
Linköping Studies in Science and Technology. Dissertations
No. 802

Local and Piecewise Affine
Approaches to System

Identification

Jacob Roll

Department of Electrical Engineering
Linköping University, SE–581 83 Linköping, Sweden

Linköping 2003

Local and Piecewise Affine Approaches to System Identification

c© 2003 Jacob Roll

roll@isy.liu.se

http://www.control.isy.liu.se

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE–581 83 Linköping

Sweden

ISBN 91-7373-608-2 ISSN 0345-7524

Printed by Bokakademin, Linköping, Sweden 2003

Abstract

Identification of nonlinear systems is a multifaceted research area, with many di-
verse approaches and methods. This thesis considers two different approaches:
(nonparametric) local modelling, and identification of piecewise affine systems.

Local models and methods predict the system behavior by constructing func-
tion estimates from observations in a local neighborhood of the point of interest.
For many local methods, it turns out that the function estimates are in practice
weighted sums of the observations, so a central question is how to choose the
weights. Many of the existing methods are designed using asymptotic (in the num-
ber of observations) arguments, which may lead to problems when only few data
are available. To avoid this, an approach named direct weight optimization is pro-
posed, where an upper bound on the worst-case mean squared error is minimized
directly with respect to the weights of a linear or affine estimator. It is shown
that the estimator will have a finite bandwidth, and that it keeps several of the
properties of an asymptotically optimal estimator.

The case when bounds on the estimated function and its derivatives are known
a priori is also studied, and it is shown that one can sometimes, but not always,
benefit from this extra information. The problem of estimating the function deriva-
tives is also considered.

Another way of approaching the nonlinear system identification problem is to
use a parameterized model class. Piecewise affine systems are an interesting class
for this purpose. They have universal approximation properties, and are also closely
related to hybrid systems. Here, an overview of different approaches appearing
in the literature is presented, and a new identification method based on mixed-
integer programming is proposed. One notable property of the latter method is
that the global optimum is guaranteed to be found within a finite number of steps.
The complexity of the mixed-integer programming approach is discussed, and its
relations to existing approaches are pointed out. The special case of identification of
Wiener models is considered in detail, since this model structure makes it possible
to reduce the computational complexity. Some suboptimal modifications of the
mixed-integer programming approach are also investigated.

As for hybrid systems in general, there has been a growing interest for piecewise
affine systems in recent years, and they occur in many application areas. In many
cases, safety is an important issue, and there is a need for tools that prove that
certain states are never reached, or that some states are reached in finite time. The
process of proving these kinds of statements is called verification. Many verification
tools for hybrid systems have emerged in the last ten years. They all depend on
a model of the system, which will in practice be an approximation of the real
system. Therefore, it would be desirable to learn how large the model errors can
be, before the verification is not valid anymore. In this thesis, a verification method
for piecewise affine systems is presented, where bounds on the allowed model errors
are given along with the verification.

i

Acknowledgments

Acknowledgments usually follow a rather standardized pattern. The main reason
for this is probably that it is difficult to always find new ways of expressing one’s
gratitude. This acknowledgment is no exception. Nevertheless, even if the phrases
are used many times before, I do mean all of them.

With this in mind, first of all I would like to thank my supervisor Professor
Lennart Ljung, for excellent guidance and support during my time here at the
Division of Automatic Control. I would also like to thank Professor Alexander
Nazin, for a fruitful collaboration with many nice and interesting discussions, and
for many valuable remarks on preliminary versions of the thesis. Also Dr. Alberto
Bemporad deserves many thanks, for a nice and rewarding collaboration and for
letting me visit the control group in the wonderful city of Siena.

The thesis has been proofread by Martin Enqvist, Markus Gerdin, David Lind-
gren, and Fredrik Tjärnström, for which I am extremely grateful. Earlier versions
of the text have also been read by Ola Härkeg̊ard, Frida Gunnarsson, and Johan
Löfberg. Your comments and remarks have been of great value and without doubt
improved the quality of the thesis considerably.

I would also like to thank Måns Östring, Gustaf Hendeby, Rickard Karlsson,
and Mikael Norrlöf for help with LATEX problems and similar issues. Ulla Salaneck
has always been helpful when it comes to administrative and practical problems,
and deserves much gratitude. Ola Härkeg̊ard and Fredrik Tjärnström also deserve
special thanks for putting up with all kinds of questions with a never-ending en-
thusiasm. In addition, many other people have been helpful during various phases
of my work, and I thank all of you for your assistance.

This work has been supported by the ECSEL graduate school in Linköping,
which is gratefully acknowledged.

The spirit and atmosphere in the Control and Communication group is a great
source of inspiration, not to be forgotten, and I would like to thank everyone in
the group for being a part of this.

Finally, I would like to thank Karin, for all the happiness we share and for
always being there when I need you. You are the most valuable part of my life.

Linköping, March 2003

Jacob Roll

iii

iv

Contents

Notation xi

1 Introduction 1

1.1 Nonlinear Systems and Models . 2
1.1.1 Linear Models . 3
1.1.2 Some Specific Nonlinear Model Classes 4
1.1.3 Noise . 6

1.2 System Identification . 6
1.2.1 Prediction Error Methods . 7
1.2.2 Identification of Piecewise Affine Systems 8
1.2.3 Nonparametric Methods and Local Modelling 9

1.3 Verification . 13
1.3.1 Robust Verification . 14

1.4 Thesis Outline . 16
1.5 Contributions . 16

I Local Modelling Using Direct Weight Optimization 19

2 Nonparametric Methods and Local Modelling 21

v

vi Contents

2.1 Introduction and Problem Formulation 22
2.2 Kernel Estimators . 25
2.3 Local Polynomial Modelling . 27
2.4 Different Performance Criteria . 30

2.4.1 The MSE and MISE Criteria 30
2.4.2 The Mean Squared Prediction Error and Risk Function . . . 32
2.4.3 Classical Methods . 33
2.4.4 Direct Plug-In Methods . 35
2.4.5 The Worst-Case MSE Criterion 36

2.5 Kernel Functions . 36
2.5.1 Optimal Kernels . 37

2.6 Gaussian Processes . 38
2.7 A Direct Weight Optimization Approach 40

3 Local DWO Modelling of Univariate Functions 43

3.1 The DWO Approach . 44
3.1.1 Minimizing an Upper Bound on the Worst-Case MSE 45

3.2 Some Properties of the Approach . 48
3.2.1 Automatic Finite Bandwidth and Boundary Adaptation . . . 48
3.2.2 Explicit Expressions for the Optimal Weights 56
3.2.3 Expressions for Nonnegative Weights 57
3.2.4 Relation to Local Polynomial Modelling 59
3.2.5 Asymptotic Behavior . 60
3.2.6 The Estimated Function . 62
3.2.7 Global Models . 63

3.3 Examples . 65
3.4 Proof of the Asymptotic Expressions in Theorem 3.4 67

4 Local DWO Modelling of Multivariate Functions 71

4.1 Problem Formulation . 71
4.2 Properties . 74
4.3 Examples . 76

5 Using Prior Knowledge 79

5.1 The Univariate Case . 80
5.1.1 Class F = F2(L, δ,∆) . 81
5.1.2 Class F = F2(L,∆) . 83
5.1.3 Class F = F2(L, 0) . 85
5.1.4 Class F = F2(L) . 86
5.1.5 QP Formulations . 86
5.1.6 Proofs of Theorems 5.2 and 5.4 89
5.1.7 Adjusting the Estimate . 94

5.2 Estimating Multivariate Functions 95
5.3 An Example . 97

Contents vii

6 Other Extensions 99

6.1 Estimating the Derivative . 99
6.1.1 Class F = F2(L, δ,∆) . 100
6.1.2 Class F = F2(L,∆) . 102
6.1.3 Class F = F2(L) . 104
6.1.4 QP Formulations . 104
6.1.5 Can We Use the Derivative Estimate to Improve the Function

Estimate? . 105
6.2 Minimizing the Exact Worst-Case MSE 106

6.2.1 Maximizing the MSE for Given Weights 108
6.2.2 Properties of the Exact Worst-Case MSE Solution 109

6.3 Other Extensions . 110

7 Conclusions 113

7.1 Using the DWO Approach for Dynamic Systems 115
7.2 Adaptive Bandwidth Selection . 116
7.3 Structure of the Regression Vector 118
7.4 Algorithmic and Implementation Issues 118

II Identification of Piecewise Affine Systems 121

8 Prediction Error Methods for System Identification 123

8.1 Prediction Error Methods . 123
8.2 Numerical Minimization . 124
8.3 Regularization . 126

9 Piecewise Affine Systems 127

9.1 Continuous Time Models . 127
9.1.1 Switched Systems . 128

9.2 Discrete Time Models . 129
9.2.1 Models in Regression Form 129
9.2.2 Chua’s Canonical Representation and Hinging Hyperplane

Models . 130
9.2.3 Representations with Fixed Regions 133

9.3 State Jumps . 134
9.4 Control and Analysis of Piecewise Affine Systems 134

10 Identification of Piecewise Affine Systems 135

10.1 Existing Approaches . 137
10.1.1 Identifying All Parameters Simultaneously 138
10.1.2 Adding One Partition at a Time 138
10.1.3 Finding Regions and Models in Several Steps 142
10.1.4 Using Predetermined Regions 145

10.2 Discussion . 146

viii Contents

11 PWA Identification Using MILP/MIQP 149

11.1 Formulating the Identification Problem as an MILP/MIQP Problem 151
11.1.1 Reformulating the Criterion Function 152
11.1.2 Reformulating the Constraints 153
11.1.3 Restricting the Search Space 156
11.1.4 Some Examples . 157

11.2 Extensions . 160
11.2.1 Unknown Number of Positive Max Functions 161
11.2.2 Discontinuous Hinging Hyperplane Models 164
11.2.3 Robust Hinging Hyperplane Models 166
11.2.4 General PWARX Systems . 167

11.3 Computational Complexity and Theoretical Aspects 169
11.3.1 Number of Feasible δ Combinations 169

11.4 Piecewise Affine Wiener Models . 172
11.4.1 Reformulating the Identification Problem 173
11.4.2 Complexity Analysis . 178

11.5 Using Suboptimal MILP/MIQP Solutions 179
11.6 Using Change Detection to Reduce Complexity 184

11.6.1 Complexity . 187
11.6.2 Approximating General Nonlinear Systems 188

11.7 Related Approaches . 188
11.8 Conclusions . 191

III Robust Verification 193

12 Robust Verification 195

12.1 Some Notation and Assumptions . 196
12.2 Problem Formulation for Known Systems 197
12.3 The Problem of Robust Verification 199
12.4 Solutions to the Robust Verification Problems 201

12.4.1 ∆(v) = 0, γ = 0, δ(v) is Varied 202
12.4.2 γ = 0, ∆(v) and δ(v) are Varied 202
12.4.3 Multiple Requirements . 204
12.4.4 ∆ = 0, δ and γ are Varied . 204
12.4.5 ∆, δ and γ are Varied . 206

12.5 Interpretations . 207
12.6 Computational Complexity . 207
12.7 Extensions . 208

12.7.1 Inner Approximations . 208
12.7.2 Switched Systems . 210

12.8 An Example: A Chemical Reactor 210
12.8.1 System Model . 211
12.8.2 What to Verify . 212
12.8.3 Deriving Bounds for Parameter Uncertainties 213

Contents ix

12.8.4 Adjusting Control Rules . 214
12.9 Conclusions . 216

IV Appendices 219

A Mathematical Preliminaries 221

A.1 Explicit Solution of a System of Linear Equations 221
A.2 Lipschitz Conditions . 224
A.3 Convex Sets and Polyhedra . 227
A.4 MILP/MIQP . 230

A.4.1 A Branch-and-Bound Algorithm 231
A.5 Separating Points with Hyperplanes 235
A.6 Inverting a Univariate Piecewise Affine Function 238

Bibliography 241

Notation

The following lists of symbols, acronyms, etc. are mainly intended to list notation
that is used frequently in this thesis. Note that the same symbol may sometimes
be used for different purposes. The numbers in the right column refer to sections
where the notation is used or explained.

Symbols, Operators and Functions

R the set of real numbers
vi (if v is a vector) the ith element of v
Mi (if M is a matrix) the ith row of M
Mij (if M is a matrix) the element in the ith row and jth

column of M
I identity matrix
diag(v) the diagonal matrix with the elements from the vector v

as diagonal elements
E[·], E[·|·] expectation, conditional expectation
P (·), P (·|·) probability, conditional probability
‖ · ‖ Euclidean norm
, equal by definition
∈ belongs to

xi

xii Notation

S ⊆ P S is a subset of P
u(t) input at time t 1.1
y(t) output at time t 1.1
e(t) noise at time t 1.1
x(t) state vector at time t 1.1
f(·) system function 1.1
ϕ(t) regression vector at time t 1.1
ẋ time derivative of x 1.1
yt2

t1 {y(t1), y(t1 + 1), . . . , y(t2)} 1.1
Zt2

t1 {ut2
t1 , y

t2
t1} 1.1

θ parameter vector 1.1
n dimension, e.g., of the state vector 1.1
N number of data (observations) 1.2
na number of output lags in ϕ(t) 1.2.1
nb number of input lags in ϕ(t) 1.2.1
∇f gradient of f 1.2.3
ϕ0 point of estimation 1.2.3
ϕ̃(k) ϕ(k)− ϕ0 2.1
wk weights of a linear or affine estimator 2.1
σ standard deviation of e(t) 2.1
L Lipschitz constant 2.1
f̂(ϕ0) estimate of f(ϕ0) 2.1
Fp+1(L) function class with Lipschitz continuous pth derivatives 2.1
Σ(β, L) Hölder class 2.1
Gp+1(L) function class of Taylor expansion type 2.1
Fp+1(L, δ,∆) like Fp+1(L), but with bounds on f(ϕ0) and ∇f(ϕ0) 2.1
a a priori estimate of f(ϕ0) 2.1
δ bound on |f(ϕ0)− a| 2.1
b a priori estimate of ∇f(ϕ0) 2.1
∆ bound on ‖∇f(ϕ0)− b‖ 2.1
K(·) kernel function 2.2
Kh(·) K(·/h)/h 2.2
h bandwidth of a kernel function Kh 2.2
Ψk(K)

∫
ukK(u)du 2.2

r(K)
∫

K2(u)du 2.2
pϕ(ϕ(k)) probability density function of ϕ(k) 2.2
Φ matrix constructed of powers of ϕ̃(k) 2.3
K̄h diag(Kh(ϕ̃(1)), . . . ,Kh(ϕ̃(N))) 2.3
Y

(
y(1) . . . y(N)

)T 2.3
ei ith standard basis vector 2.3
f̂ (j)(ϕ0) estimate of f (j)(ϕ0) 2.3
O(h) a(h) = O(h) as h → 0 if a(h)/h is bounded in a neigh-

borhood of h = 0
2.4.1

o(h) a(h) = o(h) as h→ 0 if a(h)/h→ 0 as h→ 0 2.4.1

Notation xiii

hAMSE asymptotically optimal (local) bandwidth 2.4.1
hAMISE asymptotically optimal (global) bandwidth 2.4.1
P (f̂) mean squared prediction error 2.4.2
P̂ (f̂) resubstitution estimate of P (f̂) 2.4.3
H hat matrix 2.4.3
tr(M) trace of M 2.4.3
infl(ϕ0) influence function 2.4.3
sgn(t) sign function 2.5.1
µ(ϕ) mean function of Gaussian process 2.6
C(ϕ(i), ϕ(j)) covariance function of Gaussian process 2.6
s slack variables 3.1.1
w∗ optimal value of w 3.1.1
g nonnegative highest-degree coefficient of the weight func-

tion
3.2.1

µ Lagrangian multipliers corresponding to equality con-
straints

3.2.1

λ± Lagrangian multipliers corresponding to inequality con-
straints

3.2.1

rk sgn(w∗k) 3.2.2
n number of nonzero weights wk (for univariate function

estimates)
3.2.2

1n n-dimensional vector with all elements equal to 1 3.2.2
ϕ̃1:n

(
ϕ̃(1) . . . ϕ̃(n)

)T 3.2.2
ζ denominator of the explicit expressions for w∗ 3.2.2
Φn

(
1n ϕ̃1:n

)
3.2.4

� aN � bN ⇔ aN/bN → 1, N →∞ 3.2.5
f

(p)
i1...ip

partial pth derivative of f 4.1
µ

(j)
i1...ij

Lagrangian multipliers corresponding to equality con-
straints

4.2

UF (w0, w),
UF (w)

upper bounds on the worst-case MSE for the function
class F

5.1.1

sgnp(t) sign function with sgnp(0) = p 5.1.6
U1
F (w0, w),

U1
F (w)

upper bounds on the worst-case MSE for a derivative
estimator and the function class F

6.1.1

ŷ(t|θ) prediction of y(t) 8.1
ε(t, θ) residual, ε(t, θ) = y(t)− ŷ(t|θ) 8.1
V (θ, ZN

1) criterion function 8.1
`2(ε) `2(ε) = ε2 8.1
θ̂ parameter estimate 8.1
θ̂(i) value at iteration i in, e.g., a Newton algorithm 8.2
∇2f Hessian of f 8.2
A(v), B(v),
b(v), C(v),
D(v), d(v)

system matrices in a piecewise affine system 9.1

xiv Notation

v key vector 9.1
C, d matrices defining the set of switching hyperplanes 9.1.1
X(v) regions of the different affine subsystems 9.1.1
{−1, 0, 1}M the set of vectors in RM , where each element has one of

the values −1, 0, and 1
9.1.1

M number of switching hyperplanes or hinges 9.1.1
θ(v) parameter vector of the subsystem v 9.2.1
M+ number of positive hinges 9.2.2
θi parameter vector of the ith hinge function 9.2.2
`1(ε) `1(ε) = |ε| 10
Li(t), Ui(t) lower and upper bounds on ϕT (t)θi 11.1
≺,4 componentwise inequalities (for vectors) 11.1
V1 1-norm criterion function 11.1.1
V2 2-norm criterion function 11.1.1
zi(t) auxiliary real variables in MILP/MIQP reformulations 11.1.1
δi(t) auxiliary binary variables in MILP/MIQP reformulations 11.1.2
µ arbitrarily small positive number, in practice chosen, e.g.,

to the machine precision
11.1.2

σi auxiliary binary variables in MILP/MIQP reformulations 11.2.1
ζi(t) auxiliary real variables in MILP/MIQP reformulations 11.2.1(
N
k

)
binomial term,

(
N
k

)
= N !

k!(N−k)! 11.3.1
q delay operator, q−1x(t) = x(t− 1) 11.4
ah, bk coefficients in the linear part of the Wiener model 11.4
αi, βi coefficients in the nonlinearity of the Wiener model 11.4
L length of the sliding window 11.6
Φ(t, δ(t))

(
ϕT (t) ±δ1(t)ϕT (t) . . . ±δM (t)ϕT (t)

)T 11.7
∆(v) uncertainty in A(v) 12.3
δ(v) uncertainty in b(v) 12.3
γ uncertainty in d defining the position of the switching

hyperplanes
12.3

X closure of the set X 12.4.1
λ coefficients of convex combinations 12.4.2
P[vj] matrix picking out the rows corresponding to the zero

entries of vj
12.4.4

Q[vj] matrix picking out and scaling the rows corresponding to
the nonzero entries of vj

12.4.4

f(n,N) number of regions into which Rn can be divided by N
hyperplanes through the origin

A.5

Notation xv

Acronyms

AMISE Asymptotic mean integrated squared error 2.4.1
AMSE Asymptotic mean squared error 2.4.1
ARX Autoregressive exogenous 1.1.1
DWO Direct weight optimization 3.1
HL CPWL High level canonical piecewise linear 9.2.3
HS Hinging sigmoid 10.1.2
KKT Karush-Kuhn-Tucker 3.2.1
LCV Localized cross-validation 2.4.3
LP Linear program(ming) A.4
MILP Mixed-integer linear program(ming) A.4
MIQP Mixed-integer quadratic program(ming) A.4
MISE Mean integrated squared error 2.4.1
MLD Mixed logical dynamical 9.2
MSE Mean squared error 2.4.1
NARX Nonlinear autoregressive exogenous 1.1.1
NFIR Nonlinear finite impulse response 1.1.2
PWA Piecewise affine 1.1.2
PWARX Piecewise autoregressive exogenous 9.2.1
QP Quadratic program(ming) 3.1.1
SOCP Second-order cone program(ming) 5.2
WMSE Worst-case mean squared error 2.4.5

xvi Notation

1

Introduction

Modelling, identification, and prediction are ubiquitous phenomena. Through our
senses, we gather information about the world; we interpret, predict, and then
react according to our perceptions. In natural science, long series of experiments
and observations have led us to formulate laws of nature, which describe different
aspects of the world and let us predict (again from observations) all sorts of things,
like planet movements or tomorrow’s weather. Also in technology, modelling and
identification have much to offer. Everywhere around us, there is a need for au-
tomatic control mechanisms (to a higher or lower degree): in aeroplanes, cars,
chemical process plants, mobile phones, heating of houses etc. However, to be able
to control a system (like the heating of a house or a process plant), one needs to
know at least something about how it behaves and reacts to different actions taken
on it (control inputs). Hence, we need a model of the system.

A system can informally be defined as an entity which interacts with the rest
of the world (other systems) through more or less well-defined input and output
channels. A model is then a (more or less approximate) description of the system.
For example, a car may be described as being affected by the maneuvers the driver
makes with the steering wheel and pedals. These could hence be seen as input
signals. The position and velocity of the car can be seen as output signals. By
describing the relationship between the driver’s maneuvers and the position and
velocity of the car, we get a model of it. The relationships may be more or less
accurately described, depending on what approximations are made. Of course, the

1

2 Introduction

model can also be made more detailed, e.g., by considering the aerodynamics of
the car, friction, amount of petrol left in the tank, etc.

An ideal model should be both simple, accurate, and general. By simplicity, we
could mean that it is simple to understand and interpret, easy to use, and that it
leads to simple computations when making predictions. By accuracy is meant that
the model describes the system well and makes accurate predictions. Generality
means that the model should be able to handle many kinds of different situations.
Unfortunately, there is an inherent conflict between these three ideal properties,
which forces us to trade off between them. In the car model example, a simple
model that does not consider aerodynamics and friction may work well when going
straight forward with a low velocity. However, for high velocities and sharp turns,
the effects of friction and aerodynamics can no longer be neglected, and we need a
more complex model.

Instead of having one global model, which is general and covers many situations,
and thus probably becomes complex, an alternative is to use different local models
for each situation, or even to use a new model for each prediction. In this way the
local models can be made simpler while still being able to make accurate predictions
within their domains.

In this thesis, different approaches to the nonlinear system identification prob-
lem are considered, namely using local modelling and using piecewise affine systems.
This chapter gives a brief introduction and an outline to the rest of the thesis. Apart
from system identification, a verification method for piecewise affine systems is also
considered. An introduction to verification can be found in Section 1.3.

1.1 Nonlinear Systems and Models

As mentioned, a general system has output signals y(t), which can be observed/
measured, and input signals u(t), with which the system can be affected. The
system may also be disturbed by noise e(t). Often (but not always) the system
is assumed to be causal, which means that the outputs are determined only from
what has happened in the past, not what happens in the future. A common way of
describing systems is to use state-space models. In this kind of models, the history
of the system is reflected in the state vector x(t). The output y(t) of the system
thus depends on x(t) (representing what has happened in the past), the input signal
u(t), and the noise e(t). A fairly general, continuous time state-space model takes
the form

ẋ(t) = f(x(t), u(t), e(t))
y(t) = g(x(t), u(t), e(t))

(1.1)

where x(t) ∈ Rn, and ẋ(t) as usual denotes the time derivative of x(t). A special
case of this form is considered in Part III.

In the model (1.1), the signals are time continuous, i.e., they are defined for
all time points. This is of course a very natural way of describing physical signals.
However, when observing the system, the signals can only be measured at a finite

1.1 Nonlinear Systems and Models 3

number of time points. Often the signals are sampled at regular time points, and
so it makes sense to consider discrete time models. A discrete time state-space
model can be written as∗

x(t + 1) = f(x(t), u(t), e(t))
y(t) = g(x(t), u(t), e(t))

(1.2)

An alternative form is

y(t) = f(y(t− 1), y(t− 2), . . . , u(t− 1), u(t− 2), . . . , e(t), e(t− 1), . . .) (1.3)

i.e., y(t) is a function of all previous input and output signals, and of the noise.
For notational convenience, we will use the notation

yt2
t1 , {y(t1), y(t1 + 1), . . . , y(t2)}

Zt2
t1 , {u

t2
t1 , y

t2
t1}

(1.4)

In this way, we can write (1.3) as

y(t) = f(Zt−1
−∞, et

−∞) (1.5)

A common assumption about the noise, covering most of the systems considered
in this thesis, is given in the class of systems described by

y(t) = f(Zt−1
−∞) + e(t) (1.6)

where E[e(t)] = 0 and e(t) is independent of Zt−1
−∞ (see Section 1.1.3 for some more

discussion about noise). Although being general, the form (1.6) is not very conve-
nient in practice, though, since Zt−1

−∞ contains infinitely many elements. Instead,
one can, e.g., use a model where the output y(t) is a function of a fixed-length
regression vector ϕ(t)†:

y(t) = f(ϕ(t)) + e(t) (1.7)

The regression vector ϕ(t) can be composed of, e.g., old inputs and outputs. This
kind of models in regression form is going to be used in Parts I and II.

If a model class can be represented by a model which is completely determined
by a number of parameters, we speak about a parameterized model class. The
parameters are often collected in a parameter vector θ. Examples of this are given
in the following sections.

1.1.1 Linear Models

Linear models (in the data) form a subclass of the general models (1.1), (1.2), and
(1.5). For these models f is a linear function of the data, so that, e.g., a linear
regression model (1.7) can be written as

y(t) = ϕT (t)θ + e(t) (1.8)
∗It should be emphasized that f and g in this section represent general functions, and are not

(necessarily) the same functions in (1.1) and (1.2).
†Another alternative is to use the notion of an initial state x(0), and let the system class be

described by y(t) = f(Zt−1
1 , x(0)) + e(t)

4 Introduction

where ϕ(t) consists of past data which enters linearly, and θ is the parameter
vector. Depending on what elements are included in the regression vector ϕ(t),
one distinguishes between different model classes (see [142, 146]):

• FIR (Finite Impulse Response) models have a regression vector which consists
only of old inputs u(t− τ), i.e.,

ϕ(t) =
(
u(t− 1) u(t− 2) . . . u(t− nb)

)T

for a given positive integer nb.

• AR (AutoRegressive) models include only old outputs y(t−τ), τ > 0, in ϕ(t).

• ARX (AutoRegressive eXogenous) models include both old inputs and out-
puts in ϕ(t).

Apart from these options, the regression vector may also depend on the parameters,
i.e.,

y(t) = ϕT (t, θ)θ + e(t)

This is not a true linear regression form, but is often called pseudo-linear regres-
sion. Examples of such models are ARMAX (AutoRegressive Moving Average
eXogenous) models, OE (Output Error) models, and BJ (Box-Jenkins) models.
For more details, see, e.g., [94].

Often, one refers to a model like (1.8) as being linear in the parameters, since
y(t) depends linearly on θ. A model may of course be linear in the parameters but
nonlinear in the data, e.g., if ϕ(t) in (1.8) is a nonlinear function of past data.

1.1.2 Some Specific Nonlinear Model Classes

Let us now briefly mention some specific nonlinear model classes. First, let us
return to the nonlinear regression models (1.7). Like in the linear case, we can
distinguish between different model classes depending on the construction of the
regression vector [142]: If ϕ(t) consists only of old inputs u(t − τ), the model is
called an NFIR (Nonlinear Finite Impulse Response) model; if ϕ(t) consists of both
old inputs and outputs it is an NARX model, etc. Models of these types will be
used throughout the thesis.

A special class of nonlinear systems is obtained if the functions f and g in (1.1)
or (1.2) are piecewise affine. In the last years, there has been a growing interest
in these piecewise affine (PWA) systems, partly because of their close relation-
ship to hybrid systems. Hybrid systems are systems that have both continuous
and discrete dynamics. A simple example could be a physical system with con-
tinuous dynamics, controlled by a discrete controller. The continuous dynamics of
hybrid systems is typically associated with physical systems (possibly controlled by
continuous controllers), while the discrete dynamics for instance may come from
discrete controllers, inherent nonlinearities in the physical system, on/off switches,
or external discrete events influencing the system.

1.1 Nonlinear Systems and Models 5

- --

6

-

@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@@

u x

ẋ = (A−BL)x

ẋ = Ax + B

ẋ = Ax + Bu−L

ẋ = Ax−B

x2

x1

Figure 1.1: A linear system, controlled by linear feedback. Since the control signal is
bounded, the system is a piecewise affine system.

Due to this hybrid structure, it can be hard to use, e.g., linearization techniques
for control design and analysis of such systems. Therefore, there has been a need
for developing the theory of hybrid systems.

The piecewise affine systems can be described as consisting of several affine
subsystems, between which switchings occur at different occasions. Such systems
occur in many applications, e.g., when there are physical limits (such as a tank that
can get full or empty), bounds on the control signal, dead-zones, or when the system
contains switches and thresholds. Piecewise affine systems can also be used to
approximate nonlinear systems, since they have universal approximation properties,
which essentially means that any (sufficiently smooth) nonlinear function can be
arbitrarily well approximated by a piecewise affine function.

Example 1.1 (Bounded signal) Consider the system in Figure 1.1, where
a linear system is controlled by linear feedback, but where the control signal is
bounded by |u| ≤ 1. As long as the control signal is kept within the bounds, the
system is linear, but when |Lx| > 1, the dynamics is changed from ẋ = (A−BL)x
to ẋ = Ax±B. We get a piecewise affine system with three subsystems, as shown
in the figure.

Example 1.2 (Temperature control) To control the temperature in a house,
the heating system often uses thermostats, that switch the radiators on or off
when the temperature reaches certain thresholds. This will give a piecewise affine
behavior, where one affine system is given by the radiators being turned off, and
the other by the radiators being turned on.

Piecewise affine systems are described in more detail in Chapter 9.

6 Introduction

Many classes of piecewise affine systems can be seen as special cases of the class
of function expansion type models, which can be written in the form

y(t) =
r∑

k=1

αkgk(ϕ(t), βk, γk) (1.9)

This is a very broad class of models, and includes (apart from many piecewise
affine systems), e.g., feedforward neural networks, radial basis networks, Fourier
series approximations, and wavelets. See [142] for more details.

1.1.3 Noise

The noise of the system can be modelled in several different ways. A common
way in linear modelling is to model the noise as an additive term, constructed
by independent, identically distributed stochastic variables with zero mean (white
noise), filtered through a linear filter (the different classes ARX, ARMAX, OE,
and BJ mentioned in Section 1.1.1 basically differ by their different types of noise
models). In nonlinear modelling, there are several ways in which this could be
extended. For example, the noise could be filtered through a nonlinear filter, it
could enter the system in a multiplicative way (e.g., we could have products like
u(t)e(t)), etc. As already mentioned, in this thesis we are going to restrict the noise
models to an additive term

y(t) = f(Zt−1
−∞) + e(t)

where E[e(t)] = 0 and e(t) is independent of Zt−1
−∞ (in Part I, e(t) should be inde-

pendent of all regression vectors). However, in Chapter 12, some terms could be in-
terpreted as multiplicative noise, as we will see. The Wiener systems in Section 11.4
will also have a slightly different (although still additive) noise contribution, where
the noise enters into the middle of the system (see (11.48)).

In Chapter 12, it will also be natural to assume that the noise is unknown
but bounded, i.e., instead of specifying a probability density function for the noise,
we specify a certain region within which the noise may take any value. This is a
common approach, e.g., in set membership identification and robust control [52,
107].

1.2 System Identification

In general, the system identification problem is the problem of mathematically
describing the relation between a collection of signals as well as possible, given
experimental sets of data from the signals. Here, as in most settings, we are
interested in the relation between the input signals, u(t), and the output signals,
y(t). We assume that the experimental data consists of two time-series, u(t) and
y(t), t = 1, . . . , N . The goal is to describe y(t) as a function of previous outputs and
inputs, together with some noise, e(t), i.e., like in (1.5). As already mentioned, in

1.2 System Identification 7

this thesis we will mostly consider the form (1.6). For a more thorough introduction
to system identification, see, e.g., [94].

1.2.1 Prediction Error Methods

To be able to identify a system, we must know, or at least assume, something
about its structure. If nothing whatsoever is known about the system function, the
identification problem is meaningless – the only things we can say are statements
like: “At time t and for the input u(1), . . . , u(t), the output was y(t) (at least this
time!)”. In other words, the best description of the system we can get is the set of
experimental data itself.

If, however, we can assume that the system can be described (reasonably well)
by a model belonging to a certain model class, more can be said. The model
class can be specified in different ways. For instance, the classes described in
Section 1.1.1 and by (1.9) are examples of parameterized model classes, i.e., the
class can be represented by a parameterized model. When using such a model class,
the system identification problem amounts to finding values of the parameters, such
that the resulting model describes the system as well as possible. Such methods
are called parametric methods. One family of identification methods, containing
many well-known and commonly used approaches, are the prediction error methods
(PEM), which are described in Chapter 8. The methods in Part II are also of this
kind. Basically, the prediction error methods form parameterized predictions ŷ(t|θ),
where θ is the parameter vector. From these the residuals

ε(t, θ) = y(t)− ŷ(t|θ)

i.e., the differences between the true output and the predicted output are formed.
The parameter vector is then chosen to minimize the residuals according to some
criterion. A very common criterion is the least-squares criterion

V (θ, ZN
1) =

1
N

N∑
t=1

ε2(t, θ) =
1
N

N∑
t=1

(y(t)− ŷ(t|θ))2

Let us conclude this section by considering a simple example.

Example 1.3 (ARX model) As mentioned in Section 1.1.1, an ARX model
is a model with the following structure:

y(t) = −a1y(t− 1)− · · · − anay(t− na)
+ b1u(t− 1) + · · ·+ bnbu(t− nb) + e(t)

= ϕT (t)θ + e(t)

where

ϕ(t) =
(
−y(t− 1) . . . −y(t− na) u(t− 1) . . . u(t− nb)

)T

θ =
(
a1 . . . ana b1 . . . bnb

)T

8 Introduction

The natural predicted output is

ŷ(t|θ) = ϕT (t)θ

so the least squares criterion is given by

V (θ, ZN
1) =

1
N

N∑
t=1

ε2(t, θ) =
1
N

N∑
t=1

(y(t)− ϕT (t)θ)2

which is minimized by

θ̂ =

(
N∑

t=1

ϕ(t)ϕT (t)

)−1 N∑
t=1

ϕ(t)y(t)

Hence

ŷ(t|θ̂) = ϕT (t)

(
N∑

l=1

ϕ(l)ϕT (l)

)−1 N∑
k=1

ϕ(k)y(k)

=
N∑

k=1

wk(ϕ(t))y(k)

where

wk(ϕ(t)) = ϕT (t)

(
N∑

l=1

ϕ(l)ϕT (l)

)−1

ϕ(k) (1.10)

In other words, we can see the prediction ŷ(t|θ̂) as a weighted sum of the observed
outputs. This perspective will be relevant in Part I.

1.2.2 Identification of Piecewise Affine Systems

Many tools and methods for verification, as well as for control, stability analysis,
etc., of hybrid systems have emerged in recent years. To be able to use these tools,
however, a model of the system is needed.

Identification of hybrid systems (e.g., piecewise affine systems) is an area that
is related to many other research fields within nonlinear system identification. In
particular, one can find several different methods and approaches which are appli-
cable, or at least related to the piecewise affine system identification problem. Some
examples of approaches that result in piecewise affine systems are neural networks
with piecewise affine perceptrons [8, 51, 86], Chua’s canonical representation and
hinging hyperplanes [22, 27, 28, 77, 79, 80, 124], self-exciting threshold autoregres-
sive (SETAR) models for time-series analysis [104, 105], special-purpose methods
for physical applications [81], and some function approximation approaches [76, 78].
In [142], which is a good overview of different nonlinear identification techniques,
the relations between several different approaches are explored.

1.2 System Identification 9

The piecewise affine system identification problem will be considered in Part II,
where an overview of different approaches occurring in the literature in Chapter 10
will be given. An approach based on mixed-integer programming will also be
presented in Chapter 11. This approach guarantees that an optimal model (with
respect to the particular criterion used and the experimental data available) is
found, but this guarantee comes at a price of greater computational complexity.

In Chapters 10 and 11, we will mostly consider models in regression form like
in (1.7). It turns out that once the partitioning of the state-space is known, the
piecewise affine system identification problem reduces to a problem, comparable to
a linear system identification problem in terms of complexity. However, finding the
best partition may be a very complex problem. Hence, there are two fundamental
approaches: Either an a priori partition can be used, or the partitioning can be
estimated along with the different subsystems. The latter can be done simultane-
ously or iteratively. The first approach gives a simple estimation process, but the
number of regions needed to give enough flexibility in the model structure may be
very large. In the second approach, the number of subsystems can be kept low, but
the estimation will be more complex. This dilemma will be treated more in detail
in Chapters 10 and 11.

Approximating Nonlinear Systems by Piecewise Affine Systems

As previously mentioned, many classes of piecewise affine systems have universal
approximation properties, which make them suitable for approximating arbitrary
nonlinear functions. Therefore, an efficient identification method for piecewise
affine systems would also be of interest for identification of nonlinear functions. In
this case, the exact shape of the regions is of less direct importance, since the true
system does not consist of affine subsystems. Instead, being able to approximate
the nonlinear function well, using few parameters and a representation that is easy
to handle, becomes the main question.

1.2.3 Nonparametric Methods and Local Modelling

In Section 1.2.1, we saw that one way of specifying a model class is to represent
it by a parameterized model. An alternative way could be to specify different
properties that the model should satisfy. For instance, we could assume that the
models can be described by (1.7), where f is continuously differentiable, and the
derivative satisfies a Lipschitz condition

‖∇f(ϕ(1))−∇f(ϕ(2))‖ ≤ L‖ϕ(1)− ϕ(2)‖ ∀ϕ(1), ϕ(2) ∈ Rn (1.11)

Here, and throughout this thesis, ‖ · ‖ stands for the Euclidean norm (if nothing
else is stated). We can also assume that the noise variance is finite (and given). In
this case, it is hard to parameterize the model class, so either we have to approxi-
mate the model class by a parameterized class, or we have to use a nonparametric
identification method.

10 Introduction

−1 −0.5 0 0.5 1
1

1.5

2

2.5

φ

y

Figure 1.2: Data set for Example 1.4.

Specifying a Lipschitz condition limits the possible variation of the system func-
tion f . This means, that if we would like to estimate f(ϕ0) at a certain point ϕ0,
we can find some information about the value of f(ϕ0) by looking at the values y(t)
corresponding to regression vectors ϕ(t) that are close to ϕ0. Hence, it is natural to
use some kind of local modelling to describe the system. In statistics, the interest
has been focused on various local methods, like kernel methods, [113, 156], local
polynomial approaches, [47], and trees, [24] (see also [138]). Some local modelling
approaches are described in Chapter 2, and in Chapter 3 a local modelling method,
named a direct weight optimization (DWO) approach, is proposed.

To get a first feeling of the problem, let us consider some very simple estimation
methods.

Example 1.4 (Function estimation) Assume that we are given a set of noisy
data samples (ϕ(t), y(t)), t = 1, . . . , N , coming from an unknown function f(ϕ) in
accordance with (1.7), and would like to estimate the value of f(0). Let us denote

the estimated value by f̂(0). An example data set is plotted in Figure 1.2.
There are many ways to estimate f(0). A very simple option is the nearest

neighbor method illustrated in Figure 1.3(a), where we consider the data sample
which is closest to 0, and take its value as the estimate of f(0). This approach is
apparently very sensitive to noise, as it considers just one data sample. A slight
generalization is the k-nearest neighbor method, where the estimate is given by the
mean of the k closest data samples. This is illustrated in Figure 1.3(b) for k = 2.

We can notice that both these methods can be regarded as taking a weighted
sum of the experimental function values to obtain the desired estimate f̂(0). In

1.2 System Identification 11

−1 −0.5 0 0.5 1
1

1.5

2

2.5

(a) Nearest neighbor.

−1 −0.5 0 0.5 1
1

1.5

2

2.5

(b) k-nearest neighbor.

−1 −0.5 0 0.5 1
1

1.5

2

2.5

(c) Linear interpolation.

−1 −0.5 0 0.5 1
1

1.5

2

2.5

(d) Cubic regression.

Figure 1.3: The different methods for function estimation described in Example 1.4.
The estimate f̂(0) is marked by a circle in each case.

other words, we can write both estimates in the form

f̂(0) =
N∑

t=1

wty(t) (1.12)

where the values of the weights wt depend on the method we use, and of the values
of ϕ(t). For the nearest neighbor approach, one weight (the one corresponding to
the closest data sample) will be equal to 1, and the rest of the weights will be zero.
For the k-nearest neighbor, on the other hand, k weights (corresponding to the
k closest data samples) will equal 1/k, and the others are zero. The weights are
plotted in Figure 1.4(a) and Figure 1.4(b), respectively.

A third option, shown in Figure 1.3(c), is to make a linear interpolation to
obtain the estimate. It turns out that this method also results in an estimate in
the form (1.12): Let ϕ(i) and ϕ(j) be the two values which are closest to 0 (one

12 Introduction

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(a) Nearest neighbor.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(b) k-nearest neighbor.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(c) Linear interpolation.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(d) Cubic regression.

Figure 1.4: The corresponding weights for the methods in Figure 1.3.

positive and one negative). The line between (ϕ(i), y(i)) and (ϕ(j), y(j)) can be
written as

l(ϕ) =
ϕ− ϕ(j)

ϕ(i)− ϕ(j)
y(i) +

ϕ− ϕ(i)
ϕ(j)− ϕ(i)

y(j)

and since we are interested in the value at ϕ = 0, the function estimate becomes
f̂(0) = l(0). Hence, the weights we get are

wi =
ϕ(j)

ϕ(j)− ϕ(i)
, wj =

ϕ(i)
ϕ(i)− ϕ(j)

The weights are plotted in Figure 1.4(c).
Yet another approach is to fit, e.g., a third-order polynomial to the data by

minimizing a least-squares criterion (see Figure 1.3(d)). Simple calculations (sim-
ilar to the ones in Example 1.3) show that also this method gives an estimate in
the form (1.12), with the weights shown in Figure 1.4(d).

1.3 Verification 13

Note that the first three methods of Example 1.4 are local methods, while the
last method is global. However, also the last method can be made local, by only
considering the data samples which are closest to the point of interest (ϕ0 = 0
in Example 1.4) when fitting the polynomial. The method then becomes a local
polynomial modelling method. This kind of methods is described in greater detail
in Chapter 2.

Since many methods lead to a linear estimator of the kind given in (1.12) (see
also the predictor in Example 1.3), we can view the estimation problem as a problem
of finding appropriate weights for (1.12). No matter what type of local modelling
approach is taken, the central problem is which of the data samples should be
taken into consideration when forming the estimate (i.e., which weights should be
nonzero). Intuitively, it is clear that the answer must depend on three items:

1. How many data are available (and how are they spread)?

2. How smooth is the function surface (supposed to be)?

3. How much noise is there in the observations?

This problem has been studied extensively in the statistical literature, and there
are several solutions based on asymptotic (in the number of observations) analysis.

In Part I, another solution, which is not based on the asymptotic behavior
of the estimates, is proposed. Based on the smoothness measure given by the
Lipschitz condition (1.11) and the noise variance, we compute a uniform upper
bound of the mean squared error (MSE) of a linear estimate, as a function of the
estimator parameters. This upper bound is then minimized directly with respect
to the weights in (1.12). It turns out that this problem can be reformulated as a
quadratic programming (QP) problem, which can be solved efficiently. It also turns
out that this solution has many of the key features of the asymptotically optimal
estimators, but for finite number of observations it produces better guaranteed
error bounds.

1.3 Verification

In many application areas, such as in chemical industry and aeronautics, safety
is a very important issue. For example, given certain assumptions on the system,
one would like to be able to ensure that the system never reaches certain specified
bad (or dangerous) states. Typical requirements for control design might there-
fore include that the system should never reach some specific (possibly dangerous)
states, that the system should reach a certain region in the state-space, and/or
that there should be invariant regions (once you get there, you will never leave
the region). After the design process, one would often like to make sure that the
specified requirements are satisfied. This process is known as verification.

Even if a system model is given, it is mostly just an approximation – good
or bad – of the real system. Therefore, in Part III, the verification problem is

14 Introduction

considered for piecewise affine systems with model uncertainties. A robust verifi-
cation method is presented, where upper bounds on the uncertainties that can be
tolerated are computed along with the verification process. This section provides
a short description of the concept of verification.

Solving a verification problem exactly is in general possible only for some re-
stricted classes of hybrid systems [2, 4]. Many verification methods for the problem
of avoiding bad states found in the literature are based on computing a conserva-
tive approximation of the system [2, 3, 14, 29–31, 43, 84, 150]. This means that
either the model of the system is replaced by a (computationally) simpler model,
which is an outer approximation of the original system, or that the trajectories
from a given initial set of states are replaced by an outer approximation. An outer
approximation is an approximation that guarantees that if a trajectory is allowed
by the original system, it is also allowed in the simplified model. In this way it
can be guaranteed that if a certain bad state is never reached in the simple model,
it is never reached in the original system either. A good overview over numerous
different approaches is given in [44].

For the problem of assuring that a certain region is reached, an inner approxi-
mation can be used analogously to what is described above (see [43]). If a transition
is guaranteed to occur in an inner approximation, it is also guaranteed to occur in
the original system. However, other techniques might be needed to compute the
inner approximation.

1.3.1 Robust Verification

The verification method presented in Chapter 12 is partly built upon a method
presented in [43]. For this method, we will consider continuous time piecewise
affine systems in state-space form, where the dynamics depend on in which region
of the state-space the current state x(t) is (see (9.2)). The regions (denoted X(v))
are assumed to be polyhedral. To verify the desired properties, the behavior of
the vector field ẋ(t) at the borders of the regions X(v) is analyzed. Specifically,
questions such as “At a given face of the polyhedron X(v), is there a point, x0, such
that ẋ0 is pointing out of X(v), or are all trajectories at this face going into X(v)?”
are answered (this kind of computations has also been used by others, e.g., by [72]).
The information obtained is used to determine which transitions between different
regions are possible, which transitions are guaranteed to occur nondeterministically
(i.e., one transition out of a set of transitions from a given polyhedron is guaranteed
to occur) and which are not. Then finite automata are constructed, showing the
guaranteed or possible transitions. The finite automata give an approximation of
the system, and can be used for different kinds of verification. For example, we can
guarantee that certain states in the original system are not reachable from some
other initial states, by proving that there is no sequence of possible transitions in
the finite automata, taking the system state from the region of the initial states to
the region of the final states.

1.3 Verification 15

"!

x > 2

"!

x = 2

"!

|x| < 2

"!

x = −2

"!

x < −2

?

?

6

6

"!

x > 2

"!

x = 2

"!

|x| < 2

"!

x = −2

"!

x < −2

?

6

6

Figure 1.5: Automata showing possible (left figure) and guaranteed (right figure) tran-
sitions for the system in Example 1.5.

Example 1.5 (Verification) Consider the simple system

ẋ =


−2x x < −2
−x + 1 −2 ≤ x ≤ 2
x− 3 x > 2

Suppose that we would like to make sure that if x(0) ≥ −2, x(t) will never get
below −2. This can easily be verified by considering the trajectories at x = −2.
Here, ẋ = −x + 1 = −(−2) + 1 = 3, which means that if x gets close to −2 (from
above), it will increase, and hence never pass the border x = −2.

By making calculations like above, we can construct a finite automaton showing
what transitions between the three regions are possible (see the left automaton in
Figure 1.5). This automaton is an outer approximation of the original system.
Apart from the property shown above, we can see, e.g., that once we get into the
region |x| < 2 we never leave it.

We can also construct an automaton which is an inner approximation of the
system (the right automaton in Figure 1.5). With the help of this automaton we
can guarantee that we will end up in the region |x| < 2, if starting with x ≤ 2.

16 Introduction

Like all other methods mentioned above, the method in [43] assumes that a
model of the system is given. It would be desirable to be able to perform the
verification, and simultaneously compute how sensitive the verification proof (e.g.,
the approximating automata) is to changes in the underlying systems, both in the
dynamics and in the switching surfaces. This is what is called robust verification
in this thesis. Such information could be used to get a measure of how robust the
verification process is to model errors, or as an aid in a control design process, if
we would like to adjust the system dynamics without losing the verified property.
Sometimes we would only be interested in that some crucial transitions should not
change, whereas in other cases we might want the entire approximating automata
to remain invariant.

Since the approximating method in [43] considers the behavior of ẋ(t) at the
borders of the regions X(v), we must determine how this behavior changes with
varying dynamics of the submodel corresponding to X(v), and with translations of
the surfaces that bound X(v). How this can be done is the topic of Chapter 12.

1.4 Thesis Outline

The thesis consists of three main parts:

• Local modelling and the direct weight optimization (DWO) approach can be
found in Part I. Chapter 2 gives an overview of the problem and of existing
methods. In Chapter 3 the DWO approach is introduced for a special class of
once differentiable, univariate functions. This is then extended in Chapter 4
to multivariate functions, with higher degrees of differentiability. Chapter 5
considers the case when bounds on the function value and derivatives are
known. Some other extensions are given in Chapter 6 and conclusions in
Chapter 7.

• In Part II, the problem of identification of piecewise affine systems is studied.
Chapter 8 gives a brief introduction to prediction error methods. In Chap-
ter 9, different classes of piecewise affine systems are presented. Chapter 10
gives a survey of existing identification approaches, while Chapter 11 consid-
ers the identification of piecewise affine systems using mixed-integer linear or
quadratic programming.

• Part III, which consists of Chapter 12, concerns robust verification for piece-
wise affine systems.

Apart from this, some mathematical preliminaries are given in Appendix A.

1.5 Contributions

The main contributions of this thesis are:

1.5 Contributions 17

• A method for finding the function estimate that minimizes an upper bound
on the worst-case mean squared error (MSE) through quadratic programming
(QP), as outlined in the DWO approach in Chapters 3 (for once differentiable,
univariate functions) and 4 (for p times differentiable, multivariate functions).

• Extension of the DWO approach to the case when bounds on the function
and its derivatives are known a priori, presented in Chapter 5.

• Extension of the DWO approach to the estimation of derivatives using QP,
given in Section 6.1.

• The algorithm in Section 6.2 for finding the function estimate minimizing
the exact worst-case MSE for once differentiable, univariate functions, with
derivatives satisfying a Lipschitz condition.

• The techniques in Chapter 11 of using mixed-integer linear/quadratic pro-
gramming (MILP/MIQP) to identify piecewise affine systems. A technique
of reformulating products of continuous affine functions and discrete variables
as linear inequalities, described in Section 11.1.2.

• Extension of an identification algorithm proposed by Hush and Horne [69],
and showing its relationship to the MILP/MIQP formulations. This is found
in Section 11.7.

• The robust verification methods in Chapter 12.

Some of the material in this thesis has been presented previously. The DWO
approach in Part I has been presented for once differentiable, univariate functions
in

J. Roll, A. Nazin, and L. Ljung. A non-asymptotic approach to local
modelling. In The 41st IEEE Conference on Decision and Control,
pages 638–643, Dec. 2002

The extension to multivariate functions was considered in

J. Roll, A. Nazin, and L. Ljung. Local modelling of nonlinear dynamic
systems using direct weight optimization. Accepted for the 13th IFAC
Symposium on System Identification, Rotterdam, Aug. 2003

and

J. Roll, A. Nazin, and L. Ljung. Direct weight optimization for nonpara-
metric estimation of a regression function at a given point. Submitted
to Scandinavian Journal of Statistics, 2003

The case when bounds on the function value and the derivative are given is pre-
sented in

18 Introduction

J. Roll, A. Nazin, and L. Ljung. Local modelling with a priori known
bounds using direct weight optimization. Submitted to the European
Control Conference, Cambridge, Sept. 2003

Much of the material in Sections 11.1, 11.2, 11.4, and 11.6 in Part II is joint work
with Dr. Alberto Bemporad. This material is also published in

A. Bemporad, J. Roll, and L. Ljung. Identification of hybrid systems via
mixed-integer programming. In The 40th IEEE Conference on Decision
and Control, pages 786–792, Dec. 2001.

and

J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine
systems via mixed-integer programming. Provisionally accepted for Au-
tomatica, 2003

Some of the material in Chapter 12 has previously been published in

J. Roll. Invariance of approximating automata for piecewise linear sys-
tems with uncertainties. In Hybrid Systems: Computation and Control,
volume 1790 of Lecture Notes in Computer Science, pages 396–406.
Springer-Verlag, 2000.

Other parts of Chapter 12 also appear in

J. Roll. Robust verification of piecewise affine systems. In 15th IFAC
World Congress on Automatic Control, Session T-We-A21, July 2002.

Part I

Local Modelling Using
Direct Weight Optimization

19

2

Nonparametric Methods and

Local Modelling

As mentioned in Section 1.2, the system identification problem is a problem of
describing the relationship between input and output signals. This problem can of
course be regarded as a kind of function approximation or a regression problem:
Given a set of regression vectors ϕ(k) and output signals y(k), we can assume that
the outputs are generated as noisy measurements of an unknown function

y(k) = f(ϕ(k)) + e(k)

and our goal is to recover the function f(ϕ).
A very common approach in nonlinear system identification is to use some kind

of local models (see e.g., [112]) and/or methods. A local model or method builds
the function estimate or prediction from observations in a local neighborhood of
the point of interest. Also most function expansion methods are of this character:
A radial basis neural network is built up from basis functions with local support,
and the standard sigmoidal (one hidden layer feed-forward) network is local around
certain hyperplanes in the regressor space (see [94]).

If the model classes used are parameterized, this means that the identification
problem is reduced to finding the parameters that makes the model match the
observed data as well as possible. This is referred to as parametric methods. In
contrast, nonparametric methods do not use a parameterized model class, but make
pointwise estimates of e.g., the frequency response, the step response, or, as in this

21

22 Nonparametric Methods and Local Modelling

part of the thesis, the system function f . However, the boundary between the
different categories is not always sharp.

In this part, a nonparametric local modelling approach to the regression problem
is considered. Following the definition in [47], the local modelling approach can be
described as follows: For any given point ϕ0, for which we would like to estimate
f(ϕ0), we should model f around ϕ0 using only the data that are close to ϕ0.
There are two main points in this:

• The local modelling approach is a local method, and uses only data from the
neighborhood of ϕ0.

• For each new point in which f should be estimated, a “new model” is formed,
in contrast to, e.g., the piecewise affine models in Part II, where each sub-
model has a certain validity region.

The local modelling approach and similar ideas have occurred in many contexts
[18, 47, 61, 122, 141, 155] under names such as Model on Demand [146], lazy
learning and least commitment learning [5, 6, 17]. A central question is how many
points should be used when forming the estimate (also referred to as the bandwidth
question). The answer to this mainly depends on three factors:

1. The number of data available (and the actual spreading of the regression
vectors).

2. The smoothness of the function f .

3. The variance of the noise e(k).

This problem has been studied extensively in the statistical literature, and there
are several solutions based on asymptotic (in the number of observations) analysis.

This chapter gives an overview of the problem and some existing methods,
mainly based on the presentations in [47, 146]. Other good overviews can be found
in [5, 155]. The following chapters then present a direct weight optimization (DWO)
approach, which is not based on asymptotic analysis.

2.1 Introduction and Problem Formulation

Throughout this part of the thesis, we will assume that we are given a set of
input-output pairs {(ϕ(k), y(k))}Nk=1, coming from the relation

y(k) = f(ϕ(k)) + e(k) (2.1)

The function f : Rn → R (we will often consider the univariate case n = 1) is
assumed to be unknown. The noise terms e(k) are independent random variables
with E[e(k)] = 0 and E[e2(k)] = σ2, and should be independent of the regression
variables ϕ(k).

One usually distinguishes between two ways of viewing the regression variables.
If they are viewed as independent, identically distributed random variables with

2.1 Introduction and Problem Formulation 23

a certain probability density function pϕ, this is referred to as random design. If,
on the other hand, ϕ(k) are deterministic, we call this fixed design. A special case
of the latter is the equally spaced fixed design, where the distance between two
neighboring samples is constant (e.g., ϕ(k) = k/N in the univariate case).

The problem we consider is the problem of estimating the value f(ϕ0) at a given
point ϕ0. In the sequel, it will be convenient to also use the notation

ϕ̃(k) = ϕ(k)− ϕ0 (2.2)

As we saw in Section 1.2, many methods for estimating f(ϕ0) lead to a linear
estimator in the form

f̂(ϕ0) =
N∑

k=1

wky(k) (2.3)

where f̂(ϕ0) is our estimate of f(ϕ0). In words, the estimate f̂(ϕ0) is a weighted
sum of the observations y(k). As it will turn out in Chapter 5, in some cases it will
also be useful to consider an affine estimator given by

f̂(ϕ0) = w0 +
N∑

k=1

wky(k) (2.4)

In both these cases, the weights w0 ∈ R and w = (w1 . . . wN)T ∈ RN can be
functions of ϕ0 and the regression vectors ϕ(k), k = 1, . . . , N . In many methods,
they also depend of the noise variance σ2 and of some measure of the smoothness
of f . However, it is worth noting that the weights in most methods do not depend
on y(k).

Assuming one of the forms (2.3) or (2.4), the problem then reduces to finding
good weights wk, which give reasonably small bias and variance of the estimate.
In Section 2.4, different criteria are given for assessing the estimators. A popular
criterion is the mean squared error (MSE)

MSE (f̂(ϕ0)) , E[(f̂(ϕ0)− f(ϕ0))2|ϕN
1] (2.5)

where ϕN
1 = {ϕ(1), . . . , ϕ(N)}. Sometimes when considering random design, the

MSE is defined as the corresponding unconditional expectation, but in this thesis,
only the definition (2.5) will be used. In the case of fixed design, the conditioning
will of course have no effect. The worst-case MSE over a class F of functions

WMSE (f̂(ϕ0),F) , sup
f∈F

MSE (f̂(ϕ0)) (2.6)

is another commonly used criterion. In this way, one can get a guaranteed upper
bound on the MSE (assuming that all assumptions hold). In statistics, the worst-
case MSE is also called maximum MSE. Using this criterion is often referred to as a
minimax approach (see, e.g., [85, 88, 137, 138]). The worst-case MSE (or rather an
upper bound on the worst-case MSE) will be used in the DWO approach presented
in this thesis.

Depending on the method, different assumptions are made about f . In the
following, some common function classes will be presented.

24 Nonparametric Methods and Local Modelling

Class Fp+1(L)

A common assumption is that f is p times differentiable. Another frequently used
assumption is that the pth derivative is Lipschitz continuous. For p = 1, this means
that there is a constant L (called the Lipschitz constant) such that

‖∇f(ϕ(1))−∇f(ϕ(2))‖ ≤ L‖ϕ(1)− ϕ(2)‖ ∀ϕ(1), ϕ(2) ∈ Rn (2.7)

where ‖·‖ denotes the Euclidean norm. For more general cases, see Chapter 4. The
class of p times differentiable functions with Lipschitz continuous pth derivatives,
having a Lipschitz constant L, will be denoted by Fp+1(L). (With some abuse of
notation, we will use this notation regardless of the value of n, i.e., n is supposed
to be fixed and known.)

Hölder Class Σ(β, L)

A generalization of this class for univariate functions is the Hölder class [88]. The
univariate function f is said to belong to the Hölder smoothness class Σ(β, L) if f
is p times differentiable, β = p + α with 0 < α ≤ 1, and

|f (p)(ϕ(1))− f (p)(ϕ(2))| ≤ L|ϕ(1)− ϕ(2)|α ∀ϕ(1), ϕ(2) ∈ R (2.8)

We can notice that for univariate functions and integers β, we have Σ(β, L) =
Fβ(L).

Class Gp+1(L)

A related assumption is given in [85], where the univariate function f is supposed
to take the following form:

f(ϕ) = a0 + a1ϕ̃ + · · ·+ apϕ̃
p + c(ϕ̃)ϕ̃p+1 (2.9)

where ai ∈ R and supϕ̃ |c(ϕ̃)| ≤ M . Note that under this assumption, f does not
need to be continuous (except at ϕ0). Thus, for univariate functions, the function
class Fp+1((p+1)!M) is a proper subclass of this class. However, the function class
is connected to the point ϕ0 of the function estimate, and thus is not so useful in
practice, if one would like to estimate f in several points. We will denote the
function class by Gp+1((p + 1)!M).

Class Fp+1(L, δ,∆)

In some situations, one might have some prior knowledge of what would be a
reasonable value for the function and/or its derivatives. This can be incorporated
in the DWO approach by assuming that there are known constants a, δ, and ∆,
and a vector b, such that

|f(ϕ0)− a| ≤ δ (2.10a)
‖∇f(ϕ0)− b‖ ≤ ∆ (2.10b)

2.2 Kernel Estimators 25

The function classes satisfying (2.7) and (2.10) will be denoted by Fp+1(L, δ,∆),
and will be studied (for the case p = 1) in Chapter 5.

When the data come from a dynamic system, such that the regression vectors
depend on old values of y, this means that ϕ(i) and e(j) will not be independent
for all values of i, j anymore. However, we will neglect this fact for the time being,
and discuss the implications further in Chapter 7. Note also that for NFIR models
(see Section 1.1.2), such problems will not occur.

2.2 Kernel Estimators

A classic family of methods to decide the weights of (2.3) are the kernel estima-
tors. Here, a kernel function K, which usually is a symmetric probability density
function, is used to determine the weights. For simplicity, we will only treat the
univariate case in this section. Some common choices of kernel functions are the
Gaussian kernel

K(u) =
1√
2π

e−
u2
2 (2.11)

and the Epanechnikov kernel [45]

K(u) =
3
4

max{1− u2, 0} (2.12)

For more details about the kernel functions, see Section 2.5.
The width of the kernel is determined by introducing a bandwidth parameter

h, and letting

Kh(·) =
1
h

K(·/h) (2.13)

As an example of a kernel estimator, the Nadaraya-Watson estimator [113, 156]
(see also [123] for a related estimator) is given by

f̂NW (ϕ0) =
∑N

k=1 Kh(ϕ̃(k))y(k)∑N
i=1 Kh(ϕ̃(i))

(2.14)

Comparing this expression with (2.3), we can see that the weights are given by

wk =
Kh(ϕ̃(k))∑N
i=1 Kh(ϕ̃(i))

(2.15)

Apparently, the denominator makes the estimate a weighted average of y(k) by
normalizing so that

N∑
k=1

wk = 1

Another kernel estimator is the Gasser-Müller estimator [53]. Assuming that
the data ϕ(k) are ordered in ascending order, the Gasser-Müller estimator is defined

26 Nonparametric Methods and Local Modelling

by

f̂GM (ϕ0) =
N∑

k=1

∫ uk

uk−1

Kh(u− ϕ0)du y(k)

u0 = −∞, uN =∞, uk =
ϕ(k) + ϕ(k + 1)

2
for k = 1, . . . , N − 1

(2.16)

One advantage with this estimator compared to the Nadaraya-Watson estimator
is, as pointed out in [47], that no normalizing denominator is needed, since

N∑
k=1

∫ uk

uk−1

Kh(u− ϕ0)du =
∫ ∞
−∞

Kh(u− ϕ0)du = 1

if Kh is a probability density function.
For both these methods, the choice of bandwidth is a bias/variance trade-off

problem, which will be discussed more in detail in Section 2.4. The asymptotic
(for N →∞) bias and variance for the methods are given in Table 2.1, taken from
[47]. Here a random design is assumed, where the samples ϕ(k) are taken from
a distribution with a differentiable probability density function pϕ. Furthermore,
it is assumed that the true function f is two times differentiable. For notational
simplicity, the definitions

Ψk(K) =
∫

ukK(u)du (2.17)

r(K) =
∫

K2(u)du (2.18)

are used (it is assumed that these integrals exist and are finite). These definitions
will also be needed in later sections.

Table 2.1: Asymptotic bias and variance for the Nadaraya-Watson and Gasser-Müller
estimators.

Estimator Bias Variance

Nadaraya-Watson 1
2

(
f ′′(ϕ0) + 2f ′(ϕ0)p′ϕ(ϕ0)

pϕ(ϕ0)

)
h2Ψ2(K) σ2

pϕ(ϕ0)Nhr(K)

Gasser-Müller 1
2f ′′(ϕ0)h2Ψ2(K) 3

2
σ2

pϕ(ϕ0)Nhr(K)

The expressions in Table 2.1 also assume that ϕ0 is an interior point [47],
which means that the support of the kernel function (asymptotically) is within
the support of pϕ. Points that are not interior points are called boundary points.
Unfortunately, the kernel estimators are not very flexible, and cannot automatically
adapt to cases when data are asymmetrically distributed around ϕ0, e.g., when ϕ0 is
a boundary point. This often leads to a large increase in the bias, and is referred to
as boundary effects. The phenomenon can be understood intuitively by considering

2.3 Local Polynomial Modelling 27

the problem of estimating an increasing function in a point ϕ0 such that ϕ0 > ϕ(k)
for all k = 1, . . . , N . Using the Nadaraya-Watson or Gasser-Müller estimator with
a nonnegative kernel function, the estimate f̂(ϕ0) will be a weighted average of the
observations y(k) = f(ϕ(k))+e(k), and never gets larger than maxk y(k), although
it probably should.

To get around this problem, many methods have been proposed. For instance,
[53, 54] consider special boundary kernels to reduce the bias.

2.3 Local Polynomial Modelling

A slightly more sophisticated alternative to the kernel estimators is the local poly-
nomial modelling approach (see, e.g., [32, 47, 61, 147, 155]). In this approach, the
estimator is determined by locally fitting a polynomial to the given data via min-
imization of a weighted least-squares problem, which in the univariate case takes
the form

β̂ = arg min
β

N∑
k=1

Kh(ϕ̃(k))

y(k)−
p∑

j=0

βjϕ̃
j(k)

2

(2.19)

where Kh is given by (2.13). The resulting estimator is obtained as f̂LP (ϕ0) = β̂0.
When p = 0, it turns out that f̂LP (ϕ0) will be the Nadaraya-Watson estimator.

The Gasser-Müller estimator is instead obtained if Kh(ϕ̃(k)) in (2.19) is replaced
by

∫ ui
ui−1

Kh(u − ϕ0)du. Since we can obtain these estimators by locally fitting a
constant term to the observed data (i.e., by using (2.19) with p = 0), we can refer
to them as local constant approximators [47].

If we introduce

Φ =

1 ϕ̃(1) · · · ϕ̃p(1)
...

...
...

1 ϕ̃(N) · · · ϕ̃p(N)

 (2.20)

K̄h =


Kh(ϕ̃(1)) 0 · · · 0

0 Kh(ϕ̃(2)) · · · 0
...

...
. . .

...
0 0 · · · Kh(ϕ̃(N))

 (2.21)

and

Y =

 y(1)
...

y(N)

 , β =

β0

...
βp

 (2.22)

we can rewrite the problem (2.19) as

min
β

(Y − Φβ)T K̄h(Y − Φβ) (2.23)

with the solution
β̂ = (ΦT K̄hΦ)−1ΦT K̄hY (2.24)

28 Nonparametric Methods and Local Modelling

The function estimate f̂LP (ϕ0) is given by

f̂LP (ϕ0) = β̂0 = eT
1 (ΦT K̄hΦ)−1ΦT K̄hY (2.25)

Comparing once again to (2.3), this will correspond to

w = K̄hΦ(ΦT K̄hΦ)−1e1 (2.26)

These weights are often referred to as equivalent weights (see, e.g., [47]), to separate
them from the weights Kh(ϕ̃(k)) of the weighted least-squares problem (2.19). Note
also that, for j ≤ p, we have

N∑
k=1

wkϕ̃j(k) = eT
j ΦT w = eT

j ΦT K̄hΦ(ΦT K̄hΦ)−1e1 = eT
j e1 (2.27)

This is a desirable property, and will be shared by the DWO estimator in Chapters 3
and 4. For instance, as we will see in Chapter 3, they imply that the worst-case
MSE over Fp+1(L) is finite.

The case p = 1 may be worth a closer look. In this case, the estimator is called
a local linear estimator, and can be expressed explicitly as

f̂LP (ϕ0) =
∑N

k=1 αky(k)∑N
k=1 αk

, (2.28)

αk = Kh(ϕ̃(k))

(
N∑

i=1

Kh(ϕ̃(i))ϕ̃2(i)− ϕ̃(k)
N∑

i=1

Kh(ϕ̃(i))ϕ̃(i)

)

For the local linear estimator, (2.27) implies that

N∑
k=1

wk = 1,
N∑

k=1

wkϕ̃(k) = 0 (2.29)

Another interesting thing to note is that if Kh is an even function, and the data
samples are lying symmetrically, i.e., if the nonzero ϕ̃(k) can be paired so that for
each pair (ϕ̃(i), ϕ̃(j)) we have ϕ̃(i) = −ϕ̃(j), then the local linear estimator (2.28)
and the Nadaraya-Watson estimator will coincide.

The local polynomial models (for p ≥ 1) are better than the kernel estimators
at adapting automatically to data lying asymmetrically, e.g., at boundaries [47].
However, since the number of data samples taken into account is determined only
by the choice of bandwidth, there might (as pointed out by [34]) still be problems
if the latter choice is only asymptotically based and does not take the actual values
of ϕ(k) into account. Furthermore, the asymptotically optimal kernel functions are
different depending on if ϕ0 is an interior point or a boundary point.

2.3 Local Polynomial Modelling 29

−1 −0.5 0 0.5 1
1

1.5

2

2.5

(a) Function estimate (◦).

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(b) Equivalent weights.

Figure 2.1: The Nadaraya-Watson estimate from Example 2.1.

Example 2.1 (The Nadaraya-Watson and local linear estimators) Con-
sider again the data set in Example 1.4. The values of ϕ(t) are listed in Table 2.2.

Table 2.2: The values of ϕ(t) for the data set in Example 1.4.

t ϕ(t)
1 -0.9
2 -0.5
3 -0.3
4 0.1
5 0.4
6 0.9

Figure 2.1 shows the Nadaraya-Watson estimate of f(0) and the equivalent
weights, using the Epanechnikov kernel with bandwidth h = 0.5. In Figure 2.2 the
local linear estimate (using the same kernel) is shown together with its equivalent
weights.

An advantage with the local polynomial approach is that we can get estimates
not only of the function value f(ϕ0), but also of the derivatives f (j)(ϕ0). Since f is
locally approximated by a polynomial with the coefficients β̂j , a natural estimate
of the jth derivative (where j ≤ p) is

f̂ (j)(ϕ0) = j!β̂j = j!eT
j (ΦT K̄hΦ)−1ΦT K̄hY (2.30)

The equivalent weights for this estimator become

w(j) = j!K̄hΦ(ΦT K̄hΦ)−1ej (2.31)

30 Nonparametric Methods and Local Modelling

−1 −0.5 0 0.5 1
1

1.5

2

2.5

(a) Function estimate (◦).

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(b) Equivalent weights.

Figure 2.2: The local linear estimate from Example 2.1.

Estimates of the derivative using the DWO approach will be studied in Chapter 6.
So far in this section, only univariate functions f have been considered. How-

ever, the extension to the multivariate case is immediate for the local polynomial
modelling methods (including the Nadaraya-Watson estimator), given multivariate
kernel functions. Such functions will be described in Section 2.5.

2.4 Different Performance Criteria

To be able to select the weights of an estimator (which for the local polynomial
estimators corresponds to determining the kernel function and the bandwidth), one
needs a criterion function to measure the quality of the estimates. The criterion
function gives a value which is somehow related to the performance of the estima-
tor, and the task then becomes that of finding the weights that give the optimal
performance value. The criterion can be global, which could be useful if we would
like, e.g., a common bandwidth for the entire regressor space, or local (pointwise),
which, e.g., allows us to select a bandwidth for each estimation point. In this
section, some of the most common criteria will be presented.

2.4.1 The MSE and MISE Criteria

A commonly used pointwise criterion is the mean squared error (MSE), which is
defined as

MSE (f̂(ϕ0)) , E[(f̂(ϕ0)− f(ϕ0))2|ϕN
1] (2.32)

2.4 Different Performance Criteria 31

A nice property of the MSE is that it can be decomposed into a squared bias part
and a variance part

MSE (f̂(ϕ0)) =
(
E[f̂(ϕ0)|ϕN

1]− f(ϕ0)
)2

︸ ︷︷ ︸
Bias2

+ E[
(
f̂(ϕ0)− E[f̂(ϕ0)|ϕN

1]
)2

|ϕN
1]︸ ︷︷ ︸

Variance

(2.33)
For a linear estimator in the form (2.3), the bias can be written as

B(w) =
N∑

k=1

wkf(ϕ(k))− f(ϕ0) (2.34)

The variance becomes

v(w) = σ2
N∑

k=1

w2
k (2.35)

A global criterion can be obtained by integrating the MSE over ϕ0. This crite-
rion is called the mean integrated squared error (MISE):

MISE (f̂) , E[
∫

(f̂(ϕ)− f(ϕ))2dϕ|ϕN
1] =

∫
MSE (f̂(ϕ))dϕ (2.36)

Often when using random design, the following alternative definition of the MISE
is used [155]:

MISEp(f̂) ,
∫

MSE (f̂(ϕ))pϕ(ϕ)dϕ (2.37)

i.e., the integral is weighted by the probability density function pϕ of ϕ. According
to the definition in [47], an arbitrary nonnegative weight function can be used
instead of pϕ.

When using a local polynomial modelling method to calculate the weights, a
drawback with the MSE is that it depends on the bandwidth h in a complicated
way. One way of getting around this is to consider the case when N is large, which
leads to the asymptotic mean squared error (AMSE). To derive this criterion, it is
assumed that the data samples are equally spaced on a bounded interval (similar
expressions can also be derived for random design with a sufficiently smooth prob-
ability density function pϕ; see, e.g., [155]). For a univariate local linear estimator,
we get the following expression for the bias

B(K,h) =
1
2
h2f ′′(ϕ0)Ψ2(K) + o(h2) + O(

1
N

) (2.38)

and the variance
v(K,h) =

1
Nh

r(K)σ2 + o(
1

Nh
) (2.39)

Taking only the first parts of these expressions, we can form the AMSE

AMSE (f̂(ϕ0)) =
(

1
2
h2f ′′(ϕ0)Ψ2(K)

)2

+
1

Nh
r(K)σ2 (2.40)

32 Nonparametric Methods and Local Modelling

which for large Nh and small h will be a good approximation of the MSE (more
precisely, as h → 0, Nh → ∞, the ratio between the AMSE and the MSE will
approach 1). This expression can now be minimized with respect to h to get
the asymptotically optimal local bandwidth. Since, as we can see, the bias part
increases and the variance part decreases with h, this is a classic bias/variance
tradeoff. The minimizing h is given by

hAMSE =
(

r(K)σ2

(f ′′(ϕ0))2Ψ2
2(K)

) 1
5

N−
1
5 (2.41)

If we instead are interested in an asymptotically optimal global bandwidth, we can
do the same procedure with the MISE. The asymptotic mean integrated squared
error (AMISE) becomes:

AMISE (f̂) =
1
4
h4r(f ′′)Ψ2

2(K) +
1

Nh
r(K)σ2 (2.42)

and we get the asymptotically optimal global bandwidth

hAMISE =
(

r(K)σ2

r(f ′′)Ψ2
2(K)

) 1
5

N−
1
5 (2.43)

The multivariate AMSE and AMISE for local linear estimators are defined analo-
gously. For details about this, see [136, 146].

2.4.2 The Mean Squared Prediction Error and Risk Func-
tion

Another global criterion is the mean squared prediction error

P (f̂) =
1
N

N∑
k=1

(
f(ϕ(k))− f̂(ϕ(k))

)2

(2.44)

This is closely related to the risk function

R(f̂) =
1

Nσ2

N∑
k=1

E[
(
f(ϕ(k))− f̂(ϕ(k))

)2

|ϕN
1] =

1
σ2

E[P (f̂)|ϕN
1] (2.45)

A common problem with the criteria mentioned so far is that they all depend
on the unknown true function f . To handle this, many different alternative criteria
have appeared that approximate one of the above criteria. The methods of finding
the approximations can be divided into two classes:

• Classical methods, for example cross-validation, generalized cross-validation,
Akaike’s criteria, and Mallows’ Cp criterion, are extensions of methods used
in parametric system identification.

• In direct plug-in methods, the unknown variables of the AMSE and AMISE
formulas are estimated from data, and the estimates are “plugged in” into the
expressions (2.41) or (2.43) for finding an asymptotically optimal bandwidth.

2.4 Different Performance Criteria 33

2.4.3 Classical Methods

Most classical methods use the mean squared prediction error function P (f̂) or
the risk function R(f̂) as a starting point and try to approximate these using
only known quantities. A very simple approximation of P (f̂) is the resubstitution
estimate of the prediction error, obtained by replacing the true function values
f(ϕ(k)) in P (f̂) by the measured observations y(k):

P̂ (f̂) =
1
N

N∑
k=1

(
y(k)− f̂(ϕ(k))

)2

(2.46)

Unfortunately, this is a biased estimate of P (f̂), and for local polynomial modelling
methods this function is an increasing function of h. The reason for this is that
we try to estimate the observations y(k) using the observations themselves (recall
that f̂ is a weighted sum of y(k), according to (2.3)), and so we get a perfect fit
if the estimate of y(k) is chosen to be y(k) itself (i.e., wk = 1, while wi = 0 for
i 6= k). This can be thought of as an overfitting phenomenon.

To overcome this problem, one can use a cross-validation strategy, or one can
multiply P̂ (f̂) by a penalizing function to better mimic P (f̂).

Before we go into the different procedures for doing this, however, we will need
some additional notation, which is given in [146] for local polynomial modelling
methods. Let w(ϕ) denote the vector of weights for estimating f in the point ϕ.
Now we can define the so-called hat matrix or smoothing matrix

H ,

 wT (ϕ(1))
...

wT (ϕ(N))

 (2.47)

This matrix is interesting in several aspects. Note that f̂(ϕ(1))
...

f̂(ϕ(N))

 = HY (2.48)

with Y defined by (2.22). Furthermore, as explained in [146], tr(H) can be in-
terpreted as a degrees-of-freedom measure. To see this intuitively, consider the
most localized possible estimator, where only wk(ϕ(k)) = 1 and the rest of the
weights are zero. For this estimator with many degrees of freedom, tr(H) = N .
On the other hand, when fitting a global constant model to the data (one degree
of freedom), so that all weights wi(ϕ(k)) = 1/N , we get tr(H) = 1.

A quantity related to the hat matrix is the influence function [96], which is
defined as

infl(ϕ0) = eT
1 (ΦT K̄hΦ)−1e1Kh(0) (2.49)

where Φ was defined in (2.20). Note that the diagonal elements of H are given by
wk(ϕ(k)) = infl(ϕ(k)).

34 Nonparametric Methods and Local Modelling

Cross-Validation

A simple way to get around the overfitting problem of the estimator (2.46) is to
use one leave-out cross-validation [61], where the cross-validation function

CV (f̂) =
1
N

N∑
k=1

(
y(k)− f̂−k(ϕ(k))

)2

(2.50)

is used. Here f̂−k(ϕ(k)) stands for the estimate obtained when leaving out the kth
observation.

For local polynomial modelling, one can compute CV (f̂) in a more efficient
way:

CV (f̂) =
1
N

N∑
k=1

(
y(k)− f̂(ϕ(k))
1− infl(ϕ(k))

)2

(2.51)

Generalized Cross-Validation

The generalized cross-validation criterion is a simplified version of the one leave-out
cross-validation, where the values infl(ϕ(k)) in (2.51) are replaced by their mean
value tr(H)/N . The resulting criterion can also be interpreted as a penalizing
approach, namely

GCV (f̂) = P̂ (f̂)
1(

1− tr(H)
N

)2 (2.52)

Akaike’s Criteria

Other penalizing approaches can be obtained by modifying Akaike’s criteria for
parametric methods [1]. These criteria contain dim θ as a measure of the degrees
of freedom. For nonparametric methods, this quantity could be replaced by tr(H)
(see [146]). Akaike’s information criterion then becomes∗

AIC (f̂) = P̂ (f̂)e2
tr(H)
N (2.53)

It has turned out that the AIC criterion often results in a rather small penalty. An
enhanced variant is the corrected AIC [68]

AICC(f̂) = P̂ (f̂)e1+
2(tr(H)+1)
N−tr(H)−2 (2.54)

Yet another related criterion is Akaike’s Final Prediction Error

FPE (f̂) = P̂ (f̂)
1 + tr(H)

N

1− tr(H)
N

(2.55)

∗In its original form, Akaike’s criterion actually corresponds to the logarithm of (2.53).

2.4 Different Performance Criteria 35

Mallows’ Cp Criterion

Mallows’ Cp criterion [102] for parametric methods is an unbiased criterion of
the risk function (2.45), which was extended to local regression by Cleveland and
Devlin [33]. The latter version can be written

CP(f̂) =
1
σ2

P̂ (f̂) + 2
tr(H)

N
− 1 (2.56)

Localized Versions

All criteria mentioned in this subsection are global. However, they can be localized
(or made adaptive) by weighting the sums, so that the influence from data lying
close to ϕ0 becomes more important. For local polynomial methods, the weights
used for this are those given by the kernel, i.e., the same weights as in the weighted
least-squares problem (2.19). Instead of using f̂(ϕ(k)), e.g., as in (2.50), the local
polynomial model estimated in ϕ0 is used (i.e., the polynomial with the coefficient
β̂ from (2.19)). Denoting this polynomial by f̄ϕ0(ϕ), we can for instance write the
localized cross-validation as

LCV (f̂(ϕ0)) ,
∑N

k=1 Kh(ϕ̃(k))
(
y(k)− f̄ϕ0

−k(ϕ(k))
)2∑N

k=1 Kh(ϕ̃(k))
(2.57)

Analogously to the global case, f̄ϕ0
−k means the estimate we get when leaving out

the kth observation. For details about localization of the other criteria, see [146].

2.4.4 Direct Plug-In Methods

The main alternative to the classical methods occurring in the literature is the
class of direct plug-in methods [47, 155]. These methods use the formulas (2.41)
and (2.43) for the asymptotically optimal bandwidths, and “plug in” estimates of
the unknown quantities, e.g., r(f ′′) and σ2 for hAMISE . To get the estimates, a
preliminary model (e.g., a global, higher-order model) is used to obtain so-called
pilot estimates, for instance of f(ϕ(k)) and f ′′(ϕ(k)). Then r(f ′′) can be estimated
by

r̂(f ′′) =
1
N

N∑
k=1

(
ˆ̂
f ′′(ϕ(k))

)2

(2.58)

and σ2 by

σ̂2 =
1

N − 2 tr(H) + tr(HT H)

N∑
k=1

(
y(k)− ˆ̂

f(ϕ(k))
)2

(2.59)

where ˆ̂
f ′′(ϕ(k)) and ˆ̂

f(ϕ(k)) are pilot estimates.
Plug-in methods have been popular during the last decade, and they have by

some been regarded as superior to classical methods. However, Loader [95, 97]
challenges this, and points out that they very much depend on the choice of pilot

36 Nonparametric Methods and Local Modelling

bandwidth. If this is not appropriately chosen, something which may be hard to
do ad hoc, the final selected bandwidth may also be bad.

2.4.5 The Worst-Case MSE Criterion

An alternative to approximating a noncomputable criterion is to find a computable
upper bound. This approach has the advantage of having a certain degree of built-
in robustness, in the sense that we can give a guarantee that the fit will not be
worse than a certain limit (if all assumptions about the function, noise etc., are
correct). This limit value is then what is optimized.

As mentioned previously, a common pointwise criterion is the worst-case MSE
which is the supremum of the MSE over a given function class F , i.e.,

WMSE (f̂(ϕ0),F) = sup
f∈F

E[(f̂(ϕ0)− f(ϕ0))2|ϕN
1] (2.60)

This criterion will often be used in this thesis. Kernel estimators that minimize
the worst-case MSE over a function class are sometimes called minimax estimators
[85, 88, 137, 138].

An interesting quantity in this context is the linear minimax risk (see [47]),
defined by

R(F) = inf
f̂(ϕ0)

sup
f∈F

E[(f̂(ϕ0)− f(ϕ0))2|ϕN
1] (2.61)

where the infimum is taken over all linear estimators. This can be interpreted as
the best possible performance (in terms of worst-case MSE) one can get using a
linear estimator.

2.5 Kernel Functions

The performance of the kernel estimators and local polynomial estimators naturally
depends on what kernel function is used. As mentioned in Section 2.2, the kernel
function is normally chosen as a symmetric probability density function, which
means that it satisfies the conditions∫

K(u)du = 1,
∫

uK(u)du = 0 (2.62)

It also means that K(u) ≥ 0 for all u. However, sometimes it is useful to consider
kernel functions that also take negative values. The kernel functions known as
high-order kernels are examples of such kernels.

A popular family of kernels is the “symmetric Beta family” [47], defined by

1
Beta(1

2 , γ + 1)
max{1− u2, 0}γ , γ ∈ N (2.63)

Here, the Beta function just acts as a normalizing factor, making the kernel satisfy
(2.62). When γ = 0, we get the uniform kernel. The choice γ = 1 leads to

2.5 Kernel Functions 37

the Epanechnikov kernel (2.12). The kernels obtained for γ = 2 and γ = 3 are
called biweight and triweight kernels, respectively [47]. A common property for the
“symmetric Beta family” is that the kernels have finite support, which is desirable
from a computational point of view [34].

In some applications where kernels that smoothly descend to zero are desirable
(e.g., in signal processing and spectral analysis), a common kernel is the tricube
kernel

K(u) =
70
81

max{1− |u|3, 0}3 (2.64)

This kernel is the default choice in the robust Lowess and Loess estimators [32,
33], and Locfit [96] estimators. Also other kernels have been proposed; see, e.g.,
[74].

When estimating multivariate functions, one also needs multivariate kernel
functions. A common method is to construct a multivariate kernel function K(u)
from a univariate function K1(u), either via a product construction

K(u) =
n∏

i=1

K1(ui) (2.65)

or using a radial construction

K(u) = CKK1(‖u‖) (2.66)

where CK is a normalizing constant. Common choices of multivariate kernels are
the Gaussian kernel, which can be regarded as being constructed by either of the
product or radial constructions, and the spherical Epanechnikov kernel [47]

K(u) = CK max{1− ‖u‖2, 0} (2.67)

which is a radial construction.
To specify the width of the kernel a bandwidth matrix H̄ is introduced, and the

kernel
KH̄(u) = det(H̄)−1K(H̄−1u) (2.68)

is used when calculating the weights. To avoid having too many design parameters,
one often does not let H̄ be fully parameterized, but uses a diagonal matrix or,
even simpler, H̄ = hI, where I is the identity matrix.

2.5.1 Optimal Kernels

In the statistical literature, there exist many optimality results about kernels. A
number of them consider the asymptotic mean squared error.

For kernel estimators, Legostaeva and Shiryaev [85] consider the class of func-
tions Gp+1(L) described by (2.9). The kernel estimator they consider is a continuous
version of (2.3), namely

f̂(ϕ0) =
∫ ∞
−∞

Kh(ϕ̃)y(ϕ)dϕ

38 Nonparametric Methods and Local Modelling

where y(ϕ) = f(ϕ) + η(ϕ), and η(ϕ) is a “white noise” process with E[η(ϕ)] = 0,
E[η(φ)η(ϕ)] = σ2δ(φ− ϕ). With some additional assumptions, one may interpret
this as an asymptotic approximation to the fixed, equally spaced design. For this
setup, a necessary and a sufficient condition for a weight function to minimize the
worst-case MSE (2.6) is given. It turns out that the asymptotically optimal kernel
functions have the form

K(u) = sgn Pp(u)max{|Pp(u)| − ψ0|t|p+1, 0} (2.69)

where Pp(u) is a pth order polynomial, whose coefficients together with ψ0 > 0
should be determined from∫ ∞

−∞
K(u)du = 1,

∫ ∞
−∞

K2(u)du = q,

∫ ∞
−∞

ukK(u)du = 0 (2.70)

where q is a positive constant and k = 1, . . . , p. In particular, for p = 1, the optimal
kernel is the Epanechnikov kernel. The minimax problem for Gp+1(L) has also been
considered, e.g., in [137].

Kernel estimators that minimize the asymptotic worst-case MSE for the Hölder
class Σ(β, L) defined by (2.8) are given in [88], where a similar kernel estimator as
in [85] is considered. For the special case β = 2 (i.e., for F2(L)), which was also
considered in [162], the kernel function is a symmetric quadratic spline, having
an infinite number of knots (breakpoints) in a finite interval. Furthermore, its
local extrema have alternating signs and form a geometric series. Originally, this
function was given as a solution of a related problem in [50].

In [54], asymptotic minimum variance kernels and asymptotically optimal ker-
nels in the AMISE sense are given for estimation of a p times differentiable function
and its derivatives. Also here, the Epanechnikov kernel turns out to be optimal in
a special case.

For local polynomial modelling with random design, the Epanechnikov kernel
has been shown to be optimal among the nonnegative kernels in the AMSE and
AMISE sense [47]. In [47], it is also shown that the local linear estimator asymp-
totically achieves the linear minimax risk for a class of functions satisfying (2.9), if
the Epanechnikov kernel is used with a bandwidth given by

h =
(

15σ2

pϕ(ϕ0)L2N

)1/5

(2.71)

where pϕ is the probability density of the observations ϕ(k) (cf. (2.41)).

2.6 Gaussian Processes

A slightly different approach to local modelling is the modelling by Gaussian pro-
cesses (see, e.g., [56, 125]). An excellent introduction to the subject can be found
in [101]. A Gaussian process can informally be described as a Gaussian probability
distribution on a space F of functions f(ϕ). More formally, a Gaussian process is

2.6 Gaussian Processes 39

a collection of random variables {f(ϕ)}ϕ∈Φ, indexed by a set Φ, such that for any
finite subset {ϕ(1), . . . , ϕ(N)} ⊆ Φ, the corresponding set {f(ϕ(1)), . . . , f(ϕ(N))}
has a joint multivariate Gaussian distribution.

A Gaussian process is fully specified by its mean function

µ(ϕ) = E[f(ϕ)]

and covariance function

C(ϕ(i), ϕ(j)) = E[(f(ϕ(i))− µ(ϕ(i)))(f(ϕ(j))− µ(ϕ(j)))]

Often µ(ϕ) is assumed to be identically equal to zero.
The system model used is the general model (2.1), where the noise terms e(t)

are assumed to be independent, identically distributed Gaussian variables with
variance σ2. This implies that {y(t)}N+1

t=1 are jointly Gaussian, with zero mean (if
µ(ϕ) ≡ 0) and a covariance matrix

CN+1 = Q + σ2I

where

Q =


C(ϕ(1), ϕ(1)) C(ϕ(1), ϕ(2)) · · · C(ϕ(1), ϕ(N + 1))
C(ϕ(2), ϕ(1)) C(ϕ(2), ϕ(2)) · · · C(ϕ(2), ϕ(N + 1))

...
...

. . .
...

C(ϕ(N + 1), ϕ(1)) C(ϕ(N + 1), ϕ(2)) · · · C(ϕ(N + 1), ϕ(N + 1))


For calculation of the one-step-ahead prediction, we will need to partition the
covariance matrix CN+1 as follows

CN+1 =
(

CN kN

kT
N κ

)
where CN ∈ RN×N , kN ∈ RN , and κ ∈ R. Also introduce

Y =

 y(1)
...

y(N)


Given a Gaussian process with µ(ϕ) ≡ 0 and C(ϕ(i), ϕ(j)) given, the prediction

of y(N + 1) can now be performed using

P (y(N + 1)|yN
1) =

P (yN+1
1)

P (yN
1)

This conditional probability distribution is Gaussian, with mean and variance given
by

ŷ(N + 1) , E[y(N + 1)|yN
1] = kT

NC−1
N Y

E[(y(N + 1)− ŷ(N + 1))2|yN
1] = κ− kT

NC−1
N kN

40 Nonparametric Methods and Local Modelling

Notice that the prediction ŷ(N +1) is a linear function of the previous outputs, i.e.,
it can be written in the form (2.3). In general, however, the conditions (2.29) are
not satisfied, which (as we will see in Chapter 3) means that the worst-case MSE
over F2(L) is infinite. Another thing to note is that neither CN nor Y depend on
ϕ(N + 1), so ŷ(N + 1) can be written in the form

ŷ(N + 1) =
N∑

t=1

vtC(ϕ(t), ϕ(N + 1))

where

v =

 v1

...
vN

 = C−1
N Y

In words, the prediction ŷ(N +1) as a function of ϕ(N +1) is a weighted sum of the
covariance function between ϕ(N + 1) and all the previous regression vectors ϕ(t).
Hence, the basic shape of the predicted function is completely determined by the
shape of the covariance function C(ϕ(i), ϕ(j)). Therefore, an important problem
should be to find the “true” Gaussian process, i.e., the “true” covariance function.

Finding the form of the covariance is a problem related to finding the proper
model structure in parametric system identification. Assuming a certain structure,
a common approach is to use a parameterized covariance function, and estimate
the parameters θ by maximizing P (θ|ZN

1) (Evidence maximization, see [100]). This
is in general a nonconvex optimization problem. Another approach is to compute

P (y(N + 1)|ϕ(N + 1), ZN
1) =

∫
P (y(N + 1)|ϕ(N + 1), ZN

1 , θ)P (θ|ZN
1)dθ

numerically using Monte Carlo methods [116, 158].
There are several approaches which could be interpreted as Gaussian processes

[100]. One such example is [67], which uses a parameterized piecewise affine model
with Gaussian a priori distributions for the parameters. Inference is done via
Monte Carlo methods.

2.7 A Direct Weight Optimization Approach

Most of the different methods given in this chapter for choosing the weights wk in
the linear estimator (2.3) were all justified using asymptotic arguments, as N →∞.
However, in reality only a finite number of data is given. Furthermore, these data
may be sparsely and nonuniformly spread. This might deteriorate the performance
of the estimation methods, as pointed out in [34]. In that paper, the suggested
solution is to use either a nearest neighbor bandwidth selection approach, perhaps
combined with an adaptive bandwidth selection using a localized Cp criterion.

In the following chapters, we will instead present a nonasymptotic approach
for determining the weights, based on a uniform (over Fp+1(L)) upper bound on

2.7 A Direct Weight Optimization Approach 41

the MSE (and hence on the worst-case MSE and linear minimax risk). Unlike,
e.g., the local polynomial modelling methods, the approach directly optimizes the
criterion with respect to the weights wk, without using any kernel function or local
polynomial model. Hence, it will be called a direct weight optimization (DWO)
approach. Similar ideas were also given in [138].

Chapter 3 considers the case when f is univariate (f : R → R) and belongs to
F2(L). The extension to multivariate functions and a Lipschitz condition on the
pth derivative (i.e., f ∈ Fp+1(L)) is then treated in Chapter 4.

If there are a priori known bounds on f(ϕ0) and/or ∇f(ϕ0), this can easily
be incorporated into the DWO approach. This is described in Chapter 5. Chap-
ter 6 presents other possible extensions, such as estimating the derivative, while
conclusions are given in Chapter 7.

42 Nonparametric Methods and Local Modelling

3

Local DWO Modelling of

Univariate Functions

As could be seen in Chapter 2 and Example 1.4, many methods for local modelling
end up in a linear estimator in the form (2.3). The direct weight optimization
(DWO) approach presented in this and following chapters is based on the idea
of optimizing the linear estimator directly with respect to the weights, without
taking the detour of fitting a local model to the data or deciding the weights from
an asymptotically optimal kernel function. The criterion which is optimized is an
upper bound on the (worst-case) MSE.

An early contribution following these lines is [138], where the authors consider
the minimax estimation problem for an extension of the class Gp+1(L). The idea
of obtaining the weights via optimization was also proposed in [146], where an
estimate of the MSE is minimized. In the latter approach a bandwidth and an
estimate of the Hessian have to be provided. This is solved via iterative search
over different bandwidths, and by using a localized version of the criteria given in
Section 2.4.3 to choose an appropriate bandwidth. The estimate of the Hessian is
given by first estimating a local cubic model. In contrast, the method given in this
thesis just needs the ratio L/σ in advance, where L is the Lipschitz constant in
(2.7) and σ2 is the noise variance. In the following chapters, we will assume that
this ratio is given. However, if it is not known, a procedure similar to that in [146]
could be used. This is further discussed in Chapter 7.

The present chapter focuses on the estimation of univariate functions with a
Lipschitz condition on the first derivative, and presents the basic ideas behind the

43

44 Local DWO Modelling of Univariate Functions

DWO approach. Section 3.2 also shows some of the properties of the approach and
its solutions.

3.1 The DWO Approach

Let us, just as in Chapter 2, consider the problem of estimating the value f(ϕ0)
of an unknown univariate function f : R → R at a given point ϕ0, given a set of
input-output pairs {(ϕ(k), y(k))}Nk=1, coming from the relation

y(k) = f(ϕ(k)) + e(k) (3.1)

Here, we will assume that the function f is continuously differentiable, and that
there is a Lipschitz constant L such that

|f ′(ϕ(1))− f ′(ϕ(2))| ≤ L|ϕ(1)− ϕ(2)| ∀ϕ(1), ϕ(2) ∈ R (3.2)

We use the notation F2(L), introduced in Section 2.1, for this class of functions.
As before, the noise terms e(k) are independent random variables with E[e(k)] =

0 and E[e2(k)] = σ2, and are assumed to be independent of ϕ(i) for all i. Both
L and σ are assumed to be positive constants, given a priori. We also use the
previously introduced notation

ϕ̃(k) = ϕ(k)− ϕ0 (3.3)

To estimate f(ϕ0), we will use a linear estimator in the form (2.3), i.e.,

f̂(ϕ0) =
N∑

k=1

wky(k) (3.4)

The criterion we consider is the worst-case MSE, defined by (2.60). For the esti-
mator (3.4) and the function class F2(L), the worst-case MSE becomes

WMSE (f̂(ϕ0),F2(L)) = sup
f∈F2(L)

E[

(
N∑

k=1

wky(k)− f(ϕ0)

)2

|ϕN
1]

= sup
f∈F2(L)

E[

(
N∑

k=1

wk(f(ϕ(k)) + e(k))− f(ϕ0)

)2

|ϕN
1]

= sup
f∈F2(L)

(
N∑

k=1

wkf(ϕ(k))− f(ϕ0)

)2

+ σ2
N∑

k=1

w2
k (3.5)

= sup
f∈F2(L)

(
f(ϕ0)

(
N∑

k=1

wk − 1

)
+ f ′(ϕ0)

N∑
k=1

wkϕ̃(k)

+
N∑

k=1

wk (f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k))

)2

+ σ2
N∑

k=1

w2
k

3.1 The DWO Approach 45

By Lemma A.3 in the Appendix, the last sum of the bias is bounded according to

|f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k)| ≤ L

2
ϕ̃2(k) (3.6)

However, f(ϕ) and f ′(ϕ) may be arbitrarily large. Hence, for the worst-case bias
(and hence the worst-case MSE) in (3.5) to be finite, some requirements on the
weights wk are needed, namely

N∑
k=1

wk = 1 (3.7a)

N∑
k=1

wkϕ̃(k) = 0 (3.7b)

These are exactly the same relations as (2.29), which were satisfied by the local
linear estimator. If (3.7) does not hold, the bias is unbounded over F2(L). More-
over, under these restrictions, any linear function is estimated with zero bias, since
also the last term of the bias (the left hand side in (3.6)) is zero in this case.

Unfortunately, even though it turns out that the worst-case MSE (3.5) is a
convex function of the weights wk (this will be discussed further in Section 6.2), it is
relatively difficult to minimize directly with respect to w. Instead, an upper bound
on (3.5) will be derived and minimized in the following section. Section 6.2 analyzes
the problem of minimizing the exact worst-case MSE. However, if considering the
function class G2(L) given by (2.9), we will see that the upper bound will be tight,
and therefore it will be the exact worst-case MSE which is minimized.

3.1.1 Minimizing an Upper Bound on the Worst-Case MSE

Under the restrictions (3.7), the worst-case MSE becomes

WMSE (f̂(ϕ0),F2(L)) (3.8)

= sup
f∈F2(L)

(
N∑

k=1

wk (f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k))

)2

+ σ2
N∑

k=1

w2
k

Using (3.6), we can get an upper bound on this expression

WMSE (f̂(ϕ0),F2(L)) ≤ L2

4

(
N∑

k=1

ϕ̃2(k)|wk|
)2

+ σ2
N∑

k=1

w2
k (3.9)

Note that this bound is tight and attained by a parabola with f ′′(ϕ) = L if the
weights wk are nonnegative. Also, if the function class G2(L) is considered instead
of F2(L), we have

sup
f∈G2(L)

(
N∑

k=1

wk (f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k))

)2

=
L2

4

(
N∑

k=1

ϕ̃2(k)|wk|
)2

46 Local DWO Modelling of Univariate Functions

where the supremum is attained, e.g., if

f(ϕ0) = f ′(ϕ0) = 0, f(ϕ(k)) =
L

2
sgn(wk)ϕ̃2(k), k = 1, . . . , N

This means that the worst-case MSE in this case is given by the right-hand side of
(3.9), and that we nonasymptotically reach the linear minimax risk.

It is now natural to minimize the upper bound in (3.9). Hence, we would like to
choose the values of wk that minimize the following convex optimization problem:

min
w

L2

4

(
N∑

k=1

ϕ̃2(k)|wk|
)2

+ σ2
N∑

k=1

w2
k

subj. to
N∑

k=1

wk = 1

N∑
k=1

wkϕ̃(k) = 0

(3.10)

It turns out that this problem can be rewritten as a convex quadratic program (QP)
[19], as the following theorem shows.

Theorem 3.1
Consider the optimization problem (3.10). The weight vector w∗ = (w∗1 . . . w∗N)T

is a minimizer of (3.10) if and only if there is a vector s∗, such that (w∗, s∗) is a
minimizer of the following QP:

min
w,s

L2

4

(
N∑

k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k

subj. to sk ≥ wk

sk ≥ −wk

N∑
k=1

wk = 1

N∑
k=1

wkϕ̃(k) = 0

(3.11)

Furthermore, s∗k = |w∗k|, k = 1, . . . , N .

Proof Given a feasible solution w to (3.10), we can get a feasible solution to (3.11)
with the same value of the objective function by using the same w and sk = |wk|.
Hence (3.11) is a relaxation of (3.10), and it suffices to show that when the optimal
value of (3.11) is reached, then sk = |wk| for all k = 1, . . . , N . Suppose, e.g., that
s1 > |w1|. Then, without changing any other variables, the value of the objective

3.1 The DWO Approach 47

function can be reduced by decreasing s1. This can be seen by observing that
the coefficient before s1 in the first sum of the objective function is nonnegative,
and the coefficient before s2

1 in the second sum is positive, so decreasing s1 will
decrease the objective function. Therefore, when the objective function will reach
its minimum, then sk = |wk|, and the equivalence is shown. �

Looking at the QP (3.11), if we divide the objective function by σ2, we can note
that only the ratio L/σ is important for determining the weights w∗k, and not the
actual values of L and σ. Intuitively, the larger ratio L/σ, the smaller number of
data should be taken into account, since the bias term becomes more dominating
with a larger ratio. Example 3.1 will illustrate this.

It should be pointed out, that the fact that the upper bound in (3.9) is tight for
nonnegative weights wk (considering the function class F2(L)) does not necessarily
mean that minimizing (3.11) yields the weights that minimize the worst-case MSE,
even if the resulting weights are positive. The reason for this is that a subset of
the weights that really minimize the worst-case MSE may be negative, and so the
upper bound is not tight for these weights. This is discussed in greater detail in
Section 6.2.

Solving the QP (3.11) can be done very efficiently using standard solvers, e.g.,
Cplex [70].

Example 3.1 Consider once again the data set from Examples 1.4 and 2.1. For a
given ratio L/σ, we can compute the weights wk of the DWO approach by solving
(3.11). The QP we need to solve can be written

min
w,s

L2

4
(
(−0.9)2s1 + (−0.5)2s2 + (−0.3)2s3 + 0.12s4 + 0.42s5 + 0.92s6

)2

+ σ2
6∑

k=1

s2
k

subj. to sk ≥ wk

sk ≥ −wk

6∑
k=1

wk = 1

− 0.9w1 − 0.5w2 − 0.3w3 + 0.1w4 + 0.4w5 + 0.9w6 = 0
(3.12)

Figure 3.1 shows the weights for some different values of L. Note that for high
values of L, most of the weights are zero. We will see in Section 3.2 that this is
a general property. For very large L values, the weights equal those of the linear
interpolation in Example 1.4. The smaller the value of L, the more nonzero weights
we get. If L = 0, we obtain the same weights as for a global linear regression, as
we will see later in Theorem 3.5.

48 Local DWO Modelling of Univariate Functions

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(a) L/σ = 30.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(b) L/σ = 20.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(c) L/σ = 10.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

(d) L/σ = 2.

Figure 3.1: The weights obtained using DWO on the data set in Example 3.1 for some
different values of L/σ.

3.2 Some Properties of the Approach

Having found the weights minimizing (3.10), let us analyze the solution and see
what different properties it has.

3.2.1 Automatic Finite Bandwidth and Boundary Adapta-
tion

An interesting feature of the DWO approach is that in most cases, the weights wk

corresponding to ϕ(k) lying beyond a certain distance from ϕ0 will be zero (see,
e.g., Example 3.1). This means that we automatically get a finite bandwidth, and
that the user does not have to bother about how many of the samples should be
included in the estimator (in contrast to, e.g., the optimization approach in [146],
where the bandwidth has to be specified). As pointed out, e.g., in [34], the fact that

3.2 Some Properties of the Approach 49

0

0

Weight curve

φ

Figure 3.2: Basic shape of the weight curve (solid curve). The dash-dotted parabolas
are ±gϕ̃2, and the dashed line is µ1 + µ2ϕ̃. (The weight curve is scaled by a factor 4 to
make the figure more clear.)

the bandwidth is finite is desirable from a computational point of view, since only
a fraction of the data will be involved in the estimation. The following theorem
holds for the DWO approach (a similar theorem, in a slightly different setting, was
also shown in [138]; however, here we give an independent proof):

Theorem 3.2
Suppose that the problem (3.11) is feasible, and σ > 0. Then there exist three
numbers µ1 > 0, µ2, and g ≥ 0, such that for an optimal solution (w∗, s∗), we have

w∗k =


µ1 + µ2ϕ̃(k)− gϕ̃2(k), gϕ̃2(k) ≤ µ1 + µ2ϕ̃(k)
0, |µ1 + µ2ϕ̃(k)| ≤ gϕ̃2(k)
µ1 + µ2ϕ̃(k) + gϕ̃2(k), µ1 + µ2ϕ̃(k) ≤ −gϕ̃2(k)

(3.13)

Moreover, if there are two indices k1 and k2, such that 0 6= ϕ̃(k1) 6= ϕ̃(k2) 6= 0,
then g > 0.

Remark 3.1 Figure 3.2 shows the basic shape of the curve along which the weights
w∗k are placed. When gϕ̃2(k) ≤ µ1 + µ2ϕ̃(k) (which in the figure corresponds to
the dashed line being above the upper dash-dotted parabola), the weights will
be positive. When µ1 + µ2ϕ̃(k) ≤ −gϕ̃2(k) (the dashed line is below the lower
dash-dotted parabola), the weights are negative, and otherwise they are zero.

50 Local DWO Modelling of Univariate Functions

In Figure 3.3, the weights are shown for some different cases. We can see clearly
that the bandwidth increases with a decreasing ratio L/σ, and that negative weights
occur if the data samples are asymmetrically placed around the point of interest.

More explicit expressions for the weights are given in Section 3.2.2.

Proof The proof uses the Karush-Kuhn-Tucker (KKT) conditions (see, e.g.,
[117]). Since the QP (3.11) is a convex optimization problem with linear con-
straints, the KKT conditions are necessary and sufficient conditions for optimality
of a solution (see, e.g., [19] for details).

The Lagrangian function of (3.11) can be written

L(w, s;µ, λ) =
L2

4

(
N∑

k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k − 2σ2µ1

(
N∑

k=1

wk − 1

)

− 2σ2µ2

N∑
k=1

wkϕ̃(k)− 2σ2
N∑

k=1

(λ+
k (sk − wk) + λ−k (sk + wk))

(3.14)

where λ±k ≥ 0, k = 1, . . . , N , and µ are the Lagrangian multipliers, scaled by a
factor 1/2σ2. Since s∗k = |w∗k| for an optimal solution (w∗, s∗), the KKT conditions
are equivalent to the following relations:

µ1 + µ2ϕ̃(k) = λ+
k − λ−k (3.15a)

L2

4σ2

(
N∑

t=1

ϕ̃2(t)|w∗t |
)

ϕ̃2(k) + |w∗k| = λ+
k + λ−k (3.15b)

N∑
k=1

w∗k = 1 (3.15c)

N∑
k=1

w∗kϕ̃(k) = 0 (3.15d)

s∗k = |w∗k| (3.15e)

λ+
k (|w∗k| − w∗k) = 0 (3.15f)

λ−k (|w∗k|+ w∗k) = 0 (3.15g)

λ±k ≥ 0, k = 1, . . . , N (3.15h)

Let

g =
L2

4σ2

(
N∑

t=1

ϕ̃2(t)|w∗t |
)

(3.16)

From (3.15f) and (3.15g), we can see that w∗k > 0 implies λ−k = 0, and that w∗k < 0
implies λ+

k = 0. Hence, we can eliminate λ±k from the KKT conditions in these
cases, getting

w∗k = µ1 + µ2ϕ̃(k)− sgn(w∗k)gϕ̃2(k), w∗k 6= 0 (3.17)

3.2 Some Properties of the Approach 51

−2 −1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

φ

w

(a) ϕ0 = 0, L/σ = 10.

−2 −1 0 1 2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

φ

w

(b) ϕ0 = 2, L/σ = 10.

−2 −1 0 1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

φ

w

(c) ϕ0 = 0, L/σ = 1.

−2 −1 0 1 2
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

φ

w

(d) ϕ0 = 2, L/σ = 1.

−2 −1 0 1 2
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

φ

w

(e) ϕ0 = 0, L/σ = 0.1.

−2 −1 0 1 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

φ

w

(f) ϕ0 = 2, L/σ = 0.1.

Figure 3.3: Weights for equally spaced data samples, for different values of L/σ and ϕ0.

52 Local DWO Modelling of Univariate Functions

We can see that

w∗k > 0 ⇒ µ1 + µ2ϕ̃(k) > gϕ̃2(k)

w∗k < 0 ⇒ µ1 + µ2ϕ̃(k) < −gϕ̃2(k)

Finally, if w∗k = 0, we get from (3.15a), (3.15b), and (3.15h) that

2λ+
k = µ1 + µ2ϕ̃(k) + gϕ̃2(k) ≥ 0

2λ−k = −µ1 − µ2ϕ̃(k) + gϕ̃2(k) ≥ 0

which implies
−gϕ̃2(k) ≤ µ1 + µ2ϕ̃(k) ≤ gϕ̃2(k)

From these expressions, (3.13) is readily obtained.

Obviously, we have g ≥ 0 from (3.16). Now suppose that there are two indices
k1 and k2, such that 0 6= ϕ̃(k1) 6= ϕ̃(k2) 6= 0, and suppose that g = 0. Then (3.13)
implies that w∗k = µ1 + µ2ϕ̃(k) for all k = 1, . . . , N . Furthermore, (3.16) implies
that w∗k1

= w∗k2
= 0. But this means that µ1 = µ2 = 0, which makes w∗k = 0 for all

k = 1, . . . , N . But this contradicts (3.15c), so g > 0.

To show that µ1 > 0, assume the opposite, i.e., µ1 ≤ 0. We also assume µ2 ≥ 0
(if µ2 is negative, we can instead consider the problem we get by replacing ϕ̃(k)
by −ϕ̃(k)). Let S+ be the set of indices k such that w∗k > 0. Obviously, S+ is
nonempty; otherwise, (3.15c) will not be satisfied. Similarly, let S− be the set of
indices k such that w∗k < 0.

First assume that g > 0. For all k ∈ S+, it holds that

µ1 + µ2ϕ̃(k) > gϕ̃2(k) ⇒ µ2 −
√

µ2
2 + 4µ1g

2g
< ϕ̃(k) <

µ2 +
√

µ2
2 + 4µ1g

2g

Similarly, for all k ∈ S−, it holds that

µ1 + µ2ϕ̃(k) < −gϕ̃2(k) ⇒ −µ2 −
√

µ2
2 − 4µ1g

2g
< ϕ̃(k) <

−µ2 +
√

µ2
2 − 4µ1g

2g

Since straightforward calculations show that

0 ≤ −µ2 +
√

µ2
2 − 4µ1g

2g
≤ µ2 −

√
µ2

2 + 4µ1g

2g

we have that
max
k∈S−

ϕ̃(k) < min
k∈S+

ϕ̃(k), 0 < min
k∈S+

ϕ̃(k) (3.18)

If instead g = 0, it holds for all k ∈ S+ that

µ1 + µ2ϕ̃(k) > 0 ⇒ µ2 > 0, ϕ̃(k) > 0

3.2 Some Properties of the Approach 53

(this follows from the assumptions µ1 ≤ 0 and µ2 ≥ 0), and since for all k ∈ S−

µ1 + µ2ϕ̃(k) < 0

we can conclude that (3.18) holds also in this case.

Now, from (3.15c), (3.15d), and (3.18) we get

0 =
∑

k∈S+

w∗kϕ̃(k) +
∑

k∈S−

w∗kϕ̃(k)

≥ min
k∈S+

ϕ̃(k)
∑

k∈S+

w∗k + max
k∈S−

ϕ̃(k)
∑

k∈S−

w∗k

≥ min
k∈S+

ϕ̃(k)

(∑
k∈S+

w∗k +
∑

k∈S−

w∗k

)
= min

k∈S+
ϕ̃(k) > 0

and we have a contradiction. It follows that µ1 > 0, and the theorem is proved.
�

By examining the proof of Theorem 3.2, we can make an additional observa-
tion. Suppose that we have an optimal solution w∗ to (3.11), with corresponding
Lagrangian multipliers λ± and µ, and constant g given by (3.16). Now, let us
extend the data set ϕ̃(k), k = 1, . . . , N by adding a point ϕ̃(N + 1) that satisfies

−gϕ̃2(N + 1) ≤ µ1 + µ2ϕ̃(N + 1) ≤ gϕ̃2(N + 1) (3.19)

and consider the optimization problem (3.11) for the new data set. It turns out
that the KKT conditions (3.15) will be satisfied by the same weights w∗ as before,
together with w∗N+1 = s∗N+1 = 0 and the Lagrangian multipliers µ, λ±, and λ±N+1,
where λ±N+1 are given by (3.15a) and (3.15b). In other words, the solution does
not change, except that w∗N+1 = 0 and λ±N+1 are appended. We summarize this in
a corollary:

Corollary 3.1
Suppose that ϕ(k), k = 1, . . . , N , L, and σ are given, and let (w∗, s∗) be an optimal
solution to (3.11). Let λ± and µ be the corresponding Lagrangian multipliers, and
g the constant defined by (3.16). If the data set is extended by ϕ̃(N +1) satisfying
(3.19), then an optimal solution to (3.11) using the extended data set is given by(

s∗

0

)
,

(
w∗

0

)
with the corresponding Lagrangian multipliers(

λ+

λ+
N+1

)
,

(
λ−

λ−N+1

)
, µ

54 Local DWO Modelling of Univariate Functions

where

λ+
N+1 =

1
2

(
L2

4σ2

(
N∑

t=1

ϕ̃2(t)|w∗t |
)

ϕ̃2(N + 1) + µ1 + µ2ϕ̃(N + 1)

)

λ−N+1 =
1
2

(
L2

4σ2

(
N∑

t=1

ϕ̃2(t)|w∗t |
)

ϕ̃2(N + 1)− µ1 − µ2ϕ̃(N + 1)

)

The result opens up for a possible reduction of the computational complexity:
Since many of the weights wk will be zero, we can already beforehand exclude
data that will most likely correspond to zero weights, thus making the QP (3.11)
considerably smaller. Having solved (3.11), one can easily check whether or not
the excluded weights really should be zero, by checking if the excluded data points
satisfy |µ1 + µ2ϕ̃(k)| ≤ gϕ̃2(k) (the middle case of (3.13)). In Section 7.4, this is
discussed in some more detail.

For the case when the data samples ϕ̃(k) are lying symmetrically, the following
theorem shows that the weights are nonnegative, and lie along the positive part of
a parabola symmetrically around ϕ0 (compare this with the local linear estimator
(2.28)).

Theorem 3.3
Assume that the data samples ϕ̃(k) in (3.11) are lying symmetrically, i.e., that the
nonzero ϕ̃(k) can be paired so that for each pair (ϕ̃(i), ϕ̃(j)) we have ϕ̃(i) = −ϕ̃(j).
Also assume that ϕ̃(k) 6= 0 for at least one (hence two) indices k. Then µ2 = 0,
i.e., the weights satisfy

w∗k = max{µ1 − gϕ̃2(k), 0} (3.20)

with µ1 > 0, g > 0.

Proof The positiveness of µ1 and g follows directly from Theorem 3.2 and the
fact that we have two distinctive, nonzero ϕ̃(k). For the proof we now need to
consider the explicit expressions of the weights and Lagrangian multipliers that
will be given in Section 3.2.2. Provided that the weights w∗k are all nonnegative, we
get from (3.32) that µ2 = 0. Since the KKT conditions are sufficient for optimality,
it then suffices to show that there exists a solution with nonnegative weights w∗k to
(3.15). This will be done by induction. We assume that the data samples ϕ̃(k) are
ordered by ascending magnitude. Let us also use the notation w

[N0]
k and µ[N0] for

the solution to (3.15), using the set of data samples ϕ̃(1), . . . , ϕ̃(N0), and g[N0] for
the corresponding g, given by (3.16).

For the case of just two nonzero data samples, the theorem is easily checked –
(3.32)-(3.33) is obviously a solution to (3.15).

Now suppose that the theorem holds for all cases of at most N0 − 1 samples,
and consider the case of N0 samples. The optimal weights w

[N0−2]
k using N0 − 2

3.2 Some Properties of the Approach 55

samples are given by (3.33), and the corresponding µ[N0−2] is given by (3.32). For
ϕ̃(N0) (and ϕ̃(N0 − 1) = −ϕ̃(N0)), there are now two possibilities: Either

µ
[N0−2]
1 ≤ g[N0−2]ϕ̃2(N0) (3.21)

or
g[N0−2]ϕ̃2(N0) < µ

[N0−2]
1 (3.22)

In the first case we can apply Corollary 3.1, and we get a solution by letting
w

[N0]
k = w

[N0−2]
k for k = 1, . . . , N0 − 2, and w

[N0]
N0−1 = w

[N0]
N0

= 0. If on the other
hand (3.22) holds, we need to show that there is a nonnegative solution to (3.15).
For this, it is sufficient to show that the weights we get using (3.33) are all positive,
because then the KKT conditions will be satisfied using the corresponding µ[N0]

from (3.32). But from (3.33), (3.20), and (3.22) we get that

w
[N0]
i =

2

8N0
σ2

L2 +
∑N0

j=1

∑N0
k=1(ϕ̃2(j)− ϕ̃2(k))2

·
(

4
σ2

L2
+

N0∑
k=1

ϕ̃4(k)−
(

N0∑
k=1

ϕ̃2(k)

)
ϕ̃2(i)

)

=
2

8N0
σ2

L2 +
∑N0

j=1

∑N0
k=1(ϕ̃2(j)− ϕ̃2(k))2

·
(

4
σ2

L2
+

N0−2∑
k=1

ϕ̃4(k)−
(

N0−2∑
k=1

ϕ̃2(k)

)
ϕ̃2(i) + 2ϕ̃2(N0)(ϕ̃2(N0)− ϕ̃2(i))

)

=
2

8N0
σ2

L2 +
∑N0

j=1

∑N0
k=1(ϕ̃2(j)− ϕ̃2(k))2

·
((

4(N0 − 2)
σ2

L2
+

1
2

N0−2∑
j=1

N0−2∑
k=1

(ϕ̃2(j)− ϕ̃2(k))2

)(
µ

[N0−2]
1 − g[N0−2]ϕ̃2(i)

)

+ 2ϕ̃2(N0)(ϕ̃2(N0)− ϕ̃2(i))

)
> 0, i = 1, . . . , N0

where in the last inequality we have used the fact that

g[N0−2]ϕ̃2(i) ≤ g[N0−2]ϕ̃2(N) ≤ µ
[N0−2]
1 , i = 1, . . . , N0

by (3.22). Hence, all weights (for all i = 1, . . . , N0) given by (3.33) are positive,
and the theorem is proven. �

Since the DWO method automatically decides which data samples should be
taken into account by minimizing (3.10), it also automatically adapts to the case
when the data samples are lying asymmetrically, e.g., when ϕ0 is a boundary point,

56 Local DWO Modelling of Univariate Functions

or when only few data are available. The estimate will always be optimal in the
worst-case MSE sense if considering G2(L), and in the sense of (3.10) for F2(L).
This is a great advantage, especially compared to the kernel estimators, but also
to the local polynomial modelling approach.

3.2.2 Explicit Expressions for the Optimal Weights

Let us take a closer look at (3.11), and derive explicit expressions for the weights.
Assume that L and σ are both strictly positive. Let S be the set of indices k such
that w∗k 6= 0. Let also

rk =


1 w∗k > 0
0 w∗k = 0
−1 w∗k < 0

(3.23)

For the nonzero weights (i.e., for k ∈ S), (3.16) and (3.17) give

w∗k = µ1 + µ2ϕ̃(k)− rk
L2

4σ2

(∑
t∈S

rtϕ̃
2(t)w∗t

)
ϕ̃2(k) (3.24)

Reorder the data samples so that w∗1 , . . . , w∗n are the nonzero weights. Using the
notation

1n =

1
...
1

 ∈ Rn, ϕ̃1:n =

ϕ̃(1)
...

ϕ̃(n)

 , z =

r1ϕ̃
2(1)
...

rnϕ̃2(n)

 , w∗ =

w∗1
...

w∗n


we can write the expression (3.24), together with the constraints (3.7), in matrix
form as follows: − L2

4σ2 zzT − I 1n ϕ̃1:n

1T
n 0 0

ϕ̃T
1:n 0 0

 w∗

µ1

µ2

 =

0
1
0

 (3.25)

This system is closely related to the in optimization well-known KKT system (see
[117]). According to Lemma A.1, the system is nonsingular if L/σ > 0∗ and there
are at least two distinct values of ϕ̃(k), k = 1, . . . , n. Furthermore, we get the

∗In fact, the system is nonsingular even if L = 0, as long as the other requirement holds
(see, e.g., [117]). However, for simplicity we only consider L > 0 here. The case L = 0 will be
considered in Section 3.2.7.

3.2 Some Properties of the Approach 57

solution

w∗i =
1
ζ

(γ
n∑

k=1

ϕ̃2(k)−
(

n∑
k=1

rkϕ̃3(k)

)2


+

(
n∑

k=1

rkϕ̃2(k)
n∑

k=1

rkϕ̃3(k)− γ

n∑
k=1

ϕ̃(k)

)
ϕ̃(i) (3.26)

+

(
n∑

k=1

ϕ̃(k)
n∑

k=1

rkϕ̃3(k)−
n∑

k=1

ϕ̃2(k)
n∑

k=1

rkϕ̃2(k)

)
riϕ̃

2(i)

)

µ =
1
ζ


γ

n∑
k=1

ϕ̃2(k)−
(

n∑
k=1

rkϕ̃3(k)

)2

−γ

n∑
k=1

ϕ̃(k) +
n∑

k=1

rkϕ̃2(k)
n∑

k=1

rkϕ̃3(k)

 (3.27)

where

γ = 4
σ2

L2
+ zT z

ζ =
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(
ϕ̃(i)(rkϕ̃2(k)− rjϕ̃

2(j)) + ϕ̃(j)(riϕ̃
2(i)− rkϕ̃2(k))

+ ϕ̃(k)(rjϕ̃
2(j)− riϕ̃

2(i))
)2

+ 2
σ2

L2

n∑
i=1

n∑
k=1

(ϕ̃(i)− ϕ̃(k))2

As mentioned in the remark after Lemma A.1, we can note that γ and ζ are both
strictly positive.

3.2.3 Expressions for Nonnegative Weights

Suppose now that all nonzero weights are positive, i.e., that rk = 1, k = 1, . . . , n.
In this case, the expressions can be somewhat simplified.

Note that ζ can also be written as

ζ =
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(ϕ̃(i)− ϕ̃(j))2(ϕ̃(j)− ϕ̃(k))2(ϕ̃(k)− ϕ̃(i))2

+ 2
σ2

L2

n∑
i=1

n∑
k=1

(ϕ̃(i)− ϕ̃(k))2

=
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(ϕ(i)− ϕ(j))2(ϕ(j)− ϕ(k))2(ϕ(k)− ϕ(i))2 (3.28)

+ 2
σ2

L2

n∑
i=1

n∑
k=1

(ϕ(i)− ϕ(k))2

58 Local DWO Modelling of Univariate Functions

since
n∑

i=1

n∑
j=1

n∑
k=1

(ϕ̃(i)− ϕ̃(j))2(ϕ̃(j)− ϕ̃(k))2(ϕ̃(k)− ϕ̃(i))2

=
n∑

i=1

n∑
j=1

n∑
k=1

(
ϕ̃(i)ϕ̃(j)ϕ̃(k)− ϕ̃2(i)ϕ̃(j)− ϕ̃(i)ϕ̃2(k) + ϕ̃2(i)ϕ̃(k)

− ϕ̃2(j)ϕ̃(k) + ϕ̃(i)ϕ̃2(j) + ϕ̃(j)ϕ̃2(k)− ϕ̃(i)ϕ̃(j)ϕ̃(k)
)2

=
n∑

i=1

n∑
j=1

n∑
k=1

(
ϕ̃(i)(ϕ̃2(j)− ϕ̃2(k)) + ϕ̃(j)(ϕ̃2(k)− ϕ̃2(i))

+ ϕ̃(k)(ϕ̃2(i)− ϕ̃2(j))
)2

This means that ζ is independent of ϕ0 as long as the same weights are positive.
After simple but tedious calculations, we get the following expressions for µ and
w∗:

µ =
1
ζ


γ

n∑
k=1

ϕ̃2(k)−
(

n∑
k=1

ϕ̃3(k)

)2

n∑
k=1

ϕ̃2(k)
n∑

k=1

ϕ̃3(k)− γ

n∑
k=1

ϕ̃(k)

 (3.29)

=
1
ζ


1
2

n∑
j=1

n∑
k=1

ϕ̃2(j)ϕ̃2(k)(ϕ̃(j)− ϕ̃(k))2 + 4
σ2

L2

n∑
k=1

ϕ̃2(k)

−1
2

n∑
j=1

n∑
k=1

ϕ̃(j)ϕ̃(k)(ϕ̃(j) + ϕ̃(k))(ϕ̃(j)− ϕ̃(k))2 − 4
σ2

L2

n∑
k=1

ϕ̃(k)


and

w∗i =
1
ζ

(γ

n∑
k=1

ϕ̃2(k)−
(

n∑
k=1

ϕ̃3(k)

)2


+

(
n∑

k=1

ϕ̃2(k)
n∑

k=1

ϕ̃3(k)− γ

n∑
k=1

ϕ̃(k)

)
ϕ̃(i)

+

 n∑
k=1

ϕ̃(k)
n∑

k=1

ϕ̃3(k)−
(

n∑
k=1

ϕ̃2(k)

)2
 ϕ̃2(i)

)

=
1
2ζ

 n∑
j=1

n∑
k=1

ϕ̃2(j)ϕ̃2(k)(ϕ̃(j)− ϕ̃(k))2 + 8
σ2

L2

n∑
k=1

ϕ̃2(k)

 (3.30)

−

 n∑
j=1

n∑
k=1

ϕ̃(j)ϕ̃(k)(ϕ̃(j) + ϕ̃(k))(ϕ̃(j)− ϕ̃(k))2 + 8
σ2

L2

n∑
k=1

ϕ̃(k)

 ϕ̃(i)

3.2 Some Properties of the Approach 59

+

 n∑
j=1

n∑
k=1

ϕ̃(j)ϕ̃(k)(ϕ̃(j)− ϕ̃(k))2

 ϕ̃2(i)


=

1
2ζ

(
n∑

j=1

n∑
k=1

(ϕ(i)− ϕ(j))(ϕ(i)− ϕ(k))(ϕ(j)− ϕ(k))2(ϕ(j)− ϕ0)(ϕ(k)− ϕ0)

+ 8
σ2

L2

n∑
k=1

(ϕ(k)− ϕ(i))(ϕ(k)− ϕ0)

)
, i = 1, . . . , n (3.31)

In particular, when ϕ̃(k) are lying symmetrically around 0, all odd terms will
disappear from the expressions above, and we get (after some calculations)

ζ =
1
2

n∑
k=1

ϕ̃2(k)

 n∑
j=1

n∑
k=1

(ϕ̃2(j)− ϕ̃2(k))2 + 8n
σ2

L2


which gives

µ1 =
2γ∑n

j=1

∑n
k=1(ϕ̃2(j)− ϕ̃2(k))2 + 8n σ2

L2

, µ2 = 0 (3.32)

and

w∗i =
2∑n

j=1

∑n
k=1(ϕ̃2(j)− ϕ̃2(k))2 + 8n σ2

L2

(
γ −

(
n∑

k=1

ϕ̃2(k)

)
ϕ̃2(i)

)
(3.33)

3.2.4 Relation to Local Polynomial Modelling

We can compare the DWO approach with the local linear estimator in the following
way. Use the notation of Section 3.2.2. Let

Φn =
(
1n ϕ̃1:n

)
(3.34)

G =
L2

4σ2
zzT + I (3.35)

where z is defined as in Section 3.2.2. Comparing (3.25) to the proof of Lemma A.1
in the Appendix shows that the weights of the DWO approach can be written as

w∗ = G−1Φn(ΦT
nG−1Φn)−1e1 (3.36)

This can now be compared with the equivalent weights (2.26) of local polynomial
modelling. A word of caution is needed, though: In (3.35) and (3.36), only the data
samples corresponding to nonzero weights are included. On the other hand, in the
presentation of the local polynomial modelling, Φ includes all data samples, also
those for which we get zero weights. Analogously, K̄h generally contains many zero
entries in the diagonal. However, the solution of the local polynomial modelling

60 Local DWO Modelling of Univariate Functions

problem (2.19) will not be affected by deleting all terms for which Kh(ϕ̃(k)) = 0,
and so we may without restriction assume that that we only consider the data
samples for which the equivalent weights (2.26) are nonzero (which also implies that
K̄h is invertible). We can now see that the weights from the DWO approach equal
those obtained from a local polynomial estimator, with K̄h from (2.21) replaced
by G−1 from (3.35). Hence, if we only knew z, i.e., which weights w∗k should be
positive and which should be negative, we could obtain w∗ by solving a weighted
least-squares problem like (2.23). However, this is of course not known beforehand.

3.2.5 Asymptotic Behavior

In [85], it was shown that using the Epanechnikov kernel would yield an asymptot-
ically optimal (continuous) kernel estimator with respect to the worst-case MSE
over the function class G2(L). Since, as we have seen, the optimal weights from
(3.11) minimize the worst-case MSE over G2(L), one would expect that the weights
wk of the DWO approach would asymptotically converge to the weights using the
Epanechnikov kernel with a bandwidth given by (2.71). This is also the case under
certain assumptions, as the following theorem shows.

Theorem 3.4
Consider the problem of estimating an unknown function f ∈ F2(L) at a given
internal point ϕ0 ∈ (−1/2, 1/2) under an equally spaced fixed design model

ϕ(k) =
k − 1
N − 1

− 1
2

, k = 1, . . . , N (3.37)

and with σ > 0. Let w∗ be the minimizer of (3.10). Then asymptotically, as
N →∞,

w∗k ≈
3
4

CN max{1−
(

ϕ̃(k)
hN

)2

, 0} , k = 1, . . . , N (3.38)

where

CN �
1

NhN
, hN �

(
15σ2

L2N

)1/5

as N →∞ (3.39)

Hence, the optimal weights (3.38) approximately coincide with related asymptoti-
cally optimal weights and bandwidth (2.71) of the local polynomial estimator for
the worst-case function in F2(L).

Here aN � bN means asymptotic equivalence of two real sequences (aN) and
(bN), that is aN/bN → 1 as N →∞.

Remark 3.2 When the data are lying symmetrically around ϕ0, e.g., when ϕ0 = 0,
it follows directly from Theorem 3.3 that the relation (3.38) will hold exactly also
for finite N , i.e.,

w∗k =
3
4
CN max{1−

(
ϕ̃(k)
hN

)2

, 0}, k = 1, . . . , N (3.40)

where CN and hN are given by (3.39).

3.2 Some Properties of the Approach 61

Proof Let us apply Theorem 3.2, from which it follows that there are three
numbers µ1 > 0, µ2, and g > 0, such that

w∗k = max{µ1 + µ2ϕ̃(k)− gϕ̃2(k), 0}, k = 1, . . . , N (3.41)

if and only if µ1 + µ2ϕ̃(k) + gϕ̃2(k) ≥ 0 for all k = 1, . . . , N , which is the case if

µ2
2 ≤ 4gµ1 (3.42)

Also recall that the KKT conditions (3.15) applied in the proof of Theorem 3.2
represent necessary and sufficient conditions for optimality of the solution to the
considered QP problem. Thus, in order to prove the first part of the theorem, it
suffices to demonstrate that

lim
N→∞

µ2
2

gµ1
= 0 (3.43)

for the three parameters µ1, µ2, and g satisfying (3.15c), (3.15d), and (3.16),
with the weights w∗k given by (3.41). Denote the support of the function w(ϕ̃) =
max{µ1 + µ2ϕ̃− gϕ̃2, 0} by [a, b], that is

µ1 + µ2a− ga2 = 0, µ1 + µ2b− gb2 = 0, a < b (3.44)

and suppose that [a, b] ∈ [−0.5− ϕ0, 0.5− ϕ0]. If we find a solution to the system
of the three equations (3.15c), (3.15d), and (3.16) with respect to µ1 > 0, µ2, and
g > 0, and (3.42) is satisfied, then we have proved (3.41). The following asymptotic
relation for nonnegative weights (3.41) holds true as N →∞:

1
N

N∑
k=1

wkϕ̃m(k) =

b∫
a

(
µ1 + µ2ϕ̃− gϕ̃2

)
ϕ̃mdϕ̃ + O(h/N) (µ1 + |µ2|+ g) (3.45)

for any m = 0, 1, 2, where

h =
b− a

2

Thus, the equations (3.15c), (3.15d), and (3.16) may be written as follows:

1
N

=

b∫
a

(
µ1 + µ2ϕ̃− gϕ̃2

)
dϕ̃ + O(h/N) (µ1 + |µ2|+ g) (3.46)

0 =

b∫
a

(
µ1 + µ2ϕ̃− gϕ̃2

)
ϕ̃dϕ̃ + O(h/N) (µ1 + |µ2|+ g) (3.47)

4σ2

L2

g

N
=

b∫
a

(
µ1 + µ2ϕ̃− gϕ̃2

)
ϕ̃2dϕ̃ + O(h/N) (µ1 + |µ2|+ g) (3.48)

62 Local DWO Modelling of Univariate Functions

with

a =
µ2 −

√
µ2

2 + 4gµ1

2g
, b =

µ2 +
√

µ2
2 + 4gµ1

2g
, h =

√
µ2

2 + 4gµ1

2g
(3.49)

Note that the terms O(h/N) in (3.46)–(3.48) do not depend on (µ1, µ2, g). Conse-
quently, O(h/N)|µ2| is uniformly bounded over µ2 as N →∞.

Now, one might verify by direct substitution (see Section 3.4 for a detailed
proof) that the solution to (3.46)–(3.48) has the following asymptotics:

µ1 �
3

4NhN
, µ2 = O(N−1), g � µ1

h2
N

(3.50)

with

h =

√
µ2

2 + 4gµ1

2g
� hN �

(
15σ2

L2N

)1/5

(3.51)

Thus, we obtain

lim
N→∞

µ2
2

gµ1
= lim

N→∞

µ1

g

(
µ2

µ1

)2

= 0 (3.52)

and relation (3.43) is proved.

Since µ2 = o(µ1), the relation (3.38) follows directly from (3.50). This proves
the theorem. �

3.2.6 The Estimated Function

Another interesting aspect to consider is how the estimate f̂(ϕ0) behaves as a
function of ϕ0. For this purpose we use the explicit expressions from Section 3.2.2.
To begin with, let us consider the case when wk are nonnegative for all k. In this
case, we know from (3.28) that ζ does not depend on ϕ0, and from (3.30), we can
see that ϕ0 enters quadratically in the numerator of the expression for the weights.
Furthermore, since f̂(ϕ0) is a linear combination of the weights, the quadratic
characteristics are inherited by f̂(ϕ0) from wk. Altogether, this means that f̂(ϕ0)
is a piecewise quadratic function in the intervals of ϕ0 for which the weights wk are
all nonnegative.

When there are negative weights, ζ is no longer independent of ϕ0. It can be
shown that ζ is a fourth order polynomial in ϕ0. Since ϕ enters also the numerator
polynomially, the result is that f̂(ϕ0) is a piecewise rational function in the intervals
of ϕ0 where some weights wk are negative.

One should note, however, that f̂(ϕ0) does not necessarily satisfy the Lipschitz
condition (3.2), since the noise in the observations may be arbitrarily large, and
hence may scale terms in f̂(ϕ0) to an arbitrary degree. This phenomenon is also
pointed out in [137].

3.2 Some Properties of the Approach 63

Example 3.2 Let us consider a simple example, where N = 11 data samples
ϕ(1), . . . , ϕ(11) are equally spaced on the interval [−2, 2]. Let L/σ = 1. Suppose
that the function f(ϕ) is to be estimated in several different points ϕ0. In Fig-
ure 3.4, the values of the weights w1, . . . , w6 are plotted as functions of ϕ0. (The
plots for the remaining weights w7, . . . , w11 will be a mirrored version of w1, . . . , w5

due to the symmetry.) Also the (numerically computed) derivatives of the weights
with respect to ϕ0 are plotted. As we can see, when ϕ0 ∈ [−2,−1.5] or ϕ0 ∈ [1.5, 2]
(approximately), some weights are negative. For the remaining interval, i.e., for
ϕ0 ∈ [−1.5, 1.5], the weights are clearly piecewise quadratic functions of ϕ0.

When the weights are piecewise quadratic, so is also f̂(ϕ0), since it is a linear

combination of the weights. In Figure 3.5, f̂(ϕ0) is shown for a particular set of
observations.

3.2.7 Global Models

What happens when L = 0, i.e., when the underlying function is linear? What one
would expect is that the resulting estimator would coincide with the usual global
linear regression, i.e., that it uses all data samples to estimate a linear function
which minimizes an unweighted least-squares criterion. The following theorem
shows that this is exactly what happens.

Theorem 3.5
Suppose that there are at least two indices k1 and k2, such that ϕ(k1) 6= ϕ(k1).
Then, when L = 0, the DWO approach gives the same result as a local linear model
with Kh(ϕ) ≡ 1.

Proof When L = 0, (3.10) becomes

min
w

σ2
N∑

k=1

w2
k

subj. to
N∑

k=1

wk = 1

N∑
k=1

wkϕ̃(k) = 0

(3.53)

Letting

ΦT =
(

1 . . . 1
ϕ(1) . . . ϕ(N)

)
the problem (3.53) is equivalent to

min
w

‖w‖2

subj. to ΦT w = e1

64 Local DWO Modelling of Univariate Functions

−2 −1 0 1 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

φ
0

(a) w1 (ϕ(1) = −2).

−2 −1 0 1 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

φ
0

(b) w2 (ϕ(2) = −1.6).

−2 −1 0 1 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

φ
0

(c) w3 (ϕ(3) = −1.2).

−2 −1 0 1 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

φ
0

(d) w4 (ϕ(4) = −0.8).

−2 −1 0 1 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

φ
0

(e) w5 (ϕ(5) = −0.4).

−2 −1 0 1 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

φ
0

(f) w6 (ϕ(6) = 0).

Figure 3.4: The weights wk from Example 3.2 (solid) and their numerical derivatives
(dashed), plotted as functions of ϕ0.

3.3 Examples 65

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4
Experimental data and estimate:

Figure 3.5: The estimated function f̂(ϕ0) in Example 3.2.

Thus, what we would like to do is to find the least-norm solution to an underde-
termined system of linear equations. But this is just what we get by using the
pseudoinverse of Φ:

w∗ = (ΦT)†e1 = Φ(ΦT Φ)−1e1

which is the same as (2.26) with K̄h = I. �

Remark 3.3 Instead of referring to the pseudoinverse, the solution of (3.2.7) can
be obtained using the KKT conditions analogously to Lemma A.1 (with ρ = 0).

Note that fitting a local linear model with Kh(ϕ) ≡ 1 to the data is not the
same as fitting an ARX model, i.e., the weights corresponding to a local linear
model (2.26) are not the same as the ones obtained in (1.10) for the ARX model.
The reason for this is that the ARX model assumes that f(0) = 0 (it is a linear
model) while the local linear model, in spite of its name, is an affine model, and
also contains a parameter corresponding to a constant term.

3.3 Examples

To illustrate a possible situation where the DWO approach described in Section 3.1
might be superior to the local linear estimator, we consider the following example.

Example 3.3 Consider the function

f(ϕ) = ϕ2 sin(2ϕ) (3.54)

and let ϕ(k), k = 1, . . . , 50, be taken from a uniform distribution on [−2, 2]. We
let σ2 = 1 and L = 13. Suppose that we would like to estimate f(0). One example
is given in Figure 3.6. The prediction errors, worst-case bias, variance, and MSE
for this particular set of data {(ϕ(k), y(k))}50

k=1 are listed in Table 3.1 for the two

66 Local DWO Modelling of Univariate Functions

−2 −1 0 1 2
−4

−2

0

2

4

6
Experimental data and estimate

φ
k

(a) Noiseless data (×), data with

noise (·), and estimates of f(0)
using a local linear estimator
(◦) and QP (�).

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

φ
k

w
k

(b) Weights wk from the local lin-

ear estimator (◦) and QP (∗).

Figure 3.6: Comparison of the local linear estimator, using the Epanechnikov kernel
with bandwidth given by (2.71), and the DWO approach.

Table 3.1: Comparison of the asymptotically optimal local linear estimator and the
DWO approach for the example shown in Figure 3.6.

Local linear DWO
Prediction error -5.6567 -0.0016
(Bias)2 (upper bound) 0.1148 0.0942
Variance 18.8892 0.3044
MSE (upper bound) 19.0040 0.3987

different approaches. Note that all values, except for the prediction errors, only
depend on the values of ϕ(k), not on y(k).

As we can see in Figure 3.6(b), most weights are zero, both in the local linear
and DWO approach. In the local linear estimator, the kernel function together
with the bandwidth decides which weights should be zero. In the DWO approach,
however, this is taken care of by the automatic finite bandwidth property mentioned
in Section 3.2, which allows for a greater flexibility, such that the minimal upper
bound on the MSE can be achieved. In this specific example, the effect is that
the local linear estimator just takes the two data points closest to the point of
interest (which both happen to be negative) into account. This makes the estimate
very sensitive to the actual noise realization. The DWO approach, on the other
hand, takes three additional points into account, of which two are positive, thereby
making the estimate much less noise sensitive.

Table 3.2 shows the resulting estimates of the actual MSE from four Monte-
Carlo simulations (with 10000 experiments each), where ϕ(k) are taken from a

3.4 Proof of the Asymptotic Expressions in Theorem 3.4 67

uniform distribution on [−2, 2] and σ2 = 1. f(ϕ0) is estimated for ϕ0 = 0 and
ϕ0 = 1.5, using N = 20 or N = 50 observations. As can be seen, the DWO
approach performs better than the local linear approach in all four cases, and the
difference is accentuated when the number of data is small, just as expected.

Table 3.2: Comparison of the asymptotically optimal local linear estimator and the
DWO approach; results from Monte-Carlo simulations.

ϕ0 N MSE (Local linear) MSE (DWO)
0 50 0.2240 0.1424

1.5 50 0.2289 0.1785
0 20 26.9244 0.3182

1.5 20 9.5489 0.5087

The objective function of (3.10) gives an upper bound on the MSE, which is then
minimized. To give an idea of how tight the upper bound is, it can be compared
to a lower bound. A trivial lower bound is given by the variance (2.35) of the
estimator, which only depends on σ and w. This is considered in the following
example, which also shows the weight curves for some different cases.

Example 3.4 Consider the same setup as in Example 3.3, but with N = 10.
Figure 3.7 shows the weights for one realization of data samples when estimating
f(0), f(1), and f(2), respectively. Note that in each case, the weights lie along a
curve as given by (3.13). Note also that the weights automatically adapt to data
lying nonsymmetrically, e.g., at the boundary.

Figure 3.8 shows the upper bound (3.9) on the worst-case MSE as a function of
ϕ0. The lower bound given by the variance is also plotted, like the actual MSE for
the function given by (3.54). As we can see, the upper bound is reasonably tight.

3.4 Proof of the Asymptotic Expressions in The-
orem 3.4

We finish this chapter by giving some additional details for the proof of Theo-
rem 3.4. Let us seek the solution to the system of equations given by (3.46)–(3.49)
in the following asymptotic form (as N →∞)

µ1 =
ν1

NhN
(1 + o(1)), µ2 =

ν2

N
(1 + o(1)), g =

ν3µ1

h2
N

(1 + o(1)) (3.55)

with indefinite finite constants νi, i = 1, 2, 3, and with hN as defined by (3.39).
The goal here is to evaluate νi, i = 1, 2, 3. Note that

µ1

g
=

h2
N

ν3
(1 + o(1)),

µ2

g
=

ν2h
3
N

ν3ν1
(1 + o(1)) (3.56)

68 Local DWO Modelling of Univariate Functions

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

(a) ϕ0 = 0.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

(b) ϕ0 = 1.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

(c) ϕ0 = 2.

Figure 3.7: Weights and weight curves for Example 3.4, with ϕ0 = 0, ϕ0 = 1, and
ϕ0 = 2.

and

ϕ̃0 ,
a + b

2
=

µ2

2g
� ν2

2ν3ν1
h3

N (3.57)

Hence

h =

√
µ2

2 + 4gµ1

2g
�

√
µ1

g
� 1√

ν3
hN , a � −h, b � h (3.58)

Now evaluate the following integrals, occurring in (3.46)–(3.48):

b∫
a

dϕ̃ = 2h (3.59)

3.4 Proof of the Asymptotic Expressions in Theorem 3.4 69

0 0.5 1 1.5 2
0

0.5

1

1.5

2

ϕ

Figure 3.8: The upper bound (3.9) on the MSE (solid), the variance of the estimate
(dash-dotted) and the exact MSE for (3.54) (dashed), using the data sample in Exam-
ple 3.4.

b∫
a

ϕ̃dϕ̃ = 2hϕ̃0 = O(h4) (3.60)

b∫
a

ϕ̃2dϕ̃ � 2
3
h3 (3.61)

b∫
a

ϕ̃3dϕ̃ � 2h3ϕ̃0 = O(h6) (3.62)

b∫
a

ϕ̃4dϕ̃ � 2
5
h5 (3.63)

Thus, taking representation (3.55) into account, and letting N → ∞, we reduce
the equations (3.46)–(3.48) to that of

1 = 2ν1 −
2
3
ν1ν3 (3.64)

0 = ν1O(1) +
2
3
ν2 − ν1ν3O(1) (3.65)

0 =
2
3
ν1 − ν1ν3

(
2
5

+
4
15

ν
5/2
3

)
(3.66)

70 Local DWO Modelling of Univariate Functions

from what the unique nontrivial solution

ν1 =
3
4
, ν2 = O(1), ν3 = 1 (3.67)

follows directly. This proves the asymptotic relations (3.50).

4

Local DWO Modelling of

Multivariate Functions

In Chapter 3, the DWO approach was presented for the case of univariate func-
tions. In this chapter, the approach is extended to multivariate functions, which
is useful in many applications, particularly when considering dynamic systems.
Furthermore, the functions in Chapter 3 were assumed to be once continuously
differentiable, and the first derivatives should satisfy a Lipschitz condition. This
can be extended to any degree of assumed differentiability. As we will see, many
of the properties shown in Chapter 3 will also carry over to the multivariate case.

4.1 Problem Formulation

The problem we consider is the same as in Chapter 3, except that the function f
is multivariate, f : Rn → R, and that the assumptions are somewhat different. We
assume that f ∈ Fp+1(L), which means that f is p times continuously differentiable
(p ≥ 1), and that the pth derivative satisfies a Lipschitz condition. By the latter
will be meant that there is a constant L, such that

max
‖ξ‖=1

∣∣∣∣∣∣
n∑

i1=1

. . .

n∑
ip=1

(
f

(p)
i1...ip

(ϕ + h)− f
(p)
i1...ip

(ϕ)
)

ξi1 . . . ξip

∣∣∣∣∣∣ ≤ L‖h‖ (4.1)

71

72 Local DWO Modelling of Multivariate Functions

for all ϕ, h ∈ Rn. Here f
(p)
i1...ip

means

f
(p)
i1...ip

=
∂pf

∂ϕi1 . . . ∂ϕip

(4.2)

One can show that, for p = 1, (4.1) is equivalent to (2.7), i.e., to

‖∇f(ϕ + h)−∇f(ϕ)‖ ≤ L‖h‖

for all ϕ, h ∈ Rn.
The noise assumptions are the same as in Chapter 3. As before, f will be

estimated using a linear estimator (3.4), where the weights are chosen to minimize
an upper bound on the worst-case MSE (2.60). Remember, however, that in order
for the worst-case MSE to be finite in the univariate case, the weights of (3.4) had
to satisfy the additional requirements (3.7). The corresponding requirements for
the multivariate case are given in the following theorem.

Theorem 4.1
Consider f : Rn → R, f ∈ Fp+1(L). Then, for a linear estimator (3.4), the
worst-case MSE is finite if and only if

N∑
k=1

wk = 1

N∑
k=1

wkϕ̃i1(k) = 0 i1 = 1, . . . , n (4.3)

...

N∑
k=1

wkϕ̃i1(k) · . . . · ϕ̃ip(k) = 0 ij = 1, . . . , n, j = 1, . . . , p

On this subspace, the following upper bound can be given for the worst-case MSE:

WMSE (f̂(ϕ0),Fp+1(L)) ≤
(

L

(p + 1)!

N∑
k=1

|wk|‖ϕ̃(k)‖p+1

)2

+ σ2
N∑

k=1

w2
k (4.4)

Proof Analogously to (3.5), the worst-case MSE can be written as

WMSE (f̂(ϕ0),Fp+1(L)) = sup
f∈Fp+1(L)

(
N∑

k=1

wkf(ϕ(k))− f(ϕ0)

)2

+ σ2
N∑

k=1

w2
k

= sup
f∈Fp+1(L)

(
f(ϕ0)

(
N∑

k=1

wk − 1

)
+

n∑
i1=1

f ′i1(ϕ0)
N∑

k=1

wkϕ̃i1(k) + . . . (4.5)

+
1
p!

n∑
i1=1

. . .

n∑
ip=1

f
(p)
i1...ip

(ϕ0)
N∑

k=1

wkϕ̃i1(k) . . . ϕ̃ip(k)

4.1 Problem Formulation 73

+
N∑

k=1

wk

(
f(ϕ(k))− f(ϕ0)−

n∑
i1=1

f ′i1(ϕ0)ϕ̃i1(k)− . . .

− 1
p!

n∑
i1=1

. . .

n∑
ip=1

f
(p)
i1...ip

(ϕ0)ϕ̃i1(k) . . . ϕ̃ip(k)
))2

+ σ2
N∑

k=1

w2
k

In this expression, all the terms of the bias, except for the last sum, are unbounded,
and so, to guarantee a finite worst-case MSE, the requirements (4.3) need to be
imposed. The last sum, on the other hand, is bounded according to Lemma A.3.
Using this lemma and imposing (4.3), we can see that (4.4) is an upper bound on
(4.5). �

We can note that instead of considering Fp+1(L), we could have considered a
multivariate extension of the function class Gp+1(L) given by

f(ϕ) = f(ϕ0) +
n∑

i1=1

f ′i1(ϕ0)ϕ̃i1 + . . . +
1
p!

n∑
i1=1

. . .
n∑

ip=1

f
(p)
i1...ip

(ϕ0)ϕ̃i1 . . . ϕ̃ip (4.6)

+ c(ϕ̃)‖ϕ̃‖p+1

where
|c(ϕ̃)| ≤ L

(p + 1)!
In this case, the bound on the worst-case MSE in (4.4) is tight and is attained if

c(ϕ̃(k)) =
L

(p + 1)!
sgn(wk)

Now, (4.4) can be minimized with respect to the weights wk. This can be done
using a QP, as the following theorem shows.

Theorem 4.2
Consider the following optimization problem:

min
w

(
L

(p + 1)!

N∑
k=1

|wk|‖ϕ̃(k)‖p+1

)2

+ σ2
N∑

k=1

w2
k

subj. to
N∑

k=1

wk = 1

N∑
k=1

wkϕ̃i1(k) = 0 i1 = 1, . . . , n

...

N∑
k=1

wkϕ̃i1(k) · . . . · ϕ̃ip(k) = 0 ij = 1, . . . , n, j = 1, . . . , p

(4.7)

74 Local DWO Modelling of Multivariate Functions

The weight vector w∗ = (w∗1 . . . w∗N)T is a minimizer of (4.7) if and only if there
is a vector s∗, such that (w∗, s∗) is a minimizer of the following QP:

min
w,s

(
L

(p + 1)!

N∑
k=1

sk‖ϕ̃(k)‖p+1

)2

+ σ2
N∑

k=1

s2
k

subj. to sk ≥ ±wk

N∑
k=1

wk = 1

N∑
k=1

wkϕ̃i1(k) = 0 i1 = 1, . . . , n

...

N∑
k=1

wkϕ̃i1(k) · . . . · ϕ̃ip(k) = 0 ij = 1, . . . , n, j = 1, . . . , p

(4.8)

Furthermore, s∗k = |w∗k|, k = 1, . . . , N .

Proof Completely analogous to Theorem 3.1. �

4.2 Properties

Several of the properties of the univariate case hold also for multivariate functions.
For instance, when L = 0, the resulting weights equal those obtained by globally
fitting a pth polynomial to the data. The proof is simple and a straightforward
extension of Theorem 3.5.

Also the finite bandwidth property and boundary adaptation occur in the mul-
tivariate case. We can prove the following theorem, which corresponds to Theo-
rem 3.2, and is also related to the asymptotic results of [85].

Theorem 4.3
Suppose that the problem (4.8) is feasible. Then there exist numbers µ(0), µ

(1)
i1

, . . . ,

µ
(p)
i1...ip

, ij = 1, . . . , n, j = 1, . . . , p, and g ≥ 0, such that for an optimal solution

(w∗, s∗), we have

w∗k =


P (ϕ̃(k))− g‖ϕ̃(k)‖p+1, g‖ϕ̃(k)‖p+1 ≤ P (ϕ̃(k))
0, −g‖ϕ̃(k)‖p+1 ≤ P (ϕ̃(k)) ≤ g‖ϕ̃(k)‖p+1

P (ϕ̃(k)) + g‖ϕ̃(k)‖p+1, P (ϕ̃(k)) ≤ −g‖ϕ̃(k)‖p+1

(4.9)

where

P (ϕ̃(k)) = µ(0) +
n∑

i1=1

µ
(1)
i1

ϕ̃i1(k)+ . . .+
n∑

i1=1

. . .

n∑
i1=1

µ
(p)
i1...ip

ϕ̃i1(k) · . . . · ϕ̃ip(k) (4.10)

4.2 Properties 75

Remark 4.1 Note that the notation µ
(j)
i1...ij

is used only to associate these numbers

with the corresponding derivatives of f . The numbers µ
(j)
i1...ij

are just constants,
no derivatives or functions.

Proof The proof uses the KKT conditions, which, since the QP (4.8) is a convex
optimization problem with linear constraints, are necessary and sufficient condi-
tions for optimality of a solution.

The Lagrangian function of (4.8) can be written

L(w, s;µ, λ) =

(
L

(p + 1)!

N∑
k=1

sk‖ϕ̃(k)‖p+1

)2

+ σ2
N∑

k=1

s2
k

− 2σ2µ(0)

(
N∑

k=1

wk − 1

)
− 2σ2

n∑
i1=1

µ
(1)
i1

N∑
k=1

wkϕ̃i1(k)− . . . (4.11)

− 2σ2
n∑

i1=1

. . .

n∑
ip=1

µ
(p)
i1...ip

N∑
k=1

wkϕ̃i1(k) . . . ϕ̃ip(k)

− 2σ2
N∑

k=1

(λ+
k (sk − wk) + λ−k (sk + wk))

where λ±k ≥ 0, k = 1, . . . , N , and µ(0), µ
(j)
i1...ij

, i = 1, . . . , n, j = 1, . . . , p are the
Lagrangian multipliers, scaled by a factor 1/2σ2. Since s∗k = |w∗k| for an optimal
solution (w∗, s∗), the KKT conditions are equivalent to the following relations:

P (ϕ̃(k)) = λ+
k − λ−k (4.12a)

L2

((p + 1)!)2σ2

(
N∑

t=1

|w∗t |‖ϕ̃(t)‖p+1

)
‖ϕ̃(k)‖p+1 + |w∗k| = λ+

k + λ−k (4.12b)

N∑
k=1

w∗k = 1

N∑
k=1

wkϕ̃i1(k) = 0 i1 = 1, . . . , n

...
N∑

k=1

wkϕ̃i1(k) · . . . · ϕ̃ip(k) = 0 ij = 1, . . . , n, j = 1, . . . , p

(4.12c)

s∗k = |w∗k| (4.12d)

λ+
k (|w∗k| − w∗k) = 0 (4.12e)

76 Local DWO Modelling of Multivariate Functions

λ−k (|w∗k|+ w∗k) = 0 (4.12f)

λ±k ≥ 0, k = 1, . . . , N (4.12g)

Let

g =
L2

((p + 1)!)2σ2

(
N∑

t=1

|w∗t |‖ϕ̃(t)‖p+1

)
(4.13)

From (4.12e) and (4.12f), we can see that w∗k > 0 implies λ−k = 0, and that w∗k < 0
implies λ+

k = 0. Hence, we can eliminate λ±k from the KKT conditions in these
cases, getting

w∗k = P (ϕ̃(k))− sgn(w∗k)g‖ϕ̃(k)‖p+1, w∗k 6= 0 (4.14)

We can see that

w∗k > 0 ⇒ P (ϕ̃(k)) > g‖ϕ̃(k)‖p+1

w∗k < 0 ⇒ P (ϕ̃(k)) < −g‖ϕ̃(k)‖p+1

Finally, if w∗k = 0, we get from (4.12a), (4.12b), and (4.12g) that

2λ+
k = P (ϕ̃(k)) + g‖ϕ̃(k)‖p+1 ≥ 0

2λ−k = −P (ϕ̃(k)) + g‖ϕ̃(k)‖p+1 ≥ 0

which implies
−g‖ϕ̃(k)‖p+1 ≤ P (ϕ̃(k)) ≤ g‖ϕ̃(k)‖p+1

From these expressions, (4.9) is readily obtained.

�

4.3 Examples

The extension of the DWO approach to the multivariate case makes it applicable
to many applications, e.g., to the prediction problem for dynamic systems. In this
section, we will see two examples of this. As pointed out in Section 2.1, having a
regression vector that depends on old values of y means that ϕ(i) and e(j) will not
be independent for all values of i and j. For the time being, we will simply neglect
this and assume that the effects will be small. The issue is discussed further in
Section 7.1.

Example 4.1 Consider the following extended version of the linear system known
as the Åström system [94]:

y(t) = (4.15)
1.5y(t− 1)− 0.7y(t− 2) + u(t− 1) + 0.5u(t− 2)

+ α + L0(cos y(t− 1) + 0.5u2(t− 1)) + e(t)

4.3 Examples 77

0 50 100 150 200
−10

−5

0

5

10

15

t

y

Figure 4.1: Simulated (solid) and true (dashed) output for system (4.15) with L0 = 0,
modelled using the DWO approach with L = 0.01.

First, set α and L0 to zero. To get estimation data, u(t) and e(t) are both selected
as random Gaussian sequences of length 500, with unit variance. As validation
data, 200 samples of noiseless data are selected, with u(t) generated in the same
way as for the estimation data. The simulated output for L = 0.01 is shown in
Figure 4.1. As can be seen, the simulated output follows the true output well
(84.9% fit). For L = 0, the result is the same as fitting an affine model using a
least-squares criterion, according to Theorem 3.5, giving 85.9% fit. As comparison,
a linear ARX model was also estimated, and performed slightly better compared
to the other approaches (91.8% fit), as expected, since the true system was linear.

Choosing L0 = L = 1, α = 1 and using an estimation data sequence of 50000
samples (generated as above), yielded a fit of 52.4% for the simulated output, as
compared to 41.8% for a linear ARX model (estimated after removing means from
the data). The corresponding numbers for one-step-ahead predictions were 94.8%
and 77.5%, respectively.

In the latter experiment, the input was generally in the interval [−4, 4], while
the output was generally in the interval [−10, 30]. This means that the linear and
nonlinear terms of the input in (4.15) are of about the same order, while the linear
terms of the output dominate over the nonlinear term. Thus, the nonlinear effects
might not be overwhelming, which may explain that the ARX model performed
fairly well in comparison.

Example 4.2 As another example, a nonlinear benchmark system proposed by
[115] is considered. The system is defined in state-space form by

x1(t + 1) =
(

x1(t)
1 + x2

1(t)
+ 1

)
sin x2(t)

78 Local DWO Modelling of Multivariate Functions

0 50 100 150 200
−3

−2

−1

0

1

2

3

t

y

Figure 4.2: Simulated (solid) and true (dashed) output for system (4.16), modelled using
the DWO approach with L = 0.1.

x2(t + 1) = x2(t) cos x2(t) + x1(t)e−
x2
1(t)+x2

2(t)
8 (4.16)

+
u3(t)

1 + u2(t) + 0.5 cos(x1(t) + x2(t))

y(t) =
x1(t)

1 + 0.5 sin x2(t)
+

x2(t)
1 + 0.5 sin x1(t)

+ e(t)

The noise term e(t) is added in accordance with [146] and has a variance of 0.1.
The states are assumed not to be measurable, and following the discussion in [146],
a NARX331 structure is used to model the system, i.e.,

ϕ(t) = (y(t− 1) y(t− 2) y(t− 3) u(t− 1) u(t− 2) u(t− 3))T

As estimation data, N = 50000 samples were generated using a uniformly dis-
tributed random input u(t) ∈ [−2.5, 2.5]. To validate the model, the input signal

u(t) = sin
2πt

10
+ sin

2πt

25
, t = 1, . . . , 200

was used. Figure 4.2 shows the simulated output when L was chosen to be 0.1. The
results are reasonable (49.7% fit), although it should be noted that the Lipschitz
constant is not known a priori, and is chosen ad hoc to be constant over the entire
state-space. In fact, since the real system is not of NARX structure, there might
not even exist such a Lipschitz constant. Therefore, combining the approach with a
local estimation of L using an algorithm similar to the bandwidth selection methods
in, e.g., [146], would probably improve the results.

5

Using Prior Knowledge

One can easily imagine situations when something is known in advance about the
function to estimate. For instance, we might have a rough idea of what would be
reasonable values of the function from earlier experience, or physical limits might
tell us, e.g., that the function only can take positive values. Furthermore, we might
know that the rate of change is limited by some known constant.

If such bounds are known, it would be tempting to try to use them to improve
the estimate. One could then remove the constraints (3.7) (which were imposed
to get rid of the influence of the values f(ϕ0) and f ′(ϕ0) on the estimate), and
instead consider a restricted family of functions with some prior knowledge of the
function value and its derivative:

|f(ϕ0)− a| ≤ δ, |f ′(ϕ0)− b| ≤ ∆ (5.1)

It is easy to see that, provided that the assumptions (5.1) are correct, this will not
make the worst-case MSE worse (we could always use weights satisfying (3.7), even
if it is not required). On the other hand, if the bounds are very wide, they will
probably not be of much help, either. Such issues will be discussed in this chapter.

Section 5.1 starts with the univariate case. For simplicity, we only consider the
class F2(L). In Section 5.2, the extension to multivariate functions is considered.

79

80 Using Prior Knowledge

5.1 The Univariate Case

The basic problem is still the same: estimate the value f(ϕ0) of an unknown
function f : R → R at a given point ϕ0, given a set of input-output pairs
{(ϕ(k), y(k))}Nk=1, coming from

y(k) = f(ϕ(k)) + e(k) (5.2)

We assume that f is continuously differentiable, and that there are known positive
constants L, δ, ∆, and known constants a, b such that

|f ′(ϕ(1))− f ′(ϕ(2))| ≤ L|ϕ(1)− ϕ(2)| ∀ϕ(1), ϕ(2) ∈ R (5.3)
|f(ϕ0)− a| ≤ δ (5.4)
|f ′(ϕ0)− b| ≤ ∆ (5.5)

Following the notation of Chapter 2, this class of functions is denoted byF2(L, δ,∆).
The noise terms are as previously independent, identically distributed random vari-
ables with zero mean and known variance σ2.

There are some particular cases that deserve special attention:

• If δ →∞ then the limit class

F2(L,∆) , F2(L,∆,∞) =
∞⋃

t=1

F2(L, δ,∆)|δ=t (5.6)

describes the situation where we have no direct a priori information on the
function value f(ϕ0).

• If in addition ∆ → 0+, then the limit class F2(L, 0) represents a set of
functions meeting condition (5.3) and having a given derivative f ′(ϕ0) = b.

• If both δ →∞ and ∆→∞, we are back to the function class F2(L) studied
in Chapter 3.

In the previous chapters, we have used a linear estimator (2.3). For the current
function classes, it turns out to be useful to consider the slightly more general class
of affine estimators:

f̂(ϕ0) = w0 +
N∑

k=1

wky(k) (5.7)

As for the linear estimators in previous chapters, the weights of the affine estimator
will depend on ϕ0, ϕ(k), L, and σ, but not on y(k). Furthermore, they may also
depend on a, b, δ, and ∆.

The performance of an estimator f̂(ϕ0) will, as before, be evaluated by an
upper bound on the worst-case MSE. In the following, such bounds are given for
the different function classes defined above. As it turns out, these upper bounds
can then be minimized using quadratic programming, yielding optimal (in this
sense) estimators.

5.1 The Univariate Case 81

5.1.1 Class F = F2(L, δ,∆)

As suggested, let us consider the affine estimator (5.7) and the function class
F2(L, δ,∆) for finite δ, ∆. For this estimator and class, the worst-case MSE has
the following upper bound:

WMSE (f̂(ϕ0),F2(L, δ,∆)) ≤ UF2(L,δ,∆)(w0, w)

=

(∣∣∣∣∣w0 + a

(
N∑

k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃(k)

∣∣∣∣∣ + δ

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣
+ ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

(5.8)

This is true, since for any function f ∈ F2(L, δ,∆) the estimation error may be
represented as follows

f̂(ϕ0)− f(ϕ0) = w0 +
N∑

k=1

wky(k)− f(ϕ0)

= w0 +
N∑

k=1

wk(f(ϕ(k)) + e(k))− f(ϕ0)

= w0 + a

(
N∑

k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃(k) (5.9)

+ (f(ϕ0)− a)

(
N∑

k=1

wk − 1

)
+ (f ′(ϕ0)− b)

N∑
k=1

wkϕ̃(k)

+
N∑

k=1

wk(f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k)) +
N∑

k=1

wke(k)

Due to Lemma A.3, the inequality

|f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k)| ≤ L

2
ϕ̃2(k) (5.10)

follows from (5.3). Now, the MSE satisfies

MSE (f̂(ϕ0)) =

(
w0 + a

(
N∑

k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃(k) (5.11)

+ (f(ϕ0)− a)

(
N∑

k=1

wk − 1

)
+ (f ′(ϕ0)− b)

N∑
k=1

wkϕ̃(k)

+
N∑

k=1

wk(f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k))

)2

+ σ2
N∑

k=1

w2
k

82 Using Prior Knowledge

≤
(∣∣∣∣∣w0 + a

(
N∑

k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃(k)

∣∣∣∣∣ (5.12)

+ |f(ϕ0)− a| ·
∣∣∣∣∣

N∑
k=1

wk − 1

∣∣∣∣∣ + |f ′(ϕ0)− b| ·
∣∣∣∣∣

N∑
k=1

wkϕ̃(k)

∣∣∣∣∣
+

N∑
k=1

|wk| · |f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k)|
)2

+ σ2
N∑

k=1

w2
k

from which the upper bound (5.8) follows directly.
Note that the upper bound UF2(L,δ,∆)(w0, w) is easily minimized with respect

to w0 for any w ∈ RN . Indeed,

argmin
w0

UF2(L,δ,∆)(w0, w) = −a

(
N∑

k=1

wk − 1

)
− b

N∑
k=1

wkϕ̃(k) (5.13)

Thus, we arrive at the following theorem:

Theorem 5.1
For the function class F2(L, δ,∆), the affine estimator minimizing UF2(L,δ,∆)(w0, w)
is found among the estimators satisfying

f̂(ϕ0) =
N∑

k=1

wky(k)− a

(
N∑

k=1

wk − 1

)
− b

N∑
k=1

wkϕ̃(k) (5.14)

= a +
N∑

k=1

wk (y(k)− a− bϕ̃(k)) , w ∈ RN

For this kind of estimators, the worst-case MSE has the following upper bound:

WMSE (f̂(ϕ0),F2(L, δ,∆)) ≤ UF2(L,δ,∆)(w) (5.15)

=

(
δ

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣ + ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

Proof Follows directly from (5.8) and (5.13). �

The second expression of (5.14) can be interpreted as if we use the a priori given
values a and b and form an affine nominal model around ϕ0:

ŷ(k) = a + bϕ̃(k)

Then the residuals y(k) − ŷ(k) are used to improve the estimated function value
a from the nominal model. How large effect the residuals should have depends on

5.1 The Univariate Case 83

the weights obtained by minimizing (5.15), which in turn depends on ∆ and δ, i.e.,
how uncertain the nominal values a and b are.

Let us take a closer look at (5.11). It is easy to see, that if δ → ∞, the MSE
might be arbitrarily large unless

∑N
k=1 wk = 1, since the term

(f(ϕ0)− a)

(
N∑

k=1

wk − 1

)

is unbounded. In fact, we can show the following interesting theorem:

Theorem 5.2
Assume that ϕ̃(k) 6= 0, k = 1, . . . , N . Given a, b ∈ R and L,∆ ∈ (0,∞), there
exists a δ0 ∈ (0,∞) such that for any δ > δ0, the minimum of the upper bound
UF2(L,δ,∆)(w) given by (5.15) with respect to w ∈ RN is attained on the subspace

N∑
k=1

wk = 1 (5.16)

and does not depend on a or δ. In other words, given a sufficiently large δ, the
affine estimator (5.7) minimizing UF2(L,δ,∆)(w0, w) can be found in the form

f̂(ϕ0) =
N∑

k=1

wky(k)− b

N∑
k=1

wkϕ̃(k) ,

N∑
k=1

wk = 1 (5.17)

with the weights wk minimizing the simpler upper bound

UF2(L,∆)(w) =

(
∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k (5.18)

subject to the constraint (5.16).

Proof We defer the proof until Section 5.1.6. �

Theorem 5.2 implies that there is a limit (given by δ0) for the uncertainty in
the information about f(ϕ0), above which this information does not improve the
quality of the estimate at all. However, the estimate naturally does not get worse,
either.

5.1.2 Class F = F2(L,∆)

Let us now turn to class F2(L,∆), i.e., the case δ → ∞. From the remark just
before Theorem 5.2, it follows that the MSE cannot be bounded above unless∑N

k=1 wk = 1. On the other hand, if this requirement is satisfied, we get the

84 Using Prior Knowledge

following upper bound on the worst-case MSE, which can be shown analogously to
(5.8):

WMSE (f̂(ϕ0),F2(L,∆)) ≤ UF2(L,∆)(w0, w) (5.19)

=

(∣∣∣∣∣w0 + b

N∑
k=1

wkϕ̃(k)

∣∣∣∣∣ + ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

By minimizing the upper bound with respect to w0, it can be seen that the mini-
mizing estimator will be in the form (5.17), and that w can be found by minimizing
(5.18) under assumption (5.16). We summarize this in the following theorem:

Theorem 5.3
For the function class F2(L,∆), the affine estimator minimizing UF2(L,∆)(w0, w) is
found among the estimators satisfying

f̂(ϕ0) =
N∑

k=1

wky(k)− b

N∑
k=1

wkϕ̃(k) =
N∑

k=1

wk (y(k)− bϕ̃(k)) ,

N∑
k=1

wk = 1 (5.20)

For this kind of estimators, the worst-case MSE has the following upper bound:

WMSE (f̂(ϕ0),F2(L,∆)) ≤ UF2(L,∆)(w) (5.21)

=

(
∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

Theorem 5.3 can be interpreted in a similar way as Theorem 5.1: We form a nominal
affine model around ϕ0, and use the residuals y(k) − ŷ(k) to adjust the estimate
f̂(ϕ0). However, since we do not know anything about a nominal function value
a, we should select the weights wk in such a way that the effect of a is cancelled
in the expression of f̂(ϕ0). This is done as in (5.20), i.e., by choosing weights that
satisfy

∑N
k=1 wk = 1.

Analogously to Theorem 5.2, we can study what happens when ∆ is large.

Theorem 5.4
Suppose that ϕ̃(k) 6= 0, k = 1, . . . , N , and that there are two indices k1 and k2

such that ϕ̃(k1) 6= ϕ̃(k2). Given b ∈ R and L ∈ (0,∞), there exists a ∆0 ∈ (0,∞)
such that for any ∆ > ∆0, the minimum of the upper bound UF2(L,∆)(w) given by
(5.21), subject to the constraint (5.16), is attained on the subspace

N∑
k=1

wk = 1 ,

N∑
k=1

wkϕ̃(k) = 0 (5.22)

and does not depend on b or ∆. In other words, given a sufficiently large ∆, the
affine estimator (5.7) minimizing UF2(L,∆)(w0, w) can be found in the form

f̂(ϕ0) =
N∑

k=1

wky(k) (5.23)

5.1 The Univariate Case 85

by minimizing the upper bound

UF2(L)(w) =

(
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k (5.24)

subject to constraints (5.22).

Proof See Section 5.1.6. �

Remark 5.1 Note that Theorem 5.4 does not hold in general if ϕ̃(k) = 0 for some
k. For example, if ϕ̃(1) > 0 and ϕ̃(k) = 0 for k = 2, . . . , N , we get the following
optimal solution:

w∗1 =
σ2

(N − 1)ϕ̃2(1)
(
∆ + L

2 ϕ̃(1)
)2

+ Nσ2
(5.25)

w∗k =
ϕ̃2(1)

(
∆ + L

2 ϕ̃(1)
)2

+ σ2

(N − 1)ϕ̃2(1)
(
∆ + L

2 ϕ̃(1)
)2

+ Nσ2
, k = 2, . . . , N

We can see that w∗1 → 0 as ∆→∞, but for any finite ∆, w∗1 is positive. Further-
more,

N∑
k=1

w∗kϕ̃(k) = w∗1ϕ̃(1) > 0

5.1.3 Class F = F2(L, 0)

We may now formally let ∆ → 0+ in the previous subsection, which means that
the derivative f ′(ϕ0) = b is a priori known. We obtain the following results as a
direct consequence of what was stated there.

Corollary 5.1
For the function class F2(L, 0), a finite worst-case MSE can be guaranteed only
if the requirement (5.16) is satisfied. Under this constraint, we get the following
upper bound on the worst-case MSE:

WMSE (f̂(ϕ0),F2(L, 0)) ≤ UF2(L,0)(w0, w) (5.26)

=

(∣∣∣∣∣w0 + b

N∑
k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

Hence, the affine estimator minimizing UF2(L,0)(w0, w) is found among the estima-
tors satisfying

f̂(ϕ0) =
N∑

k=1

wky(k)− b

N∑
k=1

wkϕ̃(k) =
N∑

k=1

wk (y(k)− bϕ̃(k)) ,

N∑
k=1

wk = 1 (5.27)

86 Using Prior Knowledge

For this kind of estimators, the worst-case MSE has the following upper bound:

WMSE (f̂(ϕ0),F2(L, 0)) ≤ UF2(L)(w) (5.28)

=

(
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

Proof Follows directly from (5.19) and Theorem 5.3. �

As we can see from (5.27), the benefit of knowing the derivative f ′(ϕ0) depends
on the value of

∑N
k=1 wkϕ̃(k). If this value is small, the effect from knowing the

derivative is small. For instance, if the data samples are lying symmetrically around
ϕ0, it turns out that the weights wk will also be symmetric, and thus

N∑
k=1

wkϕ̃(k) = 0

In this case, knowing f ′(ϕ0) will not affect the function estimate at all. If, on
the other hand, all ϕ̃(k) > 0, the value of this sum will be relatively large, since
all terms wkϕ̃(k) will be nonnegative (it is easy to see that the weights wk that
minimize (5.28) under the constraint (5.16) will be nonnegative, regardless of the
values of ϕ̃(k)). Hence, the knowledge of f ′(ϕ0) seems to be more valuable the
more asymmetrically spread the data samples are.

5.1.4 Class F = F2(L)

For the class F2(L), following a similar line of argument as for F2(L,∆), we can
see that a finite MSE can be guaranteed only if the weights w satisfy (5.22). Under
this requirement, on the other hand, we get the following upper bound on the
worst-case MSE:

WMSE (f̂(ϕ0),F2(L)) ≤ UF2(L)(w0, w)

=

(
|w0|+

L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

(5.29)

Hence, by minimizing the upper bound with respect to w0 (which of course will
yield w0 = 0), we will obtain a minimizing estimator in the form (5.23), where w
can be found by minimizing (5.24) subject to the constraints (5.22). We are thus
back to the situation in Chapter 3.

5.1.5 QP Formulations

In the Sections 5.1.1-5.1.4, it was pointed out how the weights w0 and wk of the
affine estimator (5.7) could be chosen by minimizing different expressions, in order

5.1 The Univariate Case 87

to get estimators with guaranteed upper bounds on the worst-case MSE. In this
section we will show that these minimization problems can be formulated as convex
quadratic programs.

To begin with, let us consider the function class F2(L, δ,∆) and the problem of
finding the affine estimator minimizing (5.15).

Theorem 5.5
Given the positive numbers δ,∆, L, consider the following minimization problem:

min
w,s

(
δsa + ∆sb +

L

2

N∑
k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k

subj. to sa ≥ ±
(

N∑
k=1

wk − 1

)

sb ≥ ±
N∑

k=1

wkϕ̃(k)

sk ≥ ±wk, k = 1, . . . , N

(5.30)

where s = (sa, sb, s1, . . . , sN). Then w∗ is a minimizer of UF2(L,δ,∆)(w) as defined
in (5.15) if and only if there is a vector s∗ such that (w∗, s∗) is a minimizer of
(5.30). Furthermore, the following relations hold:

s∗a =

∣∣∣∣∣
N∑

k=1

w∗k − 1

∣∣∣∣∣
s∗b =

∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣ (5.31)

s∗k = |w∗k|, k = 1, . . . , N

Proof Given a feasible solution w to (5.15), we can get a feasible solution to
(5.30) with the same value of the objective function by using the same w and

sa =

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣
sb =

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ (5.32)

sk = |wk|, k = 1, . . . , N

Hence (5.30) is a relaxation of (5.15), and it suffices to show that for a minimizer
(w∗, s∗) of (5.30), (5.32) will hold. Suppose, e.g., that s∗1 > |w∗1 |. Then, without
changing any other variables, the value of the objective function can be reduced

88 Using Prior Knowledge

by decreasing s∗1. This can be seen by observing that the coefficient before s∗1 is
nonnegative in the first sum of the objective function, and positive in the second
sum of the objective function, so decreasing s∗1 will decrease at least one of these
sums, and hence the objective function. Hence, s∗1 = |w∗1 |. By similar arguments,
one can show that the other equalities of (5.32) will also hold at the optimum,
which proves the theorem. �

Note that (5.30) is a convex QP and can therefore be solved efficiently.
Starting from Theorem 5.5, we can now formulate QP:s for all the other cases

mentioned in Section 5.1. Since the constraints (5.16) and (5.22) are all linear in w,
they can just be added to the QP. For the function class F2(L), the corresponding
QP was given in Theorem 3.1. For F2(L,∆), the resulting theorem is listed below.

Theorem 5.6
Given the positive numbers ∆, L, consider the following minimization problems:

min
w

(
∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

subj. to
N∑

k=1

wk = 1

(5.33)

and

min
w,s

(
∆sb +

L

2

N∑
k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k

subj. to sb ≥ ±
N∑

k=1

wkϕ̃(k)

sk ≥ ±wk, k = 1, . . . , N
N∑

k=1

wk = 1

(5.34)

where w = (w1, . . . , wN) and s = (sb, s1, . . . , sN). Then w∗ is a minimizer of
(5.33) if and only if there is a vector s∗ such that (w∗, s∗) is a minimizer of (5.34).
Furthermore, the following relations hold:

s∗b =

∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣
s∗k = |w∗k|, k = 1, . . . , N

(5.35)

5.1 The Univariate Case 89

5.1.6 Proofs of Theorems 5.2 and 5.4

Now, when the minimization problems have been reformulated as QP:s, we are
ready to prove Theorems 5.2 and 5.4.

Proof (Proof of Theorem 5.4) From Theorem 5.6 we know that minimizing
(5.21) subject to the constraint (5.16) is equivalent to solving (5.34). We also note
that the optimization problem we get by adding

N∑
k=1

wkϕ̃(k) = 0

as a constraint to (5.34) is nothing else than (3.11), and will yield a (finite) optimal
value if we have at least two distinctive points ϕ̃(k). Call this value d.

The Lagrangian function of (5.34) can be written

L(w, s;µ, λ) =

(
∆sb +

L

2

N∑
k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k − µ

(
N∑

k=1

wk − 1

)

− λ+
b

(
sb −

N∑
k=1

wkϕ̃(k)

)
− λ−b

(
sb +

N∑
k=1

wkϕ̃(k)

)

−
N∑

k=1

(λ+
k (sk − wk) + λ−k (sk + wk))

(5.36)

where λ±k ≥ 0, k = 1, . . . , N , λ±b ≥ 0, and µ are the Lagrangian multipliers. Let us
also introduce

g(w,∆) = 2

(
∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

ϕ̃2(k)|wk|
)

(5.37)

Note that
g(w,∆) ≥ Lmin

k
ϕ̃2(k) > 0 (5.38)

Let (w∗, s∗b , s
∗) be an optimal solution of (5.34). Using the relations

s∗b =

∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣ , s∗k = |w∗k|

together with the necessary KKT conditions, we get

g(w∗,∆)∆ = λ+
b + λ−b

µ + (λ−b − λ+
b)ϕ̃(k) = λ+

k − λ−k

g(w∗,∆)
L

2
ϕ̃2(k) + 2σ2|w∗k| = λ+

k + λ−k

90 Using Prior Knowledge

N∑
k=1

w∗k = 1

λ+
b

(∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣−
N∑

k=1

w∗kϕ̃(k)

)
= 0 (5.39)

λ−b

(∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣ +
N∑

k=1

w∗kϕ̃(k)

)
= 0

λ+
k (|w∗k| − w∗k) = 0

λ−k (|w∗k|+ w∗k) = 0

λ±b ≥ 0, λ±k ≥ 0, k = 1, . . . , N

Now assume, e.g., that
∑N

k=1 w∗kϕ̃(k) > 0. This means that λ−b = 0. If also w∗k > 0
for some k, this implies that λ−k = 0. By elimination of λ+

b and λ+
k , we then get

2σ2w∗k = µ− g(w∗,∆)
(

L

2
ϕ̃2(k) + ∆ϕ̃(k)

)
If on the other hand w∗k < 0, we get λ+

k = 0 and

2σ2w∗k = µ− g(w∗,∆)
(
−L

2
ϕ̃2(k) + ∆ϕ̃(k)

)
Finally, if w∗k = 0, this yields{

2λ+
k = µ− g(w∗,∆)

(
−L

2 ϕ̃2(k) + ∆ϕ̃(k)
)

2λ−k = −µ + g(w∗,∆)
(

L
2 ϕ̃2(k) + ∆ϕ̃(k)

)
which, since λ±k ≥ 0, implies

−g(w∗,∆)
L

2
ϕ̃2(k) ≤ µ− g(w∗,∆)∆ϕ̃(k) ≤ g(w∗,∆)

L

2
ϕ̃2(k)

We can summarize the last four expressions in the following form (where we define
ϕ̃ = (ϕ̃(1) . . . ϕ̃(N))T):

2σ2

w∗1
...

w∗N

 = µ

1
...
1


︸ ︷︷ ︸

v1

− g(w∗,∆)

(
L

2

 ϕ̃2(1) sgnp1
w∗1

...
ϕ̃2(N) sgnpN w∗N


︸ ︷︷ ︸

v2

+ ∆ϕ̃

)
(5.40)

for some pk ∈ [−1, 1], k = 1, . . . , N , where sgnp is defined as

sgnp(t) =


1 t > 0
p t = 0
−1 t < 0

(5.41)

5.1 The Univariate Case 91

Note that the Euclidean norm of the vector v2 in (5.40) is bounded by

‖v2‖ ≤

∥∥∥∥∥∥∥
 ϕ̃2(1)

...
ϕ̃2(N)


∥∥∥∥∥∥∥ ,M

Let

∆0 =
L
2 M + 2σ

√
d

L mink ϕ̃2(k)√∑N
k=1

(
ϕ̃(k)− 1

N

∑N
i=1 ϕ̃(i)

)2
(5.42)

Then, for ∆ > ∆0,

‖w∗‖ =
g(w∗,∆)

2σ2

∥∥∥∥ µ

g(w∗,∆)
v1 −

L

2
v2 −∆ϕ̃

∥∥∥∥
≥ Lmink ϕ̃2(k)

2σ2

(∥∥∥∥ µ

g(w∗,∆)
v1 −∆ϕ̃

∥∥∥∥− L

2
‖v2‖

)
≥ Lmink ϕ̃2(k)

2σ2

(
∆

∥∥∥∥ ϕ̃T v1

‖v1‖2
v1 − ϕ̃

∥∥∥∥− L

2
M

)
(5.43)

=
Lmink ϕ̃2(k)

2σ2

(
∆

∥∥∥∥∥ϕ̃− 1
N

N∑
k=1

ϕ̃(k)v1

∥∥∥∥∥− L

2
M

)

=
Lmink ϕ̃2(k)

2σ2

∆

√√√√ N∑
k=1

(
ϕ̃(k)− 1

N

N∑
i=1

ϕ̃(i)

)2

− L

2
M

 >

√
d

σ

In the third row of (5.43), we have used the fact that the shortest distance from ϕ̃
and the line spanned by v1 is between ϕ̃ and its orthogonal projection onto v1 (see
Figure 5.1). Comparing (5.43) with the objective function in (5.33), we can see that
the last term alone of the objective function (and hence of the objective function
in (5.34)) will be larger than d. This leads to a contradiction, and we conclude
that

∑N
k=1 w∗kϕ̃(k) ≤ 0. The case

∑N
k=1 w∗kϕ̃(k) < 0 is treated analogously, which

implies that if ∆ > ∆0 as given by (5.42), then
∑N

k=1 w∗kϕ̃(k) = 0. The proof is
complete. �

Proof (Proof of Theorem 5.2) From Theorem 5.5 we know, that minimizing
(5.15) is equivalent to solving (5.30). We also note that the optimization problem
we get by adding

N∑
k=1

wk = 1

as a constraint to (5.30) is nothing else than (5.34), and will yield a finite optimal
value. Call this value d.

92 Using Prior Knowledge

-�
�
�
���

�
�
�
�
�
�
�
�
�
���

@
@

@
@@

ϕ̃T v1
‖v1‖2 v1

ϕ̃

µ
g(w∗,∆)∆v1

Figure 5.1: Illustration of one of the inequalities in (5.43).

The Lagrangian function of (5.30) can be written

L(w, s;µ, λ) =

(
δsa + ∆sb +

L

2

N∑
k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k

− λ+
a

(
sa −

N∑
k=1

wk + 1

)
− λ−a

(
sa +

N∑
k=1

wk − 1

)
(5.44)

− λ+
b

(
sb −

N∑
k=1

wkϕ̃(k)

)
− λ−b

(
sb +

N∑
k=1

wkϕ̃(k)

)

−
N∑

k=1

(λ+
k (sk − wk) + λ−k (sk + wk))

where λ±k ≥ 0, k = 1, . . . , N , λ±a ≥ 0, and λ±b ≥ 0 are the Lagrangian multipliers.
Let us also introduce

g(w, δ,∆) = 2

(
δ

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣ + ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)

∣∣∣∣∣ +
L

2

N∑
k=1

ϕ̃2(k)|wk|
)

(5.45)

Let (w∗, s∗a, s∗b , s
∗) be an optimal solution of (5.30). Using the relations s∗a =

|
∑N

k=1 w∗k − 1|, s∗b = |
∑N

k=1 w∗kϕ̃(k)|, and s∗k = |w∗k| together with the necessary
KKT conditions, we get

g(w∗, δ,∆)δ = λ+
a + λ−a

g(w∗, δ,∆)∆ = λ+
b + λ−b

g(w∗, δ,∆)
L

2
ϕ̃2(k) + 2σ2|w∗k| = λ+

k + λ−k

λ+
a − λ−a + (λ+

b − λ−b)ϕ̃(k) + λ+
k − λ−k = 0

5.1 The Univariate Case 93

λ+
a

(∣∣∣∣∣
N∑

k=1

w∗k − 1

∣∣∣∣∣−
N∑

k=1

w∗k + 1

)
= 0 (5.46)

λ−a

(∣∣∣∣∣
N∑

k=1

w∗k − 1

∣∣∣∣∣ +
N∑

k=1

w∗k − 1

)
= 0

λ+
b

(∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣−
N∑

k=1

w∗kϕ̃(k)

)
= 0

λ−b

(∣∣∣∣∣
N∑

k=1

w∗kϕ̃(k)

∣∣∣∣∣ +
N∑

k=1

w∗kϕ̃(k)

)
= 0

λ+
k (|w∗k| − w∗k) = 0

λ−k (|w∗k|+ w∗k) = 0

λ±a ≥ 0, λ±b ≥ 0, λ±k ≥ 0, k = 1, . . . , N

Now assume, e.g., that
∑N

k=1 w∗k > 1. This means that λ−a = 0. By computations
similar to the ones leading to (5.40), we arrive at

2σ2w∗ = −g(w∗, δ,∆)

(
δv1 + ∆sgnq

(
N∑

k=1

w∗kϕ̃(k)

)
ϕ̃ +

L

2
v2

)
(5.47)

for some q ∈ [−1, 1], and where v1 and v2 are defined as in (5.40). Note also that

g(w, δ,∆) ≥ Lmin
k

ϕ̃2(k) > 0 (5.48)

Now, let

δ′0 =
1√
N

(
∆‖ϕ̃‖+

L

2
M +

2σ
√

d

Lmink ϕ̃2(k)

)
(5.49)

Then, for δ > δ′0,

‖w∗‖ =
g(w∗, δ,∆)

2σ2

∥∥∥∥∥δv1 + ∆sgnq

(
N∑

k=1

w∗kϕ̃(k)

)
ϕ̃ +

L

2
v2

∥∥∥∥∥
≥ Lmink ϕ̃2(k)

2σ2

(
δ‖v1‖ −∆‖ϕ̃‖ − L

2
‖v2‖

)
(5.50)

≥ Lmink ϕ̃2(k)
2σ2

(
δ
√

N −∆‖ϕ̃‖ − L

2
M

)
>

√
d

σ

which means that the last term alone of (5.30) will be larger than d. This leads
to a contradiction, and we conclude that

∑N
k=1 w∗k ≤ 1. The case

∑N
k=1 w∗k < 1 is

treated analogously. However, there is one technical difficulty in this case, namely
to establish a positive lower bound on g(w, δ,∆). If we assume, e.g., that δ ≥ 1,

94 Using Prior Knowledge

we get

g(w, δ,∆) ≥ 2

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣ + L

N∑
k=1

ϕ̃2(k)|wk|

It is easy to see that the minimum of this expression with respect to the weights
wk is obtained for weights satisfying wk ≥ 0,

∑N
k=1 wk ≤ 1. Hence, we get

g(w, δ,∆) ≥ min
wk ≥ 0∑N
k=1 wk ≤ 1

2− 2
N∑

k=1

wk + L
N∑

k=1

ϕ̃2(k)wk

= min
wk ≥ 0∑N
k=1 wk ≤ 1

2 +
N∑

k=1

wk

(
Lϕ̃2(k)− 2

)
= min{Lmin

k
ϕ̃2(k), 2} > 0

With

δ0 = max{1,
1√
N

(
∆‖ϕ̃‖+

L

2
M +

2σ
√

d

min{Lmink ϕ̃2(k), 2}

)
} (5.51)

we can now perform similar calculations as for the case
∑N

k=1 wk > 1, which implies
that if δ > δ0 as given by (5.51), then

∑N
k=1 w∗k = 1. The proof is complete. �

5.1.7 Adjusting the Estimate

For the function class F2(L, δ,∆), we assume that we know a bound on f(ϕ0).
However, even if this was taken into account when deriving the QP (5.30), using the
optimal weights from (5.30) when computing the estimate f̂(ϕ0) does not guarantee
that the latter falls within the bounds, i.e., that

|f̂(ϕ0)− a| ≤ δ (5.52)

The reason for this is that the weights wk do not depend on y(k), and the actual
noise realization might therefore in unlucky cases deteriorate f̂(ϕ0) to such a degree
that it falls outside the bounds.

Fortunately, this is easily handled by adjusting the estimate afterwards accord-
ing to

f̂ADJ(ϕ0) = min{max{f̂(ϕ0), a− δ}, a + δ} (5.53)

Using this adjustment, f̂ADJ(ϕ0) is guaranteed to satisfy (5.52). Note that the
worst-case MSE will not increase by making this alteration, if the true function
f ∈ F2(L, δ,∆). A similar adjustment was done in [137] for a problem of estimating
the expected value of a random variable, when some of the observations are biased.

5.2 Estimating Multivariate Functions 95

5.2 Estimating Multivariate Functions

So far in this chapter, we have assumed that the function to be estimated has
a scalar argument. However, as mentioned previously, the regressors will have a
higher dimension in many applications, in particular to dynamic systems. The
extension to this case is immediate. In this section, we will describe some of the
aspects of this kind of extension.

We now consider the problem of estimating the value f(ϕ0) of an unknown
multivariate, continuously differentiable function f : Rn → R at a given point ϕ0,
given a set of input-output pairs {(ϕ(k), y(k))}Nk=1, coming from the relation

y(k) = f(ϕ(k)) + e(k) (5.54)

Instead of the assumptions (5.3)-(5.5), we make the following assumptions:

‖∇f(ϕ(1))−∇f(ϕ(2))‖ ≤ L‖ϕ(1)− ϕ(2)‖ ∀ϕ(1), ϕ(2) ∈ Rn (5.55)
|f(ϕ0)− a| ≤ δ (5.56)

‖∇f(ϕ0)− b‖ ≤ ∆ (5.57)

With some abuse of notation, we let F2(L, δ,∆), F2(L,∆), and F2(L) denote
also their multivariate counterparts. For F2(L, δ,∆) and an affine estimator (5.7),
the worst-case MSE has the following upper bound, which is similar to the univari-
ate case:

WMSE (f̂(ϕ0),F2(L, δ,∆)) ≤ UF2(L,δ,∆)(w0, w)

=

(∣∣∣∣∣w0 + a

(
N∑

k=1

wk − 1

)
+ bT

N∑
k=1

wkϕ̃(k)

∣∣∣∣∣ + δ

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣
+ ∆

∥∥∥∥∥
N∑

k=1

wkϕ̃(k)

∥∥∥∥∥ +
L

2

N∑
k=1

|wk|‖ϕ̃(k)‖2
)2

+ σ2
N∑

k=1

w2
k

(5.58)

As in the univariate case, we can immediately eliminate w0 by minimizing (5.58)
for an arbitrary w, giving the following theorem:

Theorem 5.7
For multivariate functions of the function class F2(L, δ,∆), the affine estimator
minimizing UF2(L,δ,∆)(w0, w) is found among the estimators satisfying

f̂(ϕ0) =
N∑

k=1

wky(k)− a

(
N∑

k=1

wk − 1

)
− bT

N∑
k=1

wkϕ̃(k) (5.59)

= a +
N∑

k=1

wk

(
y(k)− a− bT ϕ̃(k)

)
, w ∈ RN

96 Using Prior Knowledge

For this kind of estimators, the worst-case MSE has the following upper bound:

WMSE (f̂(ϕ0),F2(L, δ,∆)) ≤ UF2(L,δ,∆)(w) (5.60)

=

(
δ

∣∣∣∣∣
N∑

k=1

wk − 1

∣∣∣∣∣ + ∆

∥∥∥∥∥
N∑

k=1

wkϕ̃(k)

∥∥∥∥∥ +
L

2

N∑
k=1

|wk|‖ϕ̃(k)‖2
)2

+ σ2
N∑

k=1

w2
k

Proof Analogous to the univariate case. �

So far, the differences to the univariate case have been small and obvious. How-
ever, when trying to transform the problem of minimizing (5.60) into a standard
convex optimization problem, it turns out that it is impossible to formulate it as a
QP problem. What prohibits this is the term

∆

∥∥∥∥∥
N∑

k=1

wkϕ̃(k)

∥∥∥∥∥ (5.61)

which is the norm of a linear combination of vectors. Instead, we can formulate
the problem as a second-order cone program (SOCP), which is another standard
class of convex optimization problems (see [19]). To do this, we introduce some
slack variables s = (s1 . . . sN)T and t = (ta tb tc)T , and get

min
w,s,t

tc

subj. to

(
δta + ∆tb +

L

2

N∑
k=1

‖ϕ̃(k)‖2sk

)2

+ σ2
N∑

k=1

s2
k ≤ tc∣∣∣∣∣

N∑
k=1

wk − 1

∣∣∣∣∣ ≤ ta∥∥∥∥∥
N∑

k=1

wkϕ̃(k)

∥∥∥∥∥ ≤ tb

|wk| ≤ sk, k = 1, . . . , N

(5.62)

This problem is in standard SOCP form, except for the first, quadratic constraint.
However, straightforward calculations show that this constraint is equivalent to∥∥∥∥∥∥∥

2
(
δta + ∆tb + L

2

∑N
k=1 ‖ϕ̃(k)‖2sk

)
2σs

1− tc


∥∥∥∥∥∥∥ ≤ 1 + tc (5.63)

thus completing the problem reformulation.
For the other function classes, F2(L,∆) and F2(L), the extension to the multi-

variate case is done completely similarly. The minimization problem for F2(L,∆)
will also yield a SOCP, while the minimization problem for F2(L) will still be pos-
sible to express as a QP (as we saw in Chapter 4), since the term (5.61) vanishes.

5.3 An Example 97

5.3 An Example

The following simple example illustrates the fact that the information about bounds
on the function value and derivatives can be useful, but only if the bounds are tight
enough.

Example 5.1 Let us consider the simple nonlinear system (with f : R2 → R)

y(t) = f(ϕ(t)) + e(t)
f(ϕ) = 5(ϕ2

1 + ϕ2
2) + 5ϕ1 + 10ϕ2 + 15

(5.64)

where e(t) ∈ N(0, 1). Suppose that we would like to estimate y for ϕ0 =
(
0 0

)T
,

given only N = 20 data samples taken from the distribution ϕ(t) ∈ N(0, I). We
assume that we know that (5.55) is satisfied for L = 10 (this is, of course, the best
possible L), and that we also know some approximate values a and b of the function
f(ϕ0) and ∇f(ϕ0), respectively, and the bounds δ and ∆ according to (5.56) and
(5.57). For simplicity, let a and b be the true values, a = f(ϕ0) and b = ∇f(ϕ0).

Now we can use the estimator in (5.59), for which the appropriate weights are
obtained by solving the SOCP given by (5.62) and (5.63). Solving the SOCP can
be done using Yalmip [98] and SeDuMi [149]. Naturally, different δ and ∆ values

should give different estimates. Figure 5.2(a) shows f̂(ϕ0) for some different values
of δ and ∆. In Figure 5.2(b) the part of the estimate coming from the a priori
knowledge of the function value (i.e., the second term of (5.59)) is plotted. As we
can see, for small values of δ, the estimate is based entirely on this information,
while for large values, the a priori knowledge is not used at all, in agreement with
Theorem 5.2. In Figure 5.2(c), the part of the f̂(ϕ0) coming from the knowledge
of ∇f(ϕ0) (the third term of (5.59)) is used. For this example, we can see that
this information is not used very much, but that it gives a certain contribution for
small values of ∆ (as long as δ is large enough, so that we do not only use the
information about f(ϕ0)).

Finally, Figure 5.3 shows the optimal value of the criterion function, which
decreases both with δ and ∆, just as should be expected.

98 Using Prior Knowledge

0
1

2
3

0

1

2

3
14.85

14.9

14.95

15

15.05

δ

Estimated function value

∆

(a) The estimate f̂(ϕ0).

0
1

2
3

0

1

2

3
0

5

10

15

δ

Part from function value knowledge

∆

(b) The part of f̂(ϕ0) coming from

prior knowledge of f(ϕ0).

0
1

2
3

0

1

2

3
−1

−0.5

0

0.5

δ

Part from gradient knowledge

∆

(c) The part of f̂(ϕ0) coming from

prior knowledge of ∇f(ϕ0).

Figure 5.2: Estimates of f(ϕ0) in Example 5.1 for different values of δ and ∆.

0
1

2
3

0

1

2

3
0

0.1

0.2

0.3

0.4

0.5

δ

Cost

∆

Figure 5.3: The optimal value of the criterion function in Example 5.1.

6

Other Extensions

This chapter presents some extensions that can be made to the proposed DWO
approach. These extensions include estimation of the derivative, which may be
useful in many applications. Section 6.2 considers the minimization of the exact
worst-case MSE over F2(L). Other extensions are the case of nonconstant variance,
and the usage of more general function classes. These issues are described in
Section 6.3.

6.1 Estimating the Derivative

In Chapter 5, we saw that prior information about the function value f(ϕ0) and
its derivatives (f ′(ϕ0) in the univariate case) can be of use if they are not too
uncertain. The question is, given no prior information about f(ϕ0) and f ′(ϕ0), if
we can improve our estimate of f(ϕ0) by first estimating the derivative, and then
use this estimate when estimating f(ϕ0). As we will see, the answer to this question
is no for any reasonable linear estimate of f ′(ϕ0), using the same given data set
as for estimating f(ϕ0). However, since estimating the derivative is interesting
in itself, we will first consider this topic in some more detail. We will treat the
problem for the univariate case, for the three classes of functions that have been
previously discussed, and use affine estimators according to (5.7).

Let us denote a general affine derivative estimator by f̂ ′(ϕ0). The MSE for

99

100 Other Extensions

f̂ ′(ϕ0) is

MSE (f̂ ′(ϕ0)) = E[
(
f̂ ′(ϕ0)− f ′(ϕ0)

)2

|ϕN
1] (6.1)

and the worst-case MSE becomes

WMSE (f̂ ′(ϕ0),F) = sup
f∈F

MSE (f̂ ′(ϕ0)) (6.2)

Recall that for an affine estimator (5.7), its worst-case MSE (6.2) is a function of
the estimator parameters w0 and w. It also depends on the given class of functions
F . As for the function estimators, w0 and w will be computed by minimizing an
upper bound on the worst-case MSE.

6.1.1 Class F = F2(L, δ,∆)

Let us begin with the function class F2(L, δ,∆). Using an affine estimator (5.7),
we get the following upper bound on the worst-case MSE:

WMSE (f̂ ′(ϕ0),F2(L, δ,∆)) ≤ U1
F2(L,δ,∆)(w0, w)

=

(∣∣∣∣∣w0 + a
N∑

k=1

wk + b

(
N∑

k=1

wkϕ̃(k)− 1

)∣∣∣∣∣ + δ

∣∣∣∣∣
N∑

k=1

wk

∣∣∣∣∣
+ ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)− 1

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

(6.3)

This can be seen by first considering the estimation error, which for any function
f ∈ F2(L, δ,∆) may be represented as follows

f̂ ′(ϕ0)− f ′(ϕ0) = w0 +
N∑

k=1

wk(f(ϕ(k)) + e(k))− f ′(ϕ0)

= w0 + a

N∑
k=1

wk + b

(
N∑

k=1

wkϕ̃(k)− 1

)
(6.4)

+ (f(ϕ0)− a)
N∑

k=1

wk + (f ′(ϕ0)− b)

(
N∑

k=1

wkϕ̃(k)− 1

)

+
N∑

k=1

wk(f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k)) +
N∑

k=1

wke(k)

Using Lemma A.3, the MSE (6.1) becomes

MSE (f̂ ′(ϕ0)) =

(
w0 + a

N∑
k=1

wk + b

(
N∑

k=1

wkϕ̃(k)− 1

)

6.1 Estimating the Derivative 101

+ (f(ϕ0)− a)
N∑

k=1

wk + (f ′(ϕ0)− b)

(
N∑

k=1

wkϕ̃(k)− 1

)
(6.5)

+
N∑

k=1

wk(f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k))

)2

+ σ2
N∑

k=1

w2
k

≤
(∣∣∣∣∣w0 + a

N∑
k=1

wk + b

(
N∑

k=1

wkϕ̃(k)− 1

)∣∣∣∣∣ + |f(ϕ0)− a| ·
∣∣∣∣∣

N∑
k=1

wk

∣∣∣∣∣ (6.6)

+|f ′(ϕ0)− b| ·
∣∣∣∣∣

N∑
k=1

wkϕ̃(k)− 1

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

from which the upper bound (6.3) follows directly.
Similarly to the function estimation case, the upper bound U1

F2(L,δ,∆)(w0, w) is
easily minimized with respect to w0 for any w ∈ RN , resulting in

argmin
w0

U1
F2(L,δ,∆)(w0, w) = −a

N∑
k=1

wk − b

(
N∑

k=1

wkϕ̃(k)− 1

)
(6.7)

Thus, we arrive at the following theorem:

Theorem 6.1
For the function class F2(L, δ,∆), the affine estimator minimizing U1

F2(L,δ,∆)(w0, w)
is found among the estimators satisfying

f̂ ′(ϕ0) =
N∑

k=1

wky(k)− a

N∑
k=1

wk − b

(
N∑

k=1

wkϕ̃(k)− 1

)
(6.8)

= b +
N∑

k=1

wk (y(k)− a− bϕ̃(k))

For this kind of estimators, the worst-case MSE (6.2) over the class F2(L, δ,∆) has
the following upper bound:

WMSE (f̂ ′(ϕ0),F2(L, δ,∆)) ≤ U1
F2(L,δ,∆)(w) (6.9)

=

(
δ

∣∣∣∣∣
N∑

k=1

wk

∣∣∣∣∣ + ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)− 1

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

The interpretation of Theorem 6.1 is similar to the one of Theorem 5.1. From the
a priori given values a and b we form an affine nominal model

ŷ(k) = a + bϕ̃(k)

The residuals of this model y(k)− ŷ(k) are then used to adjust the given nominal
value b of f ′(ϕ0), and the effect of the adjustment depends on the weights, which
are determined from (6.9).

102 Other Extensions

When δ is large, it turns out that there is a theorem corresponding to Theo-
rem 5.2 also for derivative estimators:

Theorem 6.2
Assume that ϕ̃(k) 6= 0, k = 1, . . . , N . Given a, b ∈ R and L,∆ ∈ (0,∞), there
exists a δ0 ∈ (0,∞), such that for any δ > δ0, the minimum of the upper bound
U1
F2(L,δ,∆)(w) given by (6.9) with respect to w ∈ RN is attained on the subspace

N∑
k=1

wk = 0 (6.10)

and does not depend on a or δ. In other words, given a sufficiently large δ, the
affine derivative estimator (5.7) minimizing U1

F2(L,δ,∆)(w0, w) can be found in the
form

f̂ ′(ϕ0) =
N∑

k=1

wky(k)− b

(
N∑

k=1

wkϕ̃(k)− 1

)
,

N∑
k=1

wk = 0 (6.11)

with the weights wk minimizing the simpler upper bound

U1
F2(L,∆)(w) =

(
∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)− 1

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k (6.12)

subject to the constraint (6.10).

Proof Analogous to the proof of Theorem 5.2. �

In words this means that if the value a is too uncertain, it will not have any effect
at all on the estimate f̂ ′(ϕ0).

6.1.2 Class F = F2(L,∆)

For the class F2(L,∆), when δ → ∞, it is easy to see that the MSE cannot have
a finite upper bound unless (6.10) holds. With this constraint satisfied, the upper
bound on the worst-case MSE can be written

WMSE (f̂ ′(ϕ0),F2(L,∆)) ≤ U1
F2(L,∆)(w0, w)

=

(∣∣∣∣∣w0 + b

(
N∑

k=1

wkϕ̃(k)− 1

)∣∣∣∣∣
+ ∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)− 1

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

(6.13)

We can minimize this bound with respect to w0, and the resulting minimizing
estimator will be in the form (6.11). It also follows that w can be computed by
minimizing (6.12) subject to the constraint (6.10). This is summarized in the
following theorem:

6.1 Estimating the Derivative 103

Theorem 6.3
For the function class F2(L,∆), the affine estimator minimizing U1

F2(L,∆)(w0, w) is
found among the estimators satisfying

f̂ ′(ϕ0) =
N∑

k=1

wky(k)− b

(
N∑

k=1

wkϕ̃(k)− 1

)
= b +

N∑
k=1

wk (y(k)− bϕ̃(k)) (6.14)

N∑
k=1

wk = 0

For this kind of estimators, the worst-case MSE has the following upper bound:

WMSE (f̂ ′(ϕ0),F2(L,∆)) ≤ U1
F2(L,∆)(w) (6.15)

=

(
∆

∣∣∣∣∣
N∑

k=1

wkϕ̃(k)− 1

∣∣∣∣∣ +
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k

Proof Analogous to Theorem 5.3. �

Just as for the similar previous theorems, (6.15) can be interpreted as using the
residuals from a nominal model to estimate f̂ ′(ϕ0). The constraint (6.10) is needed
to make sure that any nominal function value (which we do not know anything
about) will have no effect on the derivative estimate.

Let us also study what happens when ∆ is large.

Theorem 6.4
Suppose that ϕ̃(k) 6= 0, k = 1, . . . , N , and that there are two indices k1 and k2

such that ϕ̃(k1) 6= ϕ̃(k2). Given b ∈ R and L ∈ (0,∞), there exists a ∆0 ∈ (0,∞),
such that for any ∆ > ∆0, the minimum of the upper bound U1

F2(L,∆)(w) given by

(6.15), subject to the constraint (6.10), is attained on the subspace

N∑
k=1

wk = 0,
N∑

k=1

wkϕ̃(k) = 1 (6.16)

and does not depend on ∆. In other words, given a sufficiently large ∆, the affine
derivative estimator (5.7) minimizing U1

F2(L,∆)(w0, w) can be found in the form

f̂ ′(ϕ0) =
N∑

k=1

wky(k) (6.17)

by minimizing the upper bound

U1
F2(L)(w) =

(
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k (6.18)

subject to constraints (6.16).

104 Other Extensions

Proof Analogous to the proof of Theorem 5.4. �

Again, the conclusion is that a too uncertain a priori given value of f ′(ϕ0) will
have no effect on the estimate f̂ ′(ϕ0), but will be cancelled out by an appropriate
choice of weights.

6.1.3 Class F = F2(L)

Taking Theorems 6.3 and 6.4 into account, we directly arrive at the following:

Theorem 6.5
For the function class F2(L), the affine estimator minimizing U1

F2(L,∆)(w0, w) is
found among the estimators satisfying

f̂ ′(ϕ0) =
N∑

k=1

wky(k),
N∑

k=1

wk = 0,
N∑

k=1

wkϕ̃(k) = 1 (6.19)

For this kind of estimators, the worst-case MSE has the following upper bound:

WMSE (f̂ ′(ϕ0),F2(L)) ≤ U1
F2(L)(w) =

(
L

2

N∑
k=1

|wk|ϕ̃2(k)

)2

+ σ2
N∑

k=1

w2
k (6.20)

We can compare the estimator (6.19) to the local polynomial derivative estimator
(2.30). For j = p = 1, it turns out that the local linear derivative estimator will
belong to the class of estimators described by (6.19), and will thus have a finite
worst-case MSE. However, in general it will of course not minimize (6.20).

6.1.4 QP Formulations

Just as for the function estimation problems, it is straightforward to write the
problems of minimizing the upper bounds on the worst-case MSE given in The-
orems 6.1, 6.3, and 6.5 as convex quadratic programs. For instance, the weights
minimizing (6.9) can be found by solving

min
w,s

(
δsa + ∆sb +

L

2

N∑
k=1

ϕ̃2(k)sk

)2

+ σ2
N∑

k=1

s2
k

subj. to sa ≥ ±
N∑

k=1

wk

sb ≥ ±
(

N∑
k=1

wkϕ̃(k)− 1

)
sk ≥ ±wk, k = 1, . . . , N

(6.21)

The other QP:s are obtained analogously.

6.1 Estimating the Derivative 105

6.1.5 Can We Use the Derivative Estimate to Improve the
Function Estimate?

Suppose we are to estimate a function f ∈ F2(L) at a given point ϕ0, given no a
priori information about f(ϕ0) and f ′(ϕ0). An alternative to using the QP formu-
lation (3.11) might be to first estimate a derivative according to Theorem 6.5, and
then use this derivative when estimating the function according to Corollary 5.1.
However, as we will now show, we will not gain anything by this procedure.

Let us denote the derivative estimator by

f̂ ′(ϕ0) =
N∑

k=1

vky(k) (6.22)

where vk should satisfy the constraints
N∑

k=1

vk = 0,
N∑

k=1

vkϕ̃(k) = 1

similar to (6.16). The function estimator would then become

f̂(ϕ0) =
N∑

k=1

wky(k)− f̂ ′(ϕ0)
N∑

k=1

wkϕ̃(k) (6.23)

where the weights wk satisfy the constraint (5.16). Thus, based on Corollary 5.1,
we obtain a plug-in estimator in the form

f̂(ϕ0) =
N∑

k=1

wky(k)−
(

N∑
t=1

vty(t)

)
N∑

k=1

wkϕ̃(k) (6.24)

satisfying the constraints
N∑

k=1

wk = 1,
N∑

k=1

vk = 0,
N∑

k=1

vkϕ̃(k) = 1 (6.25)

Now the following theorem holds:

Theorem 6.6
The plug-in estimator (6.24) belongs to the family of estimators defined by (5.23),
satisfying the restrictions (5.22). Hence, for the class F2(L), the performance in
terms of minimizing UF2(L)(w) in (5.24) cannot be better for the plug-in estimator
than for the estimator given by (3.11).

Proof The plug-in estimator (6.24) can easily be rewritten in the form (5.23):

f̂(ϕ0) =
N∑

k=1

wky(k)−
N∑

k=1

vky(k)
N∑

t=1

wtϕ̃(t)

=
N∑

k=1

(
wk − vk

N∑
t=1

wtϕ̃(t)

)
y(k) =

N∑
k=1

w̃ky(k)

(6.26)

106 Other Extensions

where

w̃k = wk − vk

N∑
t=1

wtϕ̃(t) (6.27)

Hence, due to the conditions (6.25), w̃k will satisfy the following constraints:

N∑
k=1

w̃k =
N∑

k=1

wk −
(

N∑
k=1

vk

)
N∑

t=1

wtϕ̃(t) = 1 (6.28)

and
N∑

k=1

w̃kϕ̃(k) =
N∑

k=1

wkϕ̃(k)−
(

N∑
k=1

vkϕ̃(k)

)
N∑

t=1

wtϕ̃(t) = 0 (6.29)

Thus, the plug-in estimator is a linear estimator satisfying (5.22), among which
the estimator minimizing the upper bound (3.9) on the worst-case MSE is given
by the solution to (3.11). �

The consequence of Theorem 6.6 is that for any reasonable (where reasonable means
having a finite worst-case MSE) estimate of the derivative based on the given data
samples, we will get a plug-in estimator which satisfies the constraints (5.22). But
for these estimators we already know how to obtain the best one (in terms of
the upper bound on the worst-case MSE), namely by solving the QP (3.11). In
other words, we have not gained anything at all. Intuitively, this should be quite
natural, since we do not add any information by estimating the derivative. The
only information we have are the values of L, σ, and (ϕ(k), y(k)), both before and
after the estimation of the derivative.

6.2 Minimizing the Exact Worst-Case MSE

In Section 3.1.1, it was pointed out that the proposed DWO estimator achieves
the linear minimax risk also nonasymptotically, if considering the function class
G2(L) (or, more generally, Gp+1(L)). The reason for this was that the upper bound
on the worst-case MSE was tight for all possible weights. However, this does not
hold when considering the function class Fp+1(L), since the upper bound is not
tight if any of the weights are negative. It then becomes interesting to investigate
whether it is possible to minimize the exact worst-case MSE over Fp+1(L) instead
of minimizing the upper bound. As it turns out, it is actually possible, at least in
the univariate case.

In this section, we will discuss the minimization of the exact worst-case MSE,
and point out how this can be done. For simplicity, we only consider univari-
ate functions, belonging to the class F2(L). The extension to any other degree
of differentiability should be straightforward. However, extending the results to
multivariate functions has not been considered.

6.2 Minimizing the Exact Worst-Case MSE 107

For the function class F2(L) and a linear estimator (3.4), the worst-case MSE
can be written

WMSE (f̂(ϕ0),F2(L)) = sup
f∈F2(L)

E[

(
N∑

k=1

wkyk − f(ϕ0)

)2

|ϕN
1] (6.30)

= sup
f∈F2(L)

(
N∑

k=1

wkf(ϕ(k))− f(ϕ0)

)2

+ σ2
N∑

k=1

w2
k

As we have already seen in (3.5), to get a finite worst-case MSE the weights must
satisfy (3.7). Hence, the problem to solve is

min
w

sup
f∈F2(L)

(
N∑

k=1

wk(f(ϕ(k))− f(ϕ0))

)2

+ σ2
N∑

k=1

w2
k

subj. to
N∑

k=1

wk = 1 (6.31)

N∑
k=1

wkϕ(k) = 0

Note that, for a fixed given function f , the function

Jf (w) =

(
N∑

k=1

wk(f(ϕ(k))− f(ϕ0))

)2

+ σ2
N∑

k=1

w2
k

is a positive definite quadratic function of w (and hence convex). Therefore, since
the objective function of (6.31) is the supremum of such convex functions, i.e.,

sup
f∈F2(L)

Jf (w)

problem (6.31) is a convex optimization problem. This is of course a great advan-
tage, since it means that any local optimum will be a global optimum, and also
since there exist efficient algorithms for solving such problems (see, e.g., [117]).

The greatest difficulty with solving (6.31) is that the evaluation of the objective
function for given weights wk is computationally relatively expensive. For this
evaluation, a subalgorithm, sketched in the next section, is used to find the value
of the bias part of (6.30), i.e.,

max
f∈F2(L)

(
N∑

k=1

wk(f(ϕ(k))− f(ϕ0))

)2

(6.32)

for given weights wk. This can be used together with a standard optimization
algorithm (see, e.g., [117]) to find the solution to the entire problem. Note that
since the supremum of (6.30) is attained, as we will see in Section 6.2.1, we can
use maximum instead of supremum in (6.32).

108 Other Extensions

6.2.1 Maximizing the MSE for Given Weights

Instead of solving (6.32), we can try to find a function that maximizes the bias,
i.e.,

fmax ∈ argmax
f∈F2(L)

N∑
k=1

wk(f(ϕ(k))− f(ϕ0)) (6.33)

This function will then also maximize the MSE. Note that fmax by no means is
unique (as we will see below, we can for instance find functions with any function
value and derivative at ϕ0, which will maximize the bias). In some texts, the
notation Argmax is used instead of argmax to show that the result is a set of
arguments, instead of a single argument. Note also that we equally well could have
used argmin instead of argmax in (6.33), since −fmax would minimize the bias,
and what we are really interested in is the squared bias (6.32).

To find the value of (6.33), we first note that every function in F2(L) can be
written as

f(ϕ) = f(ϕ0) + f ′(ϕ0)ϕ̃ + f0(ϕ)

where f0 ∈ F2(L), f0(ϕ0) = f ′0(ϕ0) = 0. This gives us

N∑
k=1

wk(f(ϕ(k))− f(ϕ0)) = f ′(ϕ0)
N∑

k=1

wkϕ̃(k) +
N∑

k=1

wkf0(ϕ) =
N∑

k=1

wkf0(ϕ)

which means that we, without restrictions, can assume that f(ϕ0) = f ′(ϕ0) = 0.
Secondly, we can assume that the maximal value of (6.33) is obtained for a piece-

wise quadratic function with a finite number of breakpoints, and with |f ′′(ϕ)| = L
(where the second derivative exists). The reason for this is that the only interesting
values of the function are f(ϕ(k)) and f ′(ϕ(k)) for each data point, and it is quite
easy to show that for a given set of admissible values for f(ϕ(k)) and f ′(ϕ(k)),
there is a piecewise quadratic function with |f ′′(ϕ)| = L (and a finite number of
breakpoints) such that these values are obtained.

Hence we can parameterize f as follows:

f(ϕ) = ±L

 ϕ̃2

2
+

p+∑
j=1

(−1)j max{ϕ̃− b+
j , 0}2 +

p−∑
j=1

(−1)j max{b−j − ϕ̃, 0}2


where b−p− < · · · < b−1 < 0 ≤ b+
1 < · · · < b+

p+ are the breakpoints. Now we can
differentiate the bias with respect to the breakpoints:

∂

∂b+
j

N∑
k=1

wkf(ϕ(k)) = ±2L(−1)j+1
N∑

k=1

wk max{ϕ̃(k)− b+
j , 0}

∂

∂b−j

N∑
k=1

wkf(ϕ(k)) = ±2L(−1)j
N∑

k=1

wk max{b−j − ϕ̃(k), 0}

6.2 Minimizing the Exact Worst-Case MSE 109

−2 −1 0 1 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

φ

(a) Interior point, ϕ0 = 0.

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

φ

(b) Boundary point, ϕ0 = −2.

Figure 6.1: Optimal weights with respect to the exact worst-case MSE (∗) and weights
computed with the DWO approach (·), for two different values of ϕ0.

Note that each derivative is a (piecewise affine) function of only one variable,
namely the variable with respect to which the bias was differentiated. This means
that we only have to consider the function

g+(b) =
N∑

k=1

wk max{ϕ̃(k)− b, 0}

and its zeros and sign changes to find the locations of the positive breakpoints,
and a corresponding function g−(b) to find the negative breakpoints. The details
of this are theoretically quite simple, although a bit tricky to implement, partly
since it is difficult to know how many breakpoints are needed. It is easy to see,
though, that at most N breakpoints are needed, since the derivative is piecewise
affine and can have at most one zero in each interval between two consecutive data
points ϕ(k). Further investigations show that the number of breakpoints needed
are at most the number of sign changes of wk.

6.2.2 Properties of the Exact Worst-Case MSE Solution

We illustrate the properties of the resulting weights by an example.

Example 6.1 Let us consider the case with N = 50 data samples, where ϕ(k) are
taken from a uniform distribution on the interval [−2, 2]. Let L/σ = 5. Figure 6.1
shows both the weights minimizing the worst-case MSE and the weights from the
DWO approach (3.11) for two different values of ϕ0, namely ϕ0 = 0 (which is
an interior point) and ϕ0 = −2 (a boundary point). The weights minimizing the
worst-case MSE were computed using the Matlab function fmincon.

110 Other Extensions

An interesting thing to note is that the optimal weights have several sign
changes. This can be compared to the solution in [88], where the asymptotically
optimal minimax estimator was computed. It would be reasonable to believe that,
as N →∞, these estimators would converge to each other.

In Table 6.1, the worst-case MSE values are listed for the minimization of the
exact worst-case MSE and for the DWO approach, as well as the optimal upper
bound on the worst-case MSE given by the DWO approach. We can note that

Table 6.1: Worst-case MSE for the DWO approach and for the optimal weights.

Upper bound, DWO WMSE, DWO Optimal WMSE
Interior point 0.1233 0.1233 0.1208
Boundary point 0.8265 0.7659 0.7198

the upper bound is tight for the interior point, since the weights are all positive,
but that the optimal solution contains negative weights and can therefore reach a
slightly lower worst-case MSE. However, the difference is not very large.

For the boundary point, the difference between the two approaches is larger,
but is still not more than around 6%. Preliminary experiments indicate that these
cases are quite typical.

6.3 Other Extensions

Apart from the previously mentioned extensions, several other extensions can be
imagined. In this section, we briefly outline some of them.

Nonconstant Variance

The variance of the errors e(k) have been assumed to be constant and equal to σ2.
There is nothing that prevents us from considering the case of each error having its
own variance σ2

k. The changes to the QP formulations are minor and immediate.
One could also assume that the noise terms are correlated (with a known co-

variance matrix). In this case, the variance term will contain cross-terms between
the different weights. However, as long as the correlation is known, the problem to
solve will still be a convex QP.

Varying L

As well as letting the variance depend on k, we can also let the L be sample-
dependent. For instance, instead of the Lipschitz condition (3.2), we could use the
assumption that f satisfies

|f(ϕ(k))− f(ϕ0)− f ′(ϕ0)ϕ̃(k)| ≤ Lk

2
ϕ̃2(k)

for all k = 1, . . . , N . The problem will still be possible to formulate as a QP.

6.3 Other Extensions 111

A special case of varying L is to consider a modified version of class Gp+1(L),
which is obtained if the Lipschitz condition (4.1) is replaced by∣∣∣∣∣∣f(ϕ)− f(ϕ0)−

n∑
i1=1

f ′i1(ϕ)ϕ̃i1 − . . .− 1
p!

n∑
i1=1

. . .

n∑
ip=1

f
(p)
i1...ip

(ϕ)ϕ̃i1 . . . ϕ̃ip

∣∣∣∣∣∣
≤ 1

(p + 1)!
‖Qϕ̃‖p+1

where Q ∈ Rn×n is a quadratic matrix. This means that the upper bound depends
on in what direction we are looking.

More General Function Classes

Following the presentation in [138], we can consider an extension of the function
class Gp+1(L), specified by∣∣∣∣∣f(ϕ0)−

p∑
k=0

akfk(ϕ̃)

∣∣∣∣∣ ≤M(ϕ̃)

where fk and M are given functions. Letting fk(ϕ̃) = ϕ̃k and M(x) = M |ϕ̃|p+1

brings us back to the definition (2.9) of Gp+1(L). The changes to the problem
formulations will be straightforward.

112 Other Extensions

7

Conclusions

In this part of the thesis, a direct weight optimization approach to the function
estimation problem has been proposed and studied. As have been pointed out, the
approach has a number of interesting features, including the following:

• The problem is phrased without any reference to bandwidth. The formulation
offers the possibility to use all observations. The weights resulting from the
DWO approach however show that there is a bandwidth feature even for a
finite number of measurements: Observations outside a certain band carry
weights that are exactly zero.

• Although the DWO approach does not give strictly better estimates (in the
MSE sense) than, say, the local polynomial approach in all cases, the impor-
tant point is that the delivered guaranteed MSE bound is better than what
other approaches can offer. In practice, it is of course only this guaranteed
bound that can be used for confidence intervals etc., since the actual MSE
depends on the unknown function.

• The improvement over asymptotically optimal estimates is more pronounced
(naturally enough) for fewer data, and more nonuniformly spread observation
points ϕ(k). For applications to higher regressor dimensions and dynamical
systems, this is a very valuable property.

113

114 Conclusions

• The approach is easily extended to the case when a priori bounds on the
function and its derivative are known, and improvements can be made by
making use of this information. Theorems 5.2 and 5.4 however showed that
when the bounds are very wide, the extra information may not be enough to
improve the solution.

• For the class of affine functions (L = 0), the solution equals the one obtained
by globally fitting an affine model to the data using the least-squares criterion,
as should be expected.

• Asymptotically, for univariate functions and equally spaced design, and when
minimizing the worst-case MSE over G2(L) (or, equivalently, the upper bound
(3.9) on the worst-case MSE over F2(L)), we obtain the weights of the local
linear estimator using an asymptotically optimal Epanechnikov kernel. It is
conjectured that these results could be extended also to more general designs
and other degrees of differentiability. Furthermore, it is conjectured that min-
imizing the exact worst-case MSE over Fp+1(L), as was done in Section 6.2,
asymptotically leads to the optimal kernels given by [88] under appropriate
design assumptions.

Local modelling has found a wide range of applications, like for instance robot
control, computer graphics, fermentation processes, econometrics, etc. A good
survey is given in [5]. In all these domains, the DWO might naturally be an
alternative.

In Section 4.3, some examples were given on how local modelling in general,
and the DWO approach in particular, can be used in connection with system iden-
tification and prediction of dynamic systems. The idea of storing old data from
a dynamic system in a database, and only retrieve the data needed each time a
prediction is to be formed, has been called a Model On Demand (MOD) approach,
and is considered in [146]. As described there, the predictions can be used, e.g.,
for model predictive control (MPC). An early contribution employing similar ideas
is [7], where a simple MOD-like method is used to control robots. “Experiences”
are stored in a database, and when predictions are to be made, the database is
searched for similar situations. Related ideas can also be found, e.g., in [17].

In addition, frequency domain applications are given in [146], such as automatic
smoothing of periodograms and empirical transfer function estimates (ETFE) [94].

This part of the thesis has been focused on the main ideas of the DWO approach,
and a number of properties have been pointed out and shown. Still, however, there
are a number of questions that need to be discussed. One such question is what
happens when there is a correlation between the noise and regression variables,
when using the approach for dynamic systems. Another issue is how to find ap-
propriate values of the design parameters, such as the structure of ϕ and the ratio
L/σ. These problems will now be considered.

7.1 Using the DWO Approach for Dynamic Systems 115

7.1 Using the DWO Approach for Dynamic Sys-
tems

As pointed out in Chapter 2, many of the local modelling approaches, including the
DWO approach, assume that the regression vectors ϕ(i) and noise contributions
e(i) are independent. However, when the data come from a dynamic system, such
that ϕ(i) will contain old values y(j), j < i, this independence will not hold. The
question is whether or not the DWO approach can be used for dynamic systems
anyway. A simple answer is yes: instead of considering the minimization of (3.11)
as minimizing the upper bound on the worst-case MSE, it can be viewed as a
reasonable heuristic criterion to minimize. As could be seen in Examples 4.1 and
4.2, it can also work well in practice.

Let us have a closer look at the problem. For simplicity we consider the function
class Fp+1(L). Suppose that the regression vector ϕ(k) contains y(k − 1). This
would mean that if ϕ(k), k = 1, . . . , N are given, then also the corresponding
y(k − 1) are given. Hence, the MSE becomes

MSE (f̂(ϕ0)) = E[(f̂(ϕ0)− f(ϕ0))2|ϕN
1]

= E[

(
N∑

k=1

wky(k)− f(ϕ0)

)2

|ϕN
1]

= E[

(
N−1∑
k=1

wky(k) + wNf(ϕ(N))− f(ϕ0) + wNeN

)2

|ϕN
1] (7.1)

=

(
N−1∑
k=1

wky(k) + wNf(ϕ(N))− f(ϕ0)

)2

+ σ2w2
N

=

(
N∑

k=1

wkf(ϕ(k))− f(ϕ0) +
N−1∑
k=1

wk

(
y(k)− f(ϕ(k))

))2

+ σ2w2
N

=

(
N∑

k=1

wkf(ϕ(k))− f(ϕ0)

)2

+ 2

(
N∑

k=1

wkf(ϕ(k))− f(ϕ0)

) (
N−1∑
k=1

wk

(
y(k)− f(ϕ(k))

))

+ 2
N−2∑
k=1

N−1∑
j=k+1

wkwj

(
y(k)− f(ϕ(k))

)(
y(j)− f(ϕ(j))

)
+

N−1∑
k=1

w2
k

(
y(k)− f(ϕ(k))

)2 + σ2w2
N

Since f is unknown, there is generally no way to evaluate this expression, and we
cannot get an upper bound either. However, for large N , the second and third

116 Conclusions

terms of the last expression should generally be much smaller than the squared
terms, since y(k) − f(ϕ(k)) = e(k) is the noise contribution, which is averaged in
these sums. Furthermore, the fourth and fifth terms should be well approximated
by the variance term (2.35). Hence, it seems reasonable to approximate the second
and third terms in this expression by 0, and the fourth term by

σ2
N−1∑
k=1

w2
k

and we are back to the MSE expression (2.33) together with (2.34) and (2.35). The
only difference is that this is not the true MSE anymore, but an approximation.

One should also note that, as N →∞, the weights from the DWO approach will
be nonzero only in a very small neighborhood of ϕ0. For most reasonable dynamic
systems, unless ϕ is an equilibrium point, this means that the regression vectors
corresponding to the nonzero weights will have very different indices k, and so they
will in general only be weakly correlated. This means that the approximation of
the worst-case MSE used by the DWO approach will be asymptotically correct.

7.2 Adaptive Bandwidth Selection

Throughout the presentation of the DWO approach, the ratio L/σ has been as-
sumed to be known. However, in practice this is often not the case∗. Instead,
the ratio would have to be estimated. One option is to use the methods known as
classical methods (e.g., cross-validation techniques), described in Section 2.4.3. If a
global estimate is desired, the adaptation of these methods to the DWO approach
is immediate. However, in many applications a local estimate of the ratio would be
to prefer. In this case, an appealing alternative is to take the view of Section 3.2.4,
i.e., to regard the DWO weights as coming from a local polynomial model, where
the least-squares problem (2.23) is weighted by the matrix G−1 from (3.35) instead
of K̄h. Using this view, it is now straightforward to extend the localized adaptive
bandwidth selection procedures as described in Section 2.4.3 (and in more detail in
[146]) to the DWO approach, where, e.g., the sum

∑N
k=1 wk is replaced by tr(G−1).

For instance, the localized cross-validation criterion (2.57) would take the form

LCV (f̂(ϕ0)) ,
(Y1:n − F1:n)T G−1(Y1:n − F1:n)

tr(G−1)
(7.2)

∗Note however, that as long as the true function belongs to the function class Fp+1(L0) for
any L0, and the noise variance is σ0, we could get an upper bound on the worst-case MSE by
solving (3.10) with any L > L0 and σ > σ0. Hence, any ratio L/σ will correspond to an upper
bound on the worst-case MSE. However, it will certainly not be the best bound in general.

7.2 Adaptive Bandwidth Selection 117

where Y1:n consists of the outputs corresponding to the nonzero weights, and F1:n

is a vector consisting of the corresponding one leave-out estimates, i.e.,

Y1:n =

y(1)
...

y(n)

 , F1:n =

 f̄ϕ0
−1(ϕ(1))

...
f̄ϕ0
−n(ϕ(n))


where the samples are renumbered as in Section 3.2.2.

Example 7.1 Consider once again the setup of Example 3.3, with N = 100
data samples. The function has been estimated using a fixed ratio of L/σ = 13,
and using a localized cross-validation (LCV) criterion as in (7.2). The different
function estimates are shown in Figure 7.1(a). As can be seen, the performance of
the estimate using the LCV criterion is comparable (maybe even slightly better)
than the estimate using a fixed ratio. Figure 7.1(b) shows the estimated ratio L/σ
for the both approaches. We can see that the estimate fluctuates quite much, which
is natural, since the number of data is rather small.

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

φ

(a) Data samples (∗), the true function

values (×), and the estimated func-
tions.

−2 −1 0 1 2
0

5

10

15

20

25

φ
0

(b) The estimated ratio L/σ, using the
LCV criterion.

Figure 7.1: The function estimates in Example 7.1, using a fixed ratio L/σ = 13 (dashed)
and a LCV criterion (solid).

It should be emphasized that the criterion and algorithm used for the compu-
tations in Example 7.1 should be seen as just a first step in the topic of adaptive
choices of L/σ for the DWO approach. There is plenty of room for improvement
of the methods.

As an alternative to the classical methods, one might use a plug-in method
similar to what was described in Section 2.4.4. However, to the author’s knowledge,

118 Conclusions

not much has been done to estimate a Lipschitz constant as the one used in the
DWO approach. The main focus of the plug-in approaches has been to approximate
the MSE, rather than the worst-case MSE. Thus, much can still be done in order
to find a reliable estimate of L/σ, which is also easy to compute.

7.3 Structure of the Regression Vector

We have assumed that the correct choice of elements for the regression vectors is
known. This choice is a structure problem which is common to most approaches in
system identification, and there has been a great deal of research within this area.
One example is [126], where a method using false nearest neighbors was proposed
for dynamic systems. This technique builds on the philosophy that has been a
theme of this part, namely that outputs corresponding to regression vectors close
to each other should be similar (i.e., that the true underlying regression function
is smooth). However, if the regression vector is chosen to be too small, two similar
regression vectors may correspond to very different output data, since the regression
variables that are not included in the chosen regression vector may have a significant
effect on the output. These regression vectors are then false neighbors, i.e., they
are neighbors in the chosen (too small) regressor space, but are far from each other
in the true regressor space. In this way, if several false neighbors are found, one
can deduce that the chosen regressor space is too small.

A recent contribution in the area of regressor selection is [92], where ANOVA
(ANalysis Of VAriance) is used to determine a good regression vector.

7.4 Algorithmic and Implementation Issues

There are many aspects on how to find the solution, e.g., of (3.10). In the early
paper [138], a Newton-like algorithm (very similar to the hinge-finding algorithm
in [22], described in Section 10.1.2) is proposed. However, nothing is shown about
convergence.

The field of convex optimization has developed rapidly during the last decade,
and there exist efficient algorithms that can solve a large variety of problems,
including large-scale convex QP and SOCP problems. For a good introduction,
see [19]. However, for the specific problems presented in this part of the thesis,
we can use the knowledge of the automatic finite bandwidth property (described
in Section 3.2.1) to make the computations even faster, according to what was
suggested in the discussion after Corollary 3.1. If we would be able to guess which
of the weights that should be nonzero, only these data points need to be taken into
account, which leads to a much smaller QP to be solved. The solution can then
be easily checked, by investigating if all the excluded data samples lie in the areas
where the weight function is zero. This is the case if all excluded data samples
satisfy the middle case of (3.13), i.e., if

−gϕ̃2(k) ≤ µ1 + µ2ϕ̃(k) ≤ gϕ̃2(k)

7.4 Algorithmic and Implementation Issues 119

If this requirement is satisfied for all excluded data, the solution is globally optimal.
Otherwise, we can include the data that do not satisfy the requirement and solve
the new QP we get.

The main question that arises is how to find an initial guess of which weights
should be nonzero. One immediate option would be to use the asymptotically
optimal bandwidths (2.41) or (2.43) (or their multivariate counterparts). It turns
out that a slight overestimation of these bandwidths is a better choice, since taking
some too many data samples into consideration is to prefer before considering too
few, and instead having to solve two QP:s.

A problem with this approach is that the design density has to be known.
Furthermore, with sparsely and unevenly spread data samples (which is often the
case particularly for higher dimensions) there is a risk that too few data samples
falls within the guessed bandwidth. An alternative is therefore to use a k-nearest
neighbor approach to find an initial guess of the set of nonzero weights. k should
be chosen to be at least larger than the dimension, i.e., k > n, in order not to get
an underdetermined problem.

If the guess of the set of nonzero weights was wrong, one way of choosing a new
set would be to consider all data samples falling into the area where the computed
weight function is nonzero. Another alternative is to simply increase the guessed
bandwidth by a factor α > 1.

Preliminary experiments, using a 2n-nearest neighbor approach to get an initial
guess of which weights should be nonzero, have shown that the computational
speed can be considerably improved compared to solving one large QP. However,
much can probably be done to further improve the algorithms, and to use the
structure of the problem in a more refined way. This is of particular importance
if using adaptive bandwidth selection, which makes the computational complexity
significantly larger.

The problem of finding and retrieving relevant data samples from a database
of samples is another relevant issue. For an overview of this, see, e.g., [5, 146].

120 Conclusions

Part II

Identification of Piecewise
Affine Systems

121

8

Prediction Error Methods for

System Identification

When linear models are not sufficient for accurately describing the dynamics of
a system, there are several different possible approaches to choose between. In
Part I, a nonlinear model was built “on the fly”, by locally estimating the system
dynamics for each time point. In this part a parametric identification approach
is considered, namely using piecewise affine (PWA) models. This might be an
attractive alternative, both when the real system actually is piecewise affine, but
also sometimes for a general nonlinear system.

This chapter briefly describes a few general issues concerning prediction er-
ror methods, which is a commonly used family of parametric system identification
methods. Chapter 9 then introduces different classes of piecewise affine systems,
while Chapters 10 and 11 are devoted to the identification of piecewise affine sys-
tems.

8.1 Prediction Error Methods

Let us first once again formulate the system identification problem. We assume
that we are given a set of inputs, u(t), and outputs, y(t), t = 1, . . . , N , coming
from a real (physical) system of some structure. The structure considered here is
the form given in (1.6), i.e.,

y(t) = f(Zt−1
−∞) + e(t) (8.1)

123

124 Prediction Error Methods for System Identification

where E[e(t)] = 0 and e(t) is independent of Zt−1
−∞. Using the given set of data,

we would like to find a model that describes the true system as well as possible in
some sense.

As already mentioned, the prediction error methods are parametric methods,
which means that we search for the best model within a family of models, parame-
terized by a set of parameters collected in a parameter vector θ. In our context, this
means that we only consider a parameterized family of functions f(Zt−1

1 , θ) with
a certain structure. The system identification problem then reduces to finding the
parameter values θ∗ that fit the model to the experimental data as well as possible.
In the prediction error methods, this is done by considering the predicted output

ŷ(t|θ) = f(Zt−1
1 , θ)

and the residual
ε(t, θ) = y(t)− ŷ(t|θ)

Here, ŷ(t|θ) is our guess of the value of y(t), given the information Zt−1
1 . Since e(t)

is independent of Zt−1
1 , the best guess we can obtain is what we get by replacing

e(t) in (8.1) by its expected value, which is 0. The residual ε(t, θ) can be seen as a
measure of how close the guess was.

Then the model is fitted to the data by minimizing a criterion function

V (θ, ZN
1) =

1
N

N∑
t=1

`(ε(t, θ)) (8.2)

that is,
θ̂ = argmin

θ
V (θ, ZN

1)

There are many possible choices for the function `(ε). A very common choice is

`2(ε) = ε2

which gives the least squares criterion. We have already seen an example of using
the least squares criterion in Example 1.3.

It can be noted, that given that the true system belongs to the parameterized
model class, and given that e(t) are independent with the probability distribu-
tion function fe(x), the θ(vj) that minimizes (8.2) will be the maximum likelihood
estimate if

`(ε) = − log fe(ε)

(see [94]). From this it follows, e.g., that `2 corresponds to the maximum likelihood
estimator for a system where e(t) has a Gaussian distribution with known variance.

8.2 Numerical Minimization

In Example 1.3, it was possible to minimize V (θ, ZN
1) analytically. In general, how-

ever, V (θ, ZN
1) can be a (possibly nonconvex) function which has to be minimized

8.2 Numerical Minimization 125

using numerical algorithms. Some of the most important numerical algorithms are
the Newton and quasi-Newton algorithms [117]. These are iterative algorithms,
that update the estimate of argminθ V (θ) according to

θ̂(i+1) = θ̂(i) − α(i)
(
R(θ̂(i))

)−1

∇V (θ̂(i)) (8.3)

where ∇V (θ̂(i)) is the gradient of V (θ) evaluated in θ̂(i). The role played by R(θ̂(i))
will soon be explained. α(i) is a scalar that determines the step size of the update,
i.e., how much the estimate θ̂(i) should change in each iteration.

If V (θ) is a positive definite quadratic function of θ,

V (θ) =
1
2
(θ − θmin)T P (θ − θmin)

we could get right to the minimum in one step using α(0) = 1 and R(θ) = ∇2V (θ)
(the Hessian of V), since

θ̂(1) = θ̂(0) −
(
∇2V (θ̂(0))

)−1

∇V (θ̂(0)) = θ̂(0) − P−1P (θ̂(0) − θmin) = θmin

If V (θ) is not quadratic, we can use the Taylor expansion to approximate it with a
quadratic function. However, since the approximation may be good only in a small
region around θ̂(i), we might need to adjust the value of α(i) to ensure that V (θ̂(i))
will actually decrease for increasing i. Methods where α(i) 6= 1 are sometimes called
damped.

The Newton algorithms use R(θ) = ∇2V (θ), as described above. However, it
might be time-consuming to compute the Hessian∇2V (θ̂(i)) in each step, compared
to computing only the gradient. Moreover, the Hessian is not necessarily positive
definite when being far away from local minima. An alternative is therefore to use
quasi-Newton algorithms, such as Gauss-Newton, that instead form an estimate of
∇2V (θ), and use that in (8.3). The estimates can be constructed in such a way that
they are always positive semidefinite, which can be used to guarantee convergence
to a stationary point. For more details about numerical minimization algorithms,
see, e.g., [94, 117].

Using numerical minimization algorithms like the ones described above means
that there is a risk of getting stuck in local minima. One way of getting around this
problem is to try different initial values for the algorithm. In this way we might at
least find several local minima, from which we can choose the one with the lowest
value of V (θ, ZN

1). In the presence of noise and model errors, it also might not be
absolutely necessary to find the global minimum, since we do not know if it gives
the correct description of the system anyway. Nevertheless, we would like to find
a good model, that gives a low value for V (θ, ZN

1), so the question arises: How do
we find a good solution (or an initial value that leads to a good local minimum)?
This question will be treated for piecewise affine systems in Chapters 10 and 11.

126 Prediction Error Methods for System Identification

8.3 Regularization

In the Newton and quasi-Newton algorithms, the update equation (8.3) contains
the inverse (R(θ̂(i)))−1. Sometimes R(θ) may be ill-conditioned or even singular.
To make it better conditioned, a term λI can be added to R(θ). This is known
as regularization. One can also add a term λ‖θ − θ#‖2 to the criterion function
V (θ, ZN

1) in (8.2), which will also have the effect of adding 2λI to ∇2V (θ, ZN
1).

This can be interpreted as providing a guess θ# of the value of θ, and trying to
keep θ close to the guess. The coefficient λ can be used to weigh the importance
of staying close to θ# against minimizing the prediction error.

9

Piecewise Affine Systems

Piecewise affine systems are an important class of nonlinear systems, which in
recent years have been subject to considerable research, due to their close relation
to hybrid systems. In this chapter, some different classes and different descriptions
of piecewise affine systems will be presented. For notational simplicity, we consider
noiseless models. The noise will later be included as an additive term, as in (1.6).

9.1 Continuous Time Models

A general continuous time piecewise affine system could be described by

ẋ = A(v)x + B(v)u + b(v)
y = C(v)x + D(v)u + d(v)

(9.1)

where x is our state vector, u is the input to the system, and y is the system
output. The vector v is a key vector, describing in what mode (i.e., in what affine
subsystem) the system is for the time being. v can be a function of x, t, u, or some
other external input. We assume that v can only take a finite number of different
values.

The systems described by (9.1) include systems which are not always called
piecewise affine systems. A common restriction (see for example [72]) is that v only

127

128 Piecewise Affine Systems

?

�

6

-

�

Generator

Plant

Controller

Actuator

v x

ẽsṽ

ẽr

Figure 9.1: The structure of a switched system.

depends on x. Also in this thesis, the general form (9.1) will not be considered,
but only subclasses of (9.1); mainly the class of switched systems described next.

9.1.1 Switched Systems

The switched systems, as defined, e.g., in [43], constitute an important subclass of
the systems described by (9.1). The restrictions compared to (9.1) are that u = 0
and that the modes (and hence v) are determined by a finite automaton, driven by
discrete signals generated when the state vector x reaches different hyperplanes,
here called switching surfaces (or hyperplanes), and by discrete external inputs.

The systems can be structured according to Figure 9.1. The continuous affine
subsystems are located in the plant, for which the dynamics is given by

ẋ = A(v)x + b(v)

The controller is purely discrete and is modelled as a finite automaton. Its output
symbols ṽ are translated by the actuator into key vector signals v for the plant.

The generator contains information about a set of hyperplanes

Hi = {x
∣∣ Cix = di}

and generates logical input symbols for the controller according to

ẽsi =

{
true x ∈ Hi

false x 6∈ Hi

Altogether, the system will behave like an affine system as long as there is no
external input and the state does not reach one of the switching hyperplanes Hi.
When doing so, or receiving an external input, the value of v changes and the
system switches to another mode, i.e., to another affine subsystem.

In Chapter 12, we will, for notational purposes, mostly consider a special case
of switched systems. However, it should be noted that most of the techniques in

9.2 Discrete Time Models 129

Chapter 12 can be applied to the more general kind of switched systems described
above. The systems considered will be in the form

ẋ = A(v)x + b(v) , x ∈ X(v) , v ∈ {−1, 0, 1}M (9.2)

where the state-space is partitioned into different regions X(v) by M hyperplanes.
The key vector v is a function of x, and has one element for each separating
hyperplane. The elements of v are 1 or −1, depending on on which side of the
hyperplanes x is situated, or 0 if x lies in a hyperplane. In this way, v has a one-to-
one relationship to X(v). This also implies that the dynamics of a trajectory x(t)
just depends on x, not on t or on any external input. The different regions X(v)
will be polyhedra (see Section A.3).

9.2 Discrete Time Models

The descriptions in Section 9.1 are continuous time models. It is also common to
use discrete time models for the piecewise affine systems. A general form could be

x(t + 1) = A(v)x(t) + B(v)u(t) + b(v)
y(t) = C(v)x(t) + D(v)u(t) + d(v)

(9.3)

Other notable model structures for discrete time piecewise affine systems include
MLD (Mixed Logical Dynamical) models [12], MMPS (Max-Min-Plus-Scaling) mod-
els, LC (Linear Complementary) models, and ELC (Extended Linear Complemen-
tary) models [62]. Essentially, these classes are the same as (9.3), where v is a
piecewise constant function of x and u, and is constant over polyhedra in the com-
bined state-space and input space (this is shown in [9] (for MLD), [62] (all classes)).

9.2.1 Models in Regression Form

In Chapters 10 and 11, we will use models in regression form, i.e.,

y(t) = ϕT (t)θ(v) (9.4)

where the key vector v only can take a finite number of values, and θ(v) is a function
of v. The vector ϕ is our regression vector, which could for instance consist of old
inputs and outputs, e.g.,

ϕ(t) =
(
1 −y(t− 1) . . . −y(t− na) u(t− 1) . . . u(t− nb)

)T (9.5)

Here we have included a constant 1 in the regression vector, to be able to express
piecewise affine systems in the form (9.4). If we would not include the constant,
(9.4) would be a piecewise linear system. Throughout this thesis, whenever we
are dealing with piecewise affine systems in regression form, we will assume that
the first element of ϕ(t) equals 1. We will also assume that the key vector v is

130 Piecewise Affine Systems

uniquely determined by the regression vector ϕ(t), and that the regions of the dif-
ferent affine subsystems are polyhedral. When including additive white noise in the
model (see Section 1.1.3), this kind of systems has been called PWARX (PieceWise
AutoRegressive eXogenous) systems [13, 48]. These systems are a subclass of the
systems described by (9.3), and can easily be transformed into that form by using
the elements of ϕ(t) (except the constant) as state variables.

However, there are also many other possible choices of ϕ. In general, ϕ(t) could
be any function of u and y, i.e.,

ϕ(t) =
(
f1(Zt−1

1) . . . fn(Zt−1
1)

)T

In this case, a system in the form (9.4) could be called a PWNARX (PieceWise
Nonlinear AutoRegressive eXogenous) system. This is of course not a piecewise
affine system in general, but as we will see, most of the theory in Chapter 11 also
applies to systems with this choice of ϕ(t).

Just as in Part I, we assume that the form of the regression vectors is given, i.e.,
that we know which kind of data is relevant to predict y(t). We refer to [92, 126]
for ideas about how to determine this.

9.2.2 Chua’s Canonical Representation and Hinging Hyper-
plane Models

A special class of piecewise affine functions are the functions that can be represented
by the canonical representation introduced by Chua and Kang [28, 80]:

y(t) = αT
0 ϕ(t) +

M∑
i=1

ci|αT
i ϕ(t)| (9.6)

where ϕ(t) is given from (9.5). As can be seen, the functions described by Chua’s
canonical representation are continuous in ϕ(t). It turns out (see [28]) that ev-
ery scalar, continuous, piecewise affine function of one variable can be uniquely
expressed in this form with αi2 = 1 (where αi2 is the second element of αi), i.e., as

y(t) = α01 + α02x(t) +
M∑
i=1

ci|αi1 + x(t)|

(here we let ϕ(t) =
(
1 x(t)

)T). However, not every multivariate, continuous,
piecewise affine function can be expressed on the canonical representation (see
Example 9.2). A necessary condition for this is that the regions of the different
affine subsystems must be separated by hyperplanes. In [27], a necessary and
sufficient condition for a function to be expressible in the canonical form is given.
There are also other canonical representations covering larger classes of systems.
One of them is Güzeliş’ model class [59], where two nested absolute values are
allowed:

y(t) = αT
0 ϕ(t) +

M∑
i=1

bi|αT
i ϕ(t)|+

K∑
j=1

cj

∣∣∣∣∣γT
j ϕ(t) +

M∑
i=1

dij |αT
i ϕ(t)|

∣∣∣∣∣ (9.7)

9.2 Discrete Time Models 131

In [91], it is shown that every continuous piecewise affine function can be written
using (possibly deeply) nested absolute values. This result is extended in [89],
where it is shown how deep the nesting needs to be in different situations. It turns
out that for an n-dimensional continuous piecewise affine function, the nesting level
k satisfies k ≤ n.

Hinging hyperplane functions were introduced by Breiman [22] as a model class
for function approximation and classification. They are composed of a sum of hinge
functions, which are two half-planes joined continuously together at the hinge. The
hinging hyperplane functions can be written as

y(t) =
M∑
i=1

±max{β+
i

T
ϕ(t), β−i

T
ϕ(t)} (9.8)

The ± signs before the max functions play essentially the same role as ci in (9.6),
and are needed to allow for both convex and nonconvex functions. Since we can
write

max{β+
i

T
ϕ(t), β−i

T
ϕ(t)}

=
1
2
(β+

i + β−i)T ϕ(t)

+ max
{(

β+
i −

1
2
(β+

i + β−i)
)T

ϕ(t),
(
β−i −

1
2
(β+

i + β−i)
)T

ϕ(t)
}

=
1
2
(β+

i + β−i)T ϕ(t) +
1
2

max
{

(β+
i − β−i)T ϕ(t), −(β+

i − β−i)T ϕ(t)
}

=
1
2
(β+

i + β−i)T ϕ(t) +
1
2

∣∣∣(β+
i − β−i)T ϕ(t)

∣∣∣
it is easy to see that (9.6) and (9.8) define equivalent classes of functions. An-
other representation for the same class, which will be used here, and which can be
transformed to Chua’s or Breiman’s form in a similar way, is

y(t) = ϕT (t)θ0 +
M+∑
i=1

max{ϕT (t)θi, 0} −
M∑

i=M++1

max{ϕT (t)θi, 0} (9.9)

Here the piecewise affine function is written as a sum of an affine term and M
(positive and negative) max functions. Instead of the ± signs of (9.8), the positive
max functions have been collected in one sum, and the negative into another.
However, we will use the shorthand notation

y(t) = ϕT (t)θ0 +
M∑
i=1

±max{ϕT (t)θi, 0} (9.10)

thereby meaning exactly the same as in (9.9).

132 Piecewise Affine Systems

−5

0

5

−5

0

5
−10

0

10

20

30

y(t−1)u(t−1)

y(
t)

+

−5

0

5

−5

0

5
−10

0

10

20

30

y(t−1)u(t−1)

y(
t)

+

−5

0

5

−5

0

5
−10

0

10

20

30

y(t−1)u(t−1)

y(
t)

=

−5

0

5

−5

0

5
−10

0

10

20

30

y(t−1)u(t−1)

y(
t)

Figure 9.2: Example of a hinging hyperplane function. The upper leftmost function is
the linear function in the first row of (9.11), and the middle and right diagrams correspond
to the two max functions. The resulting function is shown in the lower diagram.

Example 9.1 (Hinging hyperplane model) Consider Figure 9.2, where the
following hinging hyperplane model is illustrated:

y(t) = y(t− 1) + 0.2u(t− 1)
+ max{−y(t− 1) + 2u(t− 1), 0} (9.11)
+ max{2y(t− 1) + u(t− 1), 0}

If we express the function in Chua’s canonical representation, it could take the
following form:

y(t) = 1.5y(t− 1) + 1.7u(t− 1)
+ | − 0.5y(t− 1) + u(t− 1)|
+ |y(t− 1) + 0.5u(t− 1)|

In Breiman’s form the same function can be written:

y(t) = max{2.2u(t− 1), y(t− 1) + 0.2u(t− 1)}
+ max{2y(t− 1) + u(t− 1), 0}

Example 9.2 The following system (see Figure 9.3) cannot be expressed in the
hinging hyperplane form:

y(t) =


y(t− 1) if y(t− 1) ≥ 0, y(t− 1) + u(t− 1) ≥ 0
−y(t− 1) if y(t− 1) < 0, −y(t− 1) + u(t− 1) ≥ 0
u(t− 1) if y(t− 1) + u(t− 1) < 0, −y(t− 1) + u(t− 1) < 0

9.2 Discrete Time Models 133

−5

0

5 −5

0

5

0

5

u(t−1)y(t−1)

y(
t)

Figure 9.3: A piecewise affine system not expressible in the hinging hyperplane form.

This is due to the fact that the regions of the different subsystems are not separated
by hyperplanes (but half-hyperplanes), so there is no way to place the hinges in
the hinging hyperplane representation to get this partition of the state-space.

A property of the class described by (9.6), (9.8), and (9.9), which makes it
suitable for function approximation, is that it has universal approximation prop-
erties [90]. Roughly speaking, this means that we can approximate any function
arbitrarily well by using sufficiently many hinge functions (i.e., by letting M →∞).

We can note that the parameters of (9.9) are not uniquely determined, since
for example

ϕT θ0 + max{ϕT θ1, 0} = ϕT (θ0 + θ1) + max{−ϕT θ1, 0}

This means that we can replace max{ϕT θ1, 0} by max{−ϕT θ1, 0}, include the
difference in the linear term, and still have the same system. Another reason for
the ambiguity of (9.9) is that we can reorder the max functions. One way to at
least partially avoid this ambiguity is to require that 0 ≤ wT θ1 ≤ · · · ≤ wT θM+

and 0 ≤ wT θM++1 ≤ · · · ≤ wT θM for some constant (nonzero) vector w.

9.2.3 Representations with Fixed Regions

In function approximation applications, it is quite common to use piecewise affine
models where the state-space is partitioned into a regular pattern of regions, with
an affine function for each region. For example, in [76, 78], a representation called
HL CPWL (High Level Canonical PieceWise Linear) representation is used, which
is based on a partition of the state space into simplices (polytopes with n + 1
corners, where n is the dimension).

134 Piecewise Affine Systems

9.3 State Jumps

In this thesis, the state is assumed to move continuously in the continuous time
models. However, there are situations when it is natural to allow state jumps, like
in the following example.

Example 9.3 (Docking spacecraft) Consider two spacecraft with unit mass,
flying along a line in free space. The control signals are the forces acting on them.
The system can be described by the following equations, where x1 is the position
and x2 the velocity of the first spacecraft, and x3 and x4 the position and velocity
of the second spacecraft, respectively:

ẋ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 x +


0 0
1 0
0 0
0 1

 u (9.12)

However, if the two spacecraft dock with each other, the new dynamics becomes

ẋ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 x +


0 0

1/2 1/2
0 0

1/2 1/2

 u (9.13)

Furthermore, we must ensure that x2 = x4 after the docking, i.e., that the velocities
of the two spacecraft are equal. Denoting the values just before the docking by x−2 ,
x−4 , and the values just after the docking by x+

2 , x+
4 , preservation of the momentum

gives x+
2 = x+

4 = (x−2 + x−4)/2. This means that the state may jump when the
mode switching occurs. (Note also that the dimension of the state-space can be
reduced in the second mode, which would lead to state jumps between different
state-spaces.)

9.4 Control and Analysis of Piecewise Affine Sys-
tems

Since piecewise affine systems, like other hybrid systems, are highly nonlinear,
they might be difficult to analyze. Several approximating methods for analysis and
control design have therefore been developed for different classes of hybrid systems.

An excellent overview of different approaches to modelling and control using
multiple models (e.g., piecewise affine systems) is given in [112]. Some approaches
for optimal control of hybrid systems can be found in [12, 21, 99, 118]. Other sub-
optimal approaches have also been proposed, such as [108, 121]. In [83], supervisory
control based on a discrete approximation of the system is studied. Controllability
problems have been considered, e.g., in [9, 145].

In recent years, some stability analysis results using Lyapunov theory have
appeared [20, 38, 72, 73, 87, 120, 135].

10

Identification of Piecewise

Affine Systems

To be able to control and analyze a system, one will (in one way or another)
need a model of the system that shows the relation between input and output
signals, and the sensitivity to disturbances. Depending on what one would like to
achieve, the model might be more or less accurate. In many cases, a linear model
around the working point will be sufficient. However, when the nonlinearities are
not negligible within the operating region, a piecewise affine model might be an
attractive alternative. This can be the case both when the real system actually is
piecewise affine, and for a general nonlinear system. Obtaining such a model from
experimental data can be done in several different ways.

In this chapter, some existing approaches are investigated and compared. Some
of the approaches are quite general nonlinear identification methods, for which
special cases lead to piecewise affine models, while other approaches are more spe-
cialized on piecewise affine systems.

The system models considered in this and the next chapter will mostly be in
regression form as described in Section 9.2.1, i.e.,

y(t) = ϕT (t)θ(v) + e(t) (10.1)

where θ(v) is a function of the key vector v, which in turn is a piecewise constant
function v = v(ϕ) of the regression vector ϕ, taking only a finite number of values.
As described in Section 1.1.3, the noise e(t) should satisfy E[e(t)] = 0, and should

135

136 Identification of Piecewise Affine Systems

be independent of Zt−1
−∞. The regression vector could consist of old inputs and

outputs, e.g.,

ϕ(t) =
(
1 −y(t− 1) . . . −y(t− na) u(t− 1) . . . u(t− nb)

)T

The modes are consequently determined by v. If we let nv be the number of
different modes of the system, and let θ =

(
θ(v1) . . . θ(vnv)

)T , the criterion
function to be minimized (cf. Section 8.1) for this kind of models can be written as

V (θ, ZN
1) =

1
N

N∑
t=1

nv∑
j=1

`
(
y(t)− ϕT (t)θ(vj)

)
χvj (ϕ(t)) (10.2)

where

χvj (ϕ) =

{
1 v(ϕ) = vj

0 otherwise

The two most common choices for the function ` in (10.2), and the ones that will
be considered here, are the squared Euclidean norm (2-norm)

`2(ε) = ε2

and the 1-norm
`1(ε) = |ε|

Obviously, for a given ϕ, exactly one of the functions χvj (ϕ) equals 1. This
means that all the terms in the inner sum in (10.2) except for one are zero. Hence, if
the partitioning χvj of the state-space is known, i.e., if we know what experimental
data belongs to which affine subsystem, then using 2-norm will reduce the problem
of identifying piecewise affine systems of this kind to a least-squares problem like
in Example 1.3, which can easily be solved using standard techniques. However,
when the partitioning is unknown, and consequently both χvj (or, equivalently,
v(ϕ)) and θ should be estimated, the problem becomes much more difficult. There
are two fundamental approaches to take. The first possibility is to define an a
priori grid (like in Section 9.2.3), and estimate one affine subsystem per cell in
the grid (see, e.g., [78]). This approach leads to a simple estimation process, but
will in a sense suffer from the curse of dimensionality, since the number of cells
(and hence the number of parameters) will grow exponentially with the number of
dimensions, which also leads to a need for very large datasets. The other possible
approach is to estimate both the partitioning and the subsystems simultaneously
or iteratively (like in, e.g., [22, 48, 77]). This means that we will in general need
a smaller number of subsystems, but that the estimation process will be more
complex, with potentially many local minima, that will complicate the use of local
search minimization algorithms.

Using piecewise affine systems for modelling and identification can be seen as
a special case of multiple model approaches. In [112], an excellent introduction to
nonlinear modelling using multiple models is given together with a survey of the
field.

Some of the main issues in piecewise affine system identification are

10.1 Existing Approaches 137

• the ability to find a good model of the real system, preferably requiring as
few parameters as possible,

• the ability to avoid getting stuck in local minima during the search for a good
model, and

• the computational complexity of the identification process.

In the next chapter, an identification method based on mixed-integer linear or
quadratic programming (MILP/MIQP; see Section A.4) will be presented in de-
tail. As we will see, the mixed-integer programming approach guarantees that the
global optimum is reached, at the cost of increased complexity. However, using a
“truncated mixed-integer optimization algorithm” or a change detection algorithm
might in some cases be a feasible alternative, as will be discussed in Section 11.5.

10.1 Existing Approaches

Different approaches to piecewise affine system identification can be found in many
fields in the literature, as mentioned in Section 1.2.2. However, many of them
are related. One of the crucial points that separate different groups of approaches
from each other is how the partition into different regions is done. As we have
seen from (10.2), as soon as we know the different regions, it is easy to identify
the different affine subsystems one by one, using standard linear system identifica-
tion techniques. From this viewpoint, the different approaches to identification of
piecewise affine systems can be categorized as follows:

• All parameters, both the parameters determining the partition and the pa-
rameters of the submodels, are identified simultaneously. Such approaches
can be found, e.g., in [8, 51, 77, 124].

• All parameters are identified simultaneously for a model class with a very sim-
ple partition, and new submodels/regions are added when needed. Examples
of this kind of approach are found in [22, 46, 64, 69, 77, 124].

• The regions and submodels are identified iteratively or in several steps, each
step considering either the regions or the models. The methods in [48, 65,
119, 143, 144] belong to this category. This is also the main approach in
[112].

• The regions are predetermined or determined using only information about
the distribution of the regression vectors, and the local submodels are identi-
fied after that. The approaches described in [26, 76, 78, 82, 103, 148, 152, 154]
fall into this category.

The following sections describe the different categories more extensively, and
some advantages and drawbacks are pointed out. It should also be mentioned that
there are of course alternative ways of categorizing the different approaches. For
example, one can distinguish between online and offline algorithms.

138 Identification of Piecewise Affine Systems

10.1.1 Identifying All Parameters Simultaneously

Perhaps the most straightforward way of attacking the piecewise affine system
identification problem is to formulate the criterion function (10.2), parameterized
according to a certain model structure, and then minimize it directly, using a nu-
merical method, e.g., a Gauss-Newton search (see Section 8.2). In that way both
the partitioning and the submodels are estimated simultaneously. The greatest
advantage with such an approach might be its simplicity, and a reasonable compu-
tational complexity (depending on what numerical method is used).

The greatest drawback with this approach is that the optimization algorithm
might get trapped in a local minimum. This drawback is shared with many other
of the categories.

The result also depends on how the model is parameterized. In general, it
is desirable to have as few free parameters as possible, both for numerical and
complexity reasons.

One example of this approach is given by Pucar and Sjöberg [124] where a
hinging hyperplane model, as defined in Section 9.2.2, is used. Another example is
found in Julián et al. [77], where Chua’s canonical representation (9.6) is used
to approximate nonlinear functions. In both cases, the number of hinge functions
is assumed to be known. Pucar and Sjöberg present a damped Newton method
for estimating all parameters of the model simultaneously, while Julián et al. use
a Gauss-Newton algorithm. Local convergence of the parameters is proven. A
similar approach, but for one-dimensional functions, is described in [57].

In an earlier article by Batruni [8], a multilayer neural network with piecewise
affine functions in Chua’s canonical representation (as described in Section 9.2.2) in
each layer is proposed. The parameters would be estimated using backpropagation,
which basically is a kind of gradient search.

An approach using a 1-norm criterion function can be found in Gad et al.
[51]. Since the criterion function itself becomes a piecewise affine function of the
parameters, they can use a simplex-like optimization algorithm to efficiently find a
local minimum. However, as for the other approaches in this category, convergence
to a global minimum cannot be guaranteed.

There are several general numerical optimization algorithms that try to reduce
the risk of getting stuck in a local minimum. These include simulated annealing,
genetic algorithms, etc. (see, e.g., [37] for both simulated annealing and genetic
algorithms). The basic idea of both simulated annealing and genetic algorithms is
to modify a standard numerical optimization algorithm, such as the ones described
in Section 8.2, by repeatedly using random updates of the parameter estimates.
These kinds of algorithms can be used for the piecewise affine system identification
problem, at the cost of increased computational complexity.

10.1.2 Adding One Partition at a Time

Instead of solving the entire optimization problem at once, it can be divided into
several different steps, to get a number of easier optimization problems that can

10.1 Existing Approaches 139

be solved one at a time. One way of achieving this is to start with a simple model,
for instance a hinging hyperplane model with only one hinge function, and fit it to
the data. Let us call this hinge function k1(ϕ, θ1). The criterion to be minimized
is

V 1(θ1, Z
N
1) =

1
N

N∑
t=1

` (y(t)− k1(ϕ(t), θ1))

If the resulting model k1(ϕ, θ̂1) is not satisfactory, one can add a new hinge function
by fitting it to the residual ε1(t) = y(t)− k1(ϕ(t), θ̂1); that is, we minimize

V 2(θ2, Z
N
1) =

1
N

N∑
t=1

` (ε1(t)− k2(ϕ(t), θ2))

The sum of the two models, k1(ϕ(t), θ̂1)+k2(ϕ(t), θ̂2), will then be a better approx-
imation of the system. This procedure is repeated until the value of the criterion
function (10.2) does not decrease significantly anymore, or until the resulting model
is satisfactory. One also has to take into consideration the risk of overfitting, which
means that the model might start to adjust to the particular noise realization, if
given too many degrees of freedom (e.g., too many hinge functions).

In addition to this algorithm, one can include a refitting procedure: When
having added the hth hinge function, the previously added hinge functions are re-
fitted one by one, so that the ith function ki(ϕ, θi), i ≤ h, is fitted to the residual
y(t) −

∑
j 6=i kj(ϕ(t), θ̂j). This procedure can also be iterated until no further im-

provement can be observed. Note that the criterion function will not increase by
the refitting, so there is no risk of getting stuck in limit cycles.

The advantage of this approach of adding one, e.g., hinge function at a time,
compared to the previous one of identifying all parameters simultaneously, is that
each optimization problem is easier to solve. On the other hand, one has to
solve several optimization problems instead of just one. When the number of re-
gions/hinge functions of the real system is unknown, this approach may also have
an advantage compared to the previous one. Just as for the first category, there is
a risk of getting stuck in a local minimum.

Breiman [22] introduced the hinging hyperplane models and the algorithms
described above for use in function approximation. The algorithm for estimating
one single hinge function is called the hinge-finding algorithm. It starts by assuming
that the dataset is partitioned into two subsets, and then estimates local affine
models to each of the two sets. These affine models constitute the two submodels
of a hinge function. From the fact that the hinge function should be continuous,
the hinge of the hinge function can be determined. However, this new hinge may
very well partition the data into two subsets which are different from the original
subsets. Therefore, the procedure can be repeated using the new partition, and
in this way we iterate until the same partitions are obtained in two consecutive
iterations. Then a local minimum of V 1(θ1, Z

N
1) is found.

The problem with this algorithm is that there is no guarantee for convergence.
One can get stuck into limit cycles, or one can get least-squares problems that

140 Identification of Piecewise Affine Systems

do not have a unique solution, which corresponds to a partition where one of the
regions does not contain enough data points.

The identification algorithms in [22] were analyzed further in Pucar and Sjö-
berg [124], and it was shown that the hinge-finding algorithm is a special case of a
(nondamped) Newton algorithm, as presented in Section 8.2. It was also modified
to guarantee convergence, yielding a damped Newton algorithm. Pucar and Sjöberg
also give a greedy algorithm, where – just as in the previously described algorithms
– one hinge function at a time is added. The model is written as a weighted sum
of the hinge functions, and when a new function is added, its parameters are
estimated together with the weights of the other hinge functions, while all other
parameters are kept fixed. Pucar and Sjöberg compare the performance of this
greedy function with the performance of the algorithm mentioned in the previous
section for a noiseless example, and it turns out that the simultaneous estimation
of the parameters performs better when the true model is within the model class
(for this specific example).

Julián et al. [77] use a similar algorithm, but for Chua’s canonical represen-
tation. They also mention the possibility of adding several hinge functions at a
time.

Hush and Horne [69] use what they call hinging sigmoid (HS) functions for
function approximation. A HS function is defined by

σ(ϕ) =


θ+ ϕT θ ≥ θ+

ϕT θ θ− ≤ ϕT θ ≤ θ+

θ− ϕT θ ≤ θ−

Like in [22], one HS function is added at a time, and is fitted to the residual from
the previous estimations. A refitting procedure similar to the one in [22] is also
suggested. For the fitting of a single HS function three algorithms are proposed, of
which the first is due to Breiman and Friedman [23]. All the algorithms make use
of the fact that once the partition is known, finding the parameters θ, θ+ and θ− is
a least-squares problem with linear constraints (corresponding to the requirement
that the partition should not change). A similar approach is also presented in
Section 11.7.

The Breiman/Friedman algorithm is analogous to the hinge-finding algorithm
in [22] mentioned above, only for a different model class. It is a Newton algorithm,
where in each iteration the updated parameter estimate is directly placed at the
minimum of the local quadratic function. As for the hinge-finding algorithm, there
is no guarantee for convergence for this algorithm. To avoid convergence problems,
one should be able to modify the step size of the parameter update in a way similar
to what is being done with the hinge-finding algorithm in [124].

The second algorithm in [69] also starts by assuming a partition. Given the
partition, it solves the obtained QP problem including the linear constraints, and
then detects if there are any data points at the borders of the partition. In that case,
these data points are assigned to the other region (as long as this does not destroy
the positive definiteness of the quadratic objective function), and the new QP

10.1 Existing Approaches 141

problem is solved. This is repeated until the objective function does not decrease
anymore.

This algorithm is also related to the Newton algorithms. Here the minimum is
found within the region where the criterion function is quadratic (which corresponds
to preserving the current partition of data points), and then, if this minimum is
situated at a border of the region, a new step is taken into one of the adjacent
regions. This means that each iteration explores exactly one new partition, and
that the parameter estimates only move between adjacent regions of the piecewise
quadratic criterion function.

The third algorithm described in [69] is an extension of the second, and can
basically be seen as a way to give good initial values to the second algorithm. It
first fits an affine function ϕT θ to the data. This affine function is used as the
initial middle (nonconstant) part of the HS function. The data points are ordered
along the direction of the gradient of the affine function, and the hinges are initially
placed at the two extreme points on each side. From this initial partition, algorithm
2 is used to find a local minimum. Then one data point at a time is taken from
the middle region and assigned to the upper region (where ϕT θ ≥ θ+) to see if
improvements can be made. After this the other hinge location is optimized, and
finally algorithm 2 is performed again.

In the article [46] by Ernst, hinging hyperplanes are used together with a tree
structure, where a hinge function is added to the subregion with the worst fit. This
approach is related both to the tree structures in [55] and to the model trees in
[148], and is explained in more detail in Section 10.1.4.

A similar approach is taken by Johansen and Foss [71]. The models that are
used resemble the hinging hyperplane trees, in the sense that the different subre-
gions are partitioned hierarchically: The state-space is split by a hyperplane, and
each of the two new regions are independently partitioned etc. To determine the
position of the first hyperplane, their algorithm starts by performing an exhaustive
search over models with 2 + k regions. The best of these models determines where
the first hyperplane should be placed. Having fixed that, the algorithm determines
the second partitioning hyperplane by an exhaustive search over models with 3+k
regions etc. Since the authors use interpolation between the different submodels,
the resulting model is not a piecewise affine system, but the method could be used
also for piecewise affine systems.

Heredia and Arce [64] use continuous piecewise affine systems with rectan-
gular subregions with the borders parallel to the coordinate axes, and a somewhat
different representation called Continuous Threshold Decomposition. Each border
is defined by a threshold, and the authors use the same set of thresholds for all
variables. They propose a method where one threshold at a time is added using a
numerical method. An Akaike criterion [94] is used to decide how many thresholds
should be added.

142 Identification of Piecewise Affine Systems

10.1.3 Finding Regions and Models in Several Steps

The last two categories are related in the sense that identifying the different regions
and the different subsystems are done separately, in different steps. Many of the
methods found in the literature are constructed in a similar way:

• Local affine models are used to find the partition of the data.

• After the partition is done, the parameters of the affine subsystems can easily
be identified.

The local affine models in the first step can either be used to cluster the data points
into different clusters, in which all data points have similar model parameters, or
they can be used together with a change detection algorithm, in order to find the
mode switchings.

One example of such an approach is found in [48] by Ferrari-Trecate et al.
They consider PWARX systems, as defined in Section 9.2.1. Their identification
algorithm consists of five steps. The first step is to estimate local affine models
around each data point. This is done using the c data points that are closest to
the point for which the local model is estimated, where c is a constant specified
by the user. Then a measure of the “confidence level” for each local estimation is
computed, based on how scattered the points used for the estimation are, and on the
empirical covariance matrix for the estimation. After this, a K-means algorithm
is used to cluster the data points (see [16], or [41] for an overview of different
clustering techniques), based both on their position and on the parameters of the
local model. The two last steps are to estimate an affine submodel for each cluster,
and to try to find hyperplanes that separate the clusters from each other.

Another approach is proposed by Bemporad et al. [10]. The authors con-
sider general PWