the M-step of the EMDA algorithm. However,
the target existence parameter introduces ambiguities into the estimator since there
exists no state sequence XN under the hypothesis that no target exists. Removing
the target existence model leads to an M-step that can be solved independently for
each t in the batch. To see this, we note that the density in (8.14) is recursively
expressed as

p(XN ,YN ,ΨN ) = p(YN |xN , ψN )p(xN |xN−1) Pr(ψN )p(XN−1,YN−1,ΨN−1),

and that terms independent of the association sequence not will affect the maxi-
mization. Hence, we can use

Q(ΨN , Ψ̂
(p)
N ) = E

(
N∑
t=1

log p(Yt |xt, ψt) + log Pr(ψt)

∣∣∣∣∣YN , Ψ̂(p)
N

)
(8.15)

in liu of (8.14). This function can obviously be maximized independently for each t
once the expectation has been evaluated. The maximization of (8.15) is equivalent
to maximizing for each t

Jp(ψt) = − 1
2

∑
j∈Tt

‖yj(t)−Hij x̂
(p)
t|N‖

2

R−1
ij

+mt log(ρ) + log Pr(ψt) (8.16)

where

ρ =
VS√

(2π)ny
(∏

j∈Tt
|Rij |

) 1
mt

, (8.17a)

Pr(ψt) = κ−1 pc(µt −mt)PmtD (1− PD)n−mt

rt(mt)
, (8.17b)

and x̂
(p)
t|N = E(xt |YN , Ψ̂(p)

N ) is obtained from a fixed interval Kalman smoother

under the hypothesis Ψ̂(p)
N . In (8.17), mt is the number of target measurements,

and κ is a normalization constant ensuring that the probabilities sum to unity.
Refer to [124] for a detailed derivation of these expressions.

In summary, the EMDA algorithm consists of the following steps

1. (Initialization p = 0)
Choose an initial state sequence X̂N using the measurements YN . Set p := 1.

2. (M-step)
Compute the measurement to target association Ψ̂(p)

N maximizing the cost
function (8.16) for each t = 0, 1, . . . , N using the state sequence X̂(p−1)

N .

3. (E-step)
Compute the sequence of state estimates X̂(p)

N given the current association
sequence Ψ̂(p)

N using fixed interval Kalman smoothing.
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4. Set p := p+ 1 and return to item 2 above.

The iterations continue until no significant improvement is obtained during the
maximization. The probability in (8.14) is by construction monotonically increas-
ing with the number of passes through the EM-algorithm [8]. This ensures that a
local maxima of the density is reached and that the algorithm terminates.

8.2.4 Markov Chain Monte Carlo Data Association

The Markov chain Monte Carlo algorithm presented in this section has been devel-
oped with inspiration from an application of similar ideas to estimation of parame-
ters of jump-Markov linear systems by Doucet and Andrieu [61], Doucet et al. [62].
Like the EMDA algorithm, we consider off-line batch processing of the collected
measurements YN , but here we propose to perform a Gibbs sampling procedure
instead.

1. Pick the initial association Ψ(0)
N = {ψ(0)

t }Nt=0 randomly or deterministically.
Set p = 1.

2. For each t = 0, 1, . . . , N generate a random sample from the full conditional
distribution

ψ
(p)
t ∼ p(ψ(p)

t |YN ,Ψ
(p)
¬t ) (8.18)

3. Set p := p+ 1 and repeat at step 2.

The conditioning set in the full conditional (8.18) is

Ψ(p)
¬t = {Ψ(p)

t−1,Ψ
(p−1)
t+1:N} = {ψ(p)

0 , ψ
(p)
1 , . . . , ψ

(p)
t−1, ψ

(p−1)
t+1 , . . . , ψ

(p−1)
N }.

Discarding an initial burn-in phase, the sample average over the simulated out-
put from this Gibbs sampler is a minimum mean square estimate of the associa-
tion sequence. With this estimate of the association sequence at hand, a Kalman
smoother can be used to determine the states of the tracked system. Alternatively,
Kalman smoothing can be performed between items 2 and 3, based on the sequence
Ψ̂(p)
N , and a Monte Carlo estimate of the state sequence formed from the smoothed

estimates.
The full conditional distribution (8.18) is discrete with πt possible association

events at each time instant. In order to sample from this discrete distribution,
we must calculate the full conditional probability for each association hypothesis
conditioned on the previously drawn associations. This discrete full conditional
distribution is given by

p(ψ(p)
t |YN ,Ψ

(p)
¬t ) =

p(YN |Ψ(p)
¬t , ψ

(p)
t ) Pr(ψ(p)

t )

p(YN |Ψ(p)
¬t )

∝ p(YN |Ψ(p)
¬t , ψ

(p)
t ) Pr(ψ(p)

t ) (8.19)
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where the prior probabilities Pr(ψ(p)
t ) are given by the model of the problem and

the number of received measurements at time t. Hence, the inner loop of the Gibbs
sampler relies on computing the likelihoods

p(YN |Ψ(p)
¬t , ψ

(p)
t = ψ

(i)
t ) i = 1, . . . , πt. (8.20)

With these likelihood values at hand, the discrete distribution (8.19) is known up
to a normalizing factor, and a sample can be generated from this distribution and
inserted into Ψ(p)

¬(t+1) at the next iteration. Following Doucet and Andrieu [61],
each iteration p of the Gibbs sampler is performed by a backward filtering forward
sampling procedure which has a complexity that is linear in the number of data
N . We proceed with a derivation of how to compute (8.20) using this efficient
backwards filtering forwards sampling scheme.

The likelihood (8.20) can be split into two parts

p(YN |Ψ(p)
¬t , ψ

(p)
t ) = p(Yt |Ψ(p)

¬t , ψ
(p)
t ) p(Yt+1:N |Ψ(p)

¬t , ψ
(p)
t ,Yt)

= p(Yt |Ψ(p)
t ) p(Yt+1:N |Ψ(p−1)

t+1:N ,Ψ
(p)
t ,Yt).

Further decomposing the first factor and writing the second factor through a
marginalization yields that the likelihood (8.20) equals

p(YN |Ψ(p)
¬t , ψ

(p)
t ) = p(Yt−1 |Ψ(p)

t−1) p(Yt |Yt−1,Ψ
(p)
t )∫

p(Yt+1:N , xt |Ψ(p−1)
t+1:N ,Ψ

(p)
t ,Yt) dxt.

Inserting this expression into (8.19) we have that

p(ψ(p)
t |YN ,Ψ

(p)
¬t ) ∝ p(Yt |Yt−1,Ψ

(p)
t ) Pr(ψ(p)

t )∫
p(Yt+1:N |Ψ(p−1)

t+1:N , xt) p(xt |Ψ
(p)
t ,Yt) dxt (8.21)

after removing the factors that are independent of ψ(p)
t . Given the association

sequence Ψ(p)
t , standard Kalman filter theory gives that

p(xt |Ψ(p)
t ,Yt) = N(xt; x̂t|t, Pt|t) (8.22)

while

p(Yt |Yt−1,Ψ
(p)
t ) = N(Yt; Ŷt|t−1, St)

1
V 1−mt
S

is found from the innovation of this Kalman filter, and mt is the number of non-
clutter observations under the hypothesis ψ(p)

t .
We need an intermediate lemma in order to rewrite the last factor of (8.21).
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Lemma 8.2
For any vectors Y , x, m, and matrices M , R, P of compatible dimensions∫

N(Y ;Mx,R) N(x;m,P ) dx = N(Y ;Mm,R+MPMT ) (8.23)

Proof Let Z ∼ N(0, R) and x ∼ N(m,P ) be independent Gaussian random vectors.
Introduce Y = Z +Mx with probability density function p(Y ) =

∫
p(Y |x)p(x)dx, given

by the left hand side of (8.23). On the other hand, Y is a linear combination of Gaussian
vectors and obviously has probability density function p(Y ) = N(Y ;Mm,R + MPMT ).

�

Under a specific association hypothesis sequence Ψt+1:N , the considered data as-
sociation problem is a standard linear state space problem, which yields that

Yt+1:N = Mtxt + Ut (8.24)

where

Mt =


Ht+1Ft

Ht+2Φt+1,t

...
HNΦN−1,t

 and

Ut =


Ht+1Gt 0 . . . . . 0

Ht+2Ft+1Gt Ht+2Gt+1 0 0
...

. . .
...
0

HNΦN−1,t+1Gt . . . . . . . . . . . . . . . . . HNGN−1


 wt

...
wN−1

+

et+1

...
eN


and we introduce the notation Φt+k,t = Ft+k . . . Ft+1Ft for the state transition
matrix and Ht is the measurement matrix corresponding to generic association ψt.
Hence,

Yt+1:N |Ψ(p−1)
t+1:N , xt ∼ N(Mtxt, Lt)

where Lt = Cov(Ut) is positive definite by construction. From Lemma 8.2 we thus
have that the last factor of (8.21) can be written as∫

p(Yt+1:N |Ψ(p−1)
t+1:N , xt) p(xt |Ψ

(p)
t ,Yt) dxt = N(Yt+1:N ;Mtx̂t|t, Lt +MtPt|tM

T
t )

(8.25)

where x̂t|t and Pt|t are computed under the hypothesis Ψ(p)
t , as noted in (8.22). In

summary, the full conditional (8.21) is given by

p(ψ(p)
t |YN ,Ψ

(p)
¬t ) ∝ N(Yt; Ŷt|t−1, St) Pr(ψ(p)

t )V mtS

N(Yt+1:N ;Mtx̂t|t, Lt +MtPt|tM
T
t ) (8.26)
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where mt is the number of non-clutter measurements under ψ(p)
t , as usual.

Next, we show how the last factor of (8.26) can be expressed through a backwards-
forwards recursion. The matrix inversion lemma (4.A.20) gives that

(Lt +MtPt|tM
T
t )−1 = L−1

t − L−1
t Mt(MT

t L
−1
t Mt + P−1

t|t )−1MT
t L
−1
t ,

so the exponent of (8.25) can be decomposed according to

(Yt+1:N −Mtx̂t|t)T (Lt +MtPt|tM
T
t )−1(Yt+1:N −Mtx̂t|t) =

YTt+1:N L
−1
t Yt+1:N − 2x̂Tt|tM

T
t L
−1
t Yt+1:N + x̂Tt|tM

T
t L
−1
t Mtx̂t|t −

− (Yt+1:N −Mtx̂t|t)TL
−1
t Mt(MT

t L
−1
t Mt + P−1

t|t )−1MT
t L
−1
t (Yt+1:N −Mtx̂t|t).

The first term in this expression is independent of the association event ψt and can
thus be ignored. The determinant relation |I +AB| = |I +BA| yields that

|Lt +MtPt|tM
T
t | = |Lt||I + Pt|tM

T
t L
−1
t Mt|,

and since Lt is independent of the association event ψ(p)
t the factor |Lt| can also

be ignored. Now, standard least squares estimation theory [2, 96] applied to (8.24)
yields that the Fisher estimate of xt given Yt+1:N can be written

ât|t+1
M= P−1

t|t+1:N x̂t|t+1:N = MT
t L
−1
t Yt+1:N

Γt|t+1
M= P−1

t|t+1:N = MT
t L
−1
t Mt,

Hence, running a backwards information filter under the hypothesis Ψ(p−1)
N with

initial inverse covariance P−1
N |N+1 = 0 will render the necessary quantities for com-

putation of the full conditional probabilities (8.26). The backwards information
filter is given below, see, e.g., [80].

ât|t = ât|t+1 +HTt R
−1
t Yt (8.27a)

Γt|t = Γt|t+1 +HTt R
−1
t Ht (8.27b)

∆ =
(
GTt Γt|tGt +Q−1

t

)−1
(8.27c)

ât−1|t = FTt
(
I − Γt|tGt∆GTt

)
ât|t (8.27d)

Γt−1|t = FTt
(
I − Γt|tGt∆GTt

)
Γt|tFt (8.27e)

for t = N,N − 1, . . . , 1. The Fisher estimates are obtained by initializing the filter
with

ΓN |N+1 = 0 and âN |N+1 = 0. (8.27f)

The backwards information filter sequence is computed under the association hy-
pothesis Ψ(p−1)

N . Thus, Yt in (8.27a) is the stacked vector of non-clutter measure-
ments under the hypothesis ψ(p−1)

t , and Ht and Rt are the corresponding measure-
ment equation matrix and measurement error covariance, respectively.
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Collecting the results above yields that the full conditional probability (8.19) is
given by

p(ψ(p)
t |YN ,Ψ

(p)
¬t ) ∝ N(Yt; Ŷt|t−1, St)

pc(µt −mt)PmtD (1− PD)n−mtV mtS

rt(mt)
×

|I + Pt|tΓt|t+1|−1/2 exp
(
− 1

2‖x̂t|t‖
2

Γt|t+1
+ x̂Tt|tât|t+1+

1
2‖ât|t+1 − Γt|t+1x̂t|t‖2(Γt|t+1+P−1

t|t )−1

)
, (8.28)

where Ŷt|t−1, x̂t|t, and Pt|t are based on ψ
(p)
t . It may require to use the matrix

inversion lemma on the last term in the exponent of (8.28), and set

(Γt|t+1 + P−1
t|t )−1 = Pt|t − Pt|tΓt|t+1(Pt|tΓt|t+1 + I)−1Pt|t

whenever Pt|t is singular. One iteration of the Gibbs sampler based on (8.28) can
thus be computed using an initial backwards information filtering sweep, followed
by a forwards sampling iteration that determines the association sequence and
sequentially runs a Kalman filter based on this sequence. We label this algorithm
the Monte Carlo Data Association (MCDA) algorithm.

Algorithm 8.2 (Monte Carlo Data Association (MCDA))

1. Initialize by picking the initial association Ψ(0)
N randomly or deterministically.

Set p = 1.

2. Run the backwards information filter (8.27) using Ψ(p−1)
N . Store Γt|t+1 and

ât|t+1.

3. Initialize the Kalman filter quantities x̂0|−1 and P0|−1, set t = 0, and compute
the following forward recursion:

(a) Run Kalman filter measurement updates under each possible association
hypothesis for Yt, i.e., for k = 1, . . . , πt. Store every x̂kt|t and P kt|t.

(b) Compute (8.28) under all πt hypotheses, normalize this discrete density,
and generate a sample from this discrete distribution,

ψ
(p)
t ∼ p(ψ(p)

t |YN ,Ψ
(p)
¬t ).

(c) Set t := t+1, run a time update step with the Kalman filter corresponding
to the chosen association, store the resulting x̂t+1|t and Pt+1|t and use
them in the next iteration at item 3(a). If t > N , go to item 4 instead.

4. Compute X(p)
N = E

(
XN |YN ,Ψ(p)

N

)
by fixed interval Kalman smoothing.

5. Output the association sequence Ψ(p)
N and the state sequence X(p)

N . Set p :=
p+ 1 and return to item 2.
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The algorithm above is iterated M times, and minimum mean square estimates of
the state and association sequences are formed according to

X̂N =
1
M

M∑
i=1

X(i)
N Ψ̂N =

1
M

M∑
i=1

Ψ(i)
N ,

possibly after discarding an initial burn-in phase of the algorithm. The association
estimate above should be interpreted as a weighted average over some numbering of
the hypotheses, possibly followed by a conversion to integer estimates afterwards.

The backwards filtering computation in item 2 of Algorithm 8.2 can actually be
retained from the calculations in item 4 by utilizing a specific type of smoothing
formula [96]. Mayne [115] formulated the linear smoothing problem as an optimiza-
tion problem, decomposed into one minimization with respect to past data, and
one with respect to future data. Fraser and Potter [69] later suggested that this
approach could be interpreted as the combination of two optimal filters: one back-
wards information filter (8.27), and one regular forward Kalman filter. Let x̂t|t−1

and Pt|t−1 be one step ahead predictions from a standard Kalman filter applied
under the same association hypothesis as used in (8.27). The smoothed estimate
x̂t|N is computed by combining the quantities x̂t|t−1 and Pt|t−1 with the results
of (8.27),

x̂t|N =
(
I − PtΓt|t(PtΓt|t + I)−1

)
(x̂t|t−1 − Ptât|t),

see [69, 96]. The estimates produced by a backwards information filter at item 4
can thus be reused at item 2 in the next iteration of the MCDA algorithm.

Algorithm 8.2 can straightforwardly be utilized for MAP, or marginal MAP
estimation as well. A simulated annealing algorithm is obtained by sampling from

p(ψ(p)
t |YN ,Ψ

(p)
¬t )

1
Tp

where {Tp} is a cooling sequence in the sense described in Chapter 6. Alternatively
the maximization can be performed deterministically by picking the association
that maximizes the full conditional at each iteration, see [61] for similar ideas.

8.2.5 Simulation Result

The simulations follow the setup described in [123]. The target state consists of
range, rt, azimuth, θt, and their respective time derivatives, xt = (rt, ṙt, θt, θ̇t)T .
The true target state trajectory obeys

rt = 50 + 5tT ṙt = 5

θt = 0.3tT θ̇t = 0.3

with t = 0, 1, . . . , 15 and sampling time T = 2. Three measurement models were
used,

Hi =

1 + i−1
10 0 0 0

0 1 0 0
0 0 1 0

 for i ∈ {1, 2, 3},
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all having identical noise covariance

R =

102 0 0
0 0.12 0
0 0 52


The state noise covariance and initial state covariance used in the filters was set to

Q =


0.1 0 0 0
0 0.1 0 0
0 0 0.0125 0
0 0 0 0.0125

 and P0 =


200 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The observation volume VS was defined by

25 ≤ rt ≤ 225
4.5 ≤ ṙt ≤ 5.5 (8.29)
−2 ≤ θt ≤ 10.

Figure 8.4 shows a simulation case with high probability of correct measurement
detection, PD = 0.95, and low clutter intensity, λVS = 0.4. In the figure, solid lines
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Figure 8.4: Simulation case, PD = 0.95, λVS = 0.4.

show the true target states, pluses indicate measurements origin from the target,
and squares indicate clutter points. The typical performance of the algorithms are
shown in Figures 8.5–8.7. In all figures, the asterisk (∗) indicate the true target state
value, the solid line is the estimate, and the dotted line is the ±3σ confidence region
of the estimate. The first measurement was used for initialization of the algorithms.
The transients in the MSMF estimates in Figure 8.5 stem from two clutter points
in the measurement used for initialization. The iterative passes in the EMDA filter
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Figure 8.5: Performance of MSMF, PD = 0.95, λVS = 0.4.
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Figure 8.6: Performance of EMDA, PD = 0.95, λVS = 0.4.

manage to compute an almost perfect association, with resulting state estimates
depicted in Figure 8.6. The EMDA algorithm converges in less than five iterations
in this simulation study, but has considerably higher computational complexity
than the MSMF. The results using the MCDA algorithm are shown in Figure 8.7.
Since the state estimates of this algorithm are computed by Monte Carlo estimation,
no state covariance is available and therefore there are no confidence regions shown
in Figure 8.7. The estimates depicted in the figure are the resulting Monte Carlo
estimates obtained when running M = 5 iterations of the MCDA algorithm, and
regarding only the initial iteration as a burn-in sample. The computations required
to perform one iteration of the MCDA algorithm exceed the computations of the



8.2 Multiple Measurement Data Association 177

0 10 20 30
−50

0

50

100

150

200
Range

0 10 20 30
4

4.5

5

5.5

6

6.5
Range rate

0 10 20 30
−5

0

5

10
Azimuth

0 10 20 30
−4

−2

0

2

4
Azimuth rate

Figure 8.7: Performance of MCDA, PD = 0.95, λVS = 0.4.

EMDA and the MSMF.
A second simulation case with less frequent real measurements and more clut-

ter is depicted in Figure 8.8. In these simulations, on the average two clutter
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Figure 8.8: Simulation case, PD = 0.5, λVS = 2.

measurements are received in each measurement set, and only half of the real mea-
surement models generate observations. The simulation results obtained with the
data in Figure 8.8 are shown in Figure 8.9–8.11. The MSMF filter has greater
problems with this dense clutter case, as shown in Figure 8.9. The EMDA algo-
rithm in Figure 8.10 still yields very accurate range estimates while the range rate
is less precise. The MCDA performance in Figure 8.11 is almost identical to the
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Figure 8.9: Performance of MSMF, PD = 0.5, λVS = 2.
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Figure 8.10: Performance of EMDA, PD = 0.5, λVS = 2.

one obtained for the case with less clutter points and more target measurements.
The results in Figure 8.11 are computed from a ten iteration run of the MCDA
algorithm, discarding the chain output for the initial four iterations.

8.3 Conclusion

In the multiple measurement data association problem, the number of possible
association hypotheses may reach very high levels. We have studied three statis-
tical algorithms for this joint measurement association and state estimation prob-
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Figure 8.11: Performance of MCDA, PD = 0.5, λVS = 2.

lem. The recursive Multiple Simultaneous Measurement Filter (MSMF) merges
the hypotheses at each time iteration, while the Expectation Maximization Data
Association (EMDA) applies the EM algorithm for MAP estimation of the asso-
ciation sequence, regarding a batch of the state sequence as unobserved data. A
novel Gibbs sampling algorithm for batch processing has been developed for this
problem. The Monte Carlo Data Association (MCDA) algorithm has a backward
filtering, forward sampling structure and can be utilized to yield either MMSE or
MAP estimates of the state and association sequences.

The batch algorithms EMDA and MCDA show superior performance over the
recursive MSMF procedure. The primitive initialization used in the simulations
degrades the performance of the MSMF considerably when there is clutter in the
measurement set. With a more elaborate initialization this effect could perhaps
be attenuated. The MSMF would also gain in accuracy with the introduction of
measurement gating [7]. Neither the EMDA nor the MCDA seems to suffer from
the initialization problems, though. These algorithms yield reliable state estimates,
even in the simulation case of very dense clutter.



Appendix

8.A Expectation Maximization for Segmentation

This appendix contains a derivation of the EM algorithm for segmentation pre-
sented in Section 8.1.1.

We introduce the stacked stacked vectors of N random variables from (8.2)

X = [xT1 , x
T
2 , . . . , x

T
N ]T U = [xT1 , w

T
1,δ, . . . , w

T
N−1,δ]

T

E = [eT1,δ, e
T
2,δ, . . . , e

T
N,δ]

T

where the noise vectors U and E explicitly depend on the segmentation sequence
∆. Using this notation, the estimation model (8.2) can be written compactly as

X = A∆U
Y = B∆X+ E

(8.A.30)

where matrices A∆ and B∆ are block matrices formed by the state space matrices
of the model (8.2). Direct inspection yields that

A∆=



I 0 . . . . . . . . . . . . . . . 0
W 1

1 I 0 . . . . . . . . . . 0
W 2

1 W 2
2 I 0 . . . . . . 0

...
. . .

...
0

WN−1
1 . . . . . . . . . . . . WN−1

N−1 I





I 0 . . . . . . . . . . . . . . . 0
0 G1,δ 0 . . . . . . . . 0
0 0 G2,δ 0 . . . 0
...

. . .
...
0

0 . . . . . . . . . . . . . . . . . . 0 GN−1,δ


where zeros denote zero matrices of appropriate dimension, and the state transition
matrix is defined as

W l
t = Fl,δFl−1,δ · · ·Ft,δ.

Furthermore,

B∆ = diag(H1,δ, H2,δ, . . . , HN,δ)

180
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where diag(A1, A2, . . . , AM ) denotes a matrix with blocks Ai along the diagonal.
The statistical properties of the noises in (8.A.30) are compactly given in the ex-
pression

E

{[
U
E

] [
UT ET 1

]}
=
[
Q∆ 0

[
x̂1
0

]
0 R∆ 0

]
(8.A.31)

where both Q∆ and R∆ are block diagonal,

Q∆ = diag (P1, Q1,δ, Q2,δ, . . . , QN−1,δ)
R∆ = diag (R1,δ, R2,δ, . . . , RN,δ) .

Eliminating the states X in (8.A.30) yields

Y = B∆A∆U+ E. (8.A.32)

In the EM algorithm of Section 8.1.1, we treat the segmentation sequence ∆ as the
parameters and the vector U as the unobserved data in the model (8.A.32). With
a Bayesian framework each EM pass p is defined by

∆p+1 = arg max
∆

E (log p(Y,U,∆) |Y,∆p) (8.A.33)

where the joint density can be divided into three factors

p(Y,U,∆) = p(Y |U,∆)p(U |∆)p(∆). (8.A.34)

The first and second factors are given by (8.A.32) and (8.A.31) above,

p(Y |U,∆) = N (Y;B∆A∆U, R∆)

p(U |∆) = N
(
U;
[
x̂1
0

]
, Q∆

)
.

The last factor is the Bayesian prior for the segmentation sequence.
Denoting the quadratic norm xTAx by ‖x‖2A, and the determinant by |A|, the

logarithm of (8.A.34) is

log p(Y,U,∆) = log p(∆)− 1
2‖Y−B∆A∆U‖2R−1

∆
− 1

2 log |R∆| − 1
2 log |Q∆| −

− 1
2‖U−

[
x̂1
0

]
‖2
Q−1

∆
− (N−1)nu+Nny+nx

2 log(2π). (8.A.35)

Since the maximization in (8.A.33) is performed over the segmentation sequence ∆
only terms involving the segmentation parameters need to be retained from (8.A.35)
when the conditional expectation is evaluated. Hence, removing terms and positive
factors independent of the segmentation sequence we define the return function

J(Y,U,∆) = 2 log p(∆)− ‖Y−B∆A∆U‖2R−1
∆
− log |R∆| − log |Q∆| −

− ‖U−
[
x̂1
0

]
‖2
Q−1

∆
(8.A.36)
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and use the auxiliary function

Q(∆,∆p) = EU (J(Y,U,∆) |Y,∆p) .

The conditional mean and covariance of the vector U, given by

Ûp = E (U |Y,∆p)

Sp = E
(

(U− Ûp)(U− Ûp)T |Y,∆p

)
,

(8.A.37)

can be obtained using standard linear estimation theory on the model (8.A.32)
after inserting the segmentation sequence ∆p. Taking the conditional expectation
of (8.A.36), inserting (8.A.37) and completing the squares yield

Q(∆,∆p) = 2 log p(∆)− ‖Y−B∆A∆Ûp‖
2

R−1
∆
− log |R∆| − log |Q∆| −

− ‖Ûp −
[
x̂1
0

]
‖2
Q−1

∆
− tr

((
AT∆B

T
∆R
−1
∆ B∆A∆ +Q−1

∆

)
Sp
)

(8.A.38)

where the linearity of the trace operator tr(·) and the relation ‖x‖2A = tr(AxxT )
has been used repeatedly.

Standard fixed interval linear state smoothing can be used to compute the
return (8.A.38). Define a notation for the conditional mean and covariance of the
complete state sequence

X̂p = E (X |Y,∆p)

Pp = E
(

(X− X̂p)(X− X̂p)T |Y,∆p

)
.

(8.A.39)

From (8.A.30) we have that

X = A∆U U = A†∆X

where M † = (MTM)−1MT is the Moore-Penrose pseudo inverse. Inserting this
into the return (8.A.36) yields

J(Y,X,∆) = 2 log p(∆)− ‖Y−B∆X‖2R−1
∆
− log |R∆| − log |Q∆| −

− ‖A†∆X−
[
x̂1
0

]
‖

2

Q−1
∆

taking conditional expectation, inserting (8.A.39) and completing the squares we
have that

Q(∆,∆p) = 2 log p(∆)− ‖Y−B∆X̂p‖
2

R−1
∆
− log |R∆| − log |Q∆| −

− ‖A†∆X̂p −
[
x̂1
0

]
‖2
Q−1

∆
− tr

((
BT∆R

−1
∆ B∆ +A†T∆ Q−1

∆ A†∆

)
Pp
)
. (8.A.40)
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It is straightforward to verify that the pseudo inverse of A∆ has a strong diagonal
structure,

A†∆ =



I 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
−G†1,δF1,δ G†1,δ 0 . . . . . . . . . . . . . . . . . . . . . . 0

0 −G†2,δF2,δ G†2,δ 0 . . . . . . . . . . . . . . . . . . . 0
...

...
0

0 . . . . . . . . . . . . . . . . . . . 0 −G†N−1,δFN−1,δ G†N−1,δ


.

Furthermore, B∆, R−1
∆ and Q−1

∆ are all block diagonal which means that each norm
and matrix trace in (8.A.40) can be written as a sum of norms and matrix traces
of smaller matrices. Introducing a notation for the smoothed state estimate and
(cross) covariance

x̂pt = E (xt |Y,∆p)

P pl,t = E
(
(xl − x̂pl )(xt − x̂

p
t )
T |Y,∆p

)
,

it follows that the return function (8.A.40) can be written

Q(∆,∆p) =
N∑
t=1

(
2δt log

(
1−q
q

)
− ‖yt −Ht,δx̂

p
t ‖

2

R−1
t,δ
− tr

(
HT
t,δR

−1
t,δHt,δP

p
t,t

)
−

− log |Rt,δ|
)
−
N−1∑
t=1

(
‖G†t,δ(x̂

p
t+1 − Ft,δx̂

p
t )‖

2

Q−1
t,δ

+ log |Qt,δ|+

tr
(
G†Tt,δQ

−1
t,δG

†
t,δ(P

p
t+1,t+1 − 2Ft,δP

p
t,t+1 + Ft,δP

p
t,tF

T
t,δ)
))

, (8.A.41)

where the terms independent of ∆ have been removed from the expression, and the
Bernoulli prior (8.4),

log p(∆) =
N∑
t=1

δt log
(

1−q
q

)
,

has been inserted.
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9

Conclusive Remarks

The Bayesian paradigm for statistical inference yields a natural framework for
recursive nonlinear estimation problems. All information gained about the states
from initial to present time is in this framework condensed by the posterior filter
density. The conceptual recursive update of the posterior density is simple in
structure, yet impossible to implement when then problem is of nonlinear and
non-Gaussian character.

The pure notion of the existence of the optimal solution is valuable in the hunt
for high performing algorithms. Rather than blindly turn to model approxima-
tions, we propose to utilize the conceptual update and approximately implement
it as efficiently as possible, e.g., using a point-mass approach. The main difference
between model and solution approximations is that in the latter scheme, it is pos-
sible to obtain a graceful degradation of the optimal solution. A tradeoff between
estimation accuracy and implementational complexity is found by controlling the
grid mesh resolution in a numerical implementation.

The Bayesian approach to recursive estimation has proven to be utterly suc-
cessful for the terrain navigation application. The results from the work on this
application shows that complex problems of this type can be handled with great
success using approximative Bayesian inference. The point-mass implementation
has shown to yield high performance in the terrain navigation application, both on
simulated but realistic measurements and on actual field test data. One of the fu-
ture challenges for this application is to maximize the utilization of the point-mass
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description for the integration with the inertial navigation system.
The Cramér-Rao bounds to recursive estimation provides an appealing ap-

proach to evaluation of suboptimal algorithms. The recursive expressions for
Cramér-Rao bounds to nonlinear filtering has provided us with arguments that the
suboptimal point-mass implementation of the terrain navigation application has
near optimal performance. The way we estimate both the bounds and the algo-
rithm performance in Monte Carlo simulations have shown to yield a concrete tool
for verification of suboptimal algorithms. Both the parametric and the Bayesian,
i.e., posterior, bounds can be utilized in such Monte Carlo evaluations.

Practical implementation of recursive Bayesian estimation problems has shown
to be tightly connected to function approximation and numerical integration. A
general combination of these concepts was pursued in the ideas outlined about a
wavelet multiresolution approach to spatial grid adaption. Even though a great
deal of time has been spent on investigations into this approach, the resulting
conclusion from this work is rather discouraging and the concepts are only given
minor space in this presentation. Guidelines about adaptive grid methods for gen-
eral nonlinear recursive estimation will inevitably be very hard to set. We believe
that each recursive estimation problem should instead be investigated and solved
with the methods best suited for that application. In some cases, an adaptive
mesh will prove useful, in others a uniform mesh will suffice. The wavelet multires-
olution techniques provides a uniform approach to function approximation and
numerical integration. However, the implementational difficulties are currently too
overwhelming for pursuing this approach in a practical application.

The Monte Carlo filters rely on a straightforward simulation strategy to deter-
mine a spatially adaptive grid, well suited for the problem at hand. The particle
filters are simple in structure and demand no design of a grid mesh propagation or
resampling scheme. In the comparative simulations of the terrain navigation ap-
plication we have seen that the particle filters and the point-mass approach reach
the same level of performance. Future work will involve applying the particle fil-
ters to terrain navigation when the absolute altitude is biased, or directly to the
integration of inertial navigation and terrain navigation.

Simulation based methods for recursive estimation is currently a very active
research field which interests both pure statisticians and people form the field of
signal processing. Different approaches to enhance the performance of the basic
particle filters are constantly appearing in the literature. One main advantage
with the simulation based algorithms is their ease of implementation. They also
extend to higher dimensional problems with only minor implementational effort.
We believe that these issues will make the basic Monte Carlo filters reviewed in
this work the future workhorses of nonlinear recursive estimation.
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Notation

Common abbreviations, and general notational conventions for mathematical sym-
bols and operands follow. When local differences occur, they are clearly indicated
in the text.

Symbols

x Bold faced letters are stochastic variables. No notational distinction
is used for vectors and scalars.

x̂, x̂(y) Sample estimate of the stochastic variable x based in the observation
that y = y.

x̂(y) Estimator of x, thus a stochastic variable itself.
xt Stochastic discrete time process.
Xt Stacked vector of the process xt from initial time until time t.
Xs:t Stacked vector XTs:t = [xTs , x

T
s+1, . . . , x

T
t ].

p(x) Density for the stochastic variable x.
px(z) Density for x, evaluated at z.
N(x;m,P ) Gaussian probability density function with mean vector m and covari-

ance matrix P > 0.
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U(a, b) Uniform distribution on the interval [a, b].
N(m,P ) Gaussian distribution with mean vector m and covariance P ≥ 0.
p(x, y) Joint density for x and y.
p(x | y) Density for the random variable x given that the random variable

y = y.
Rn Euclidean n-dimensional space.
N The set of natural numbers, i.e., positive integer numbers.

Operators and Functions

‖v‖Q Weighted norm of matrix or vector, ‖v‖2Q = vTQv, whenever the
multiplications make sense.

‖v‖ Unitary weight matrix, ‖v‖2 = vT v.
AT Transpose of the matrix A.
A−1 Inverse of the matrix A.
trA Trace of the matrix A, i.e., the sum of the diagonal elements of A.
|A| Determinant of the matrix A.
A† Moore-Penrose pseudo inverse A† = (ATA)−1AT .
A > 0 The symmetric matrix A is positive definite.
A ≥ 0 Positive semidefinite matrix A.
E x Expectation of the random variable x.
Cov x Covariance matrix of the random variable x.
∇x Gradient operator, column vector of partial derivatives w.r.t. the en-

tries in x.
∆x
y Laplacian operator, ∆x

y = ∇y∇Tx .
arg max

x
The argument x that maximizes operand.

Abbreviations

TAN Terrain Aided Navigation.
DTED Digital Terrain Elevation Database.
INS Inertial Navigation System.
GPS Global Positioning System.
DGPS Differential GPS.
i.i.d. Independent Identically Distributed
MMSE Minimum Mean Square Error.
MV Minimum Variance.
RMS Root Mean Square.
MAP Maximum A Posteriori.
KF Kalman Filter
EKF Extended Kalman Filter.
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PMF Point-Mass Filter.
FIM Fisher Information Matrix.
CEP Circular Error Probable.
MC Monte Carlo.
MCMC Markov Chain Monte Carlo.
SIS Sequential Importance Sampling.
SIR Sampling Importance Resampling.
EM Expectation Maximization.
MSMF Multiple Simultaneous Measurement Filter.
EMDA Expectation Maximization Data Association.
MCDA Monte Carlo Data Association.
ML Maximum Likelihood
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Fisher information matrix . . . . . . . . 53
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importance weights . . . . . . . . . 108, 124
inertial navigation system. . . . .6, 134
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infinite
loop . . . . . . . . . . . see loop, infinite

irreducible chain . . . . . . . . . . . . . . . . 112

Kalman filter . . . . . . . . . . . . . . . . . . . . . 39
known bias. . . . . . . . . .see bias, known

likelihood . . . . . . . . . . . . . . . . . . . . . 27, 48
loop

infinite . . . . . . . . see infinite, loop

manoeuvre detection . . . . . . . . . . . . 162
MAP. . . . . .see estimate, maximum a

posteriori
maximum likelihood . . . . 28, 158, 159
measurement update . . . . . . . . . . . . . 37
Metropolis–Hastings. . . . . . . . . . . . .114
MMSE. . . . . see estimate, conditional

mean
Monte Carlo

estimate . . . . . . . . . . . . . . . . 69, 103
recursive. . . . . . . . . . . . . . . . . . . .119
simulation. . . . . . . . . .14, 144, 147
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parametric estimation . . . . . . . . . . . . 27
particle filter . . . . . . . . . . . . . . . . . . . . 119
point-mass . . . . . 13, 42, 87, 89, 90, 95
posterior density . . . . . . . . . . . . . . . . . 23
prior density . . . . . . . . . . . . . . . . . .23, 48
proposal distribution . . . . . . . 106, 107
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recursive estimation . . . . . . . . . . . . . . 35
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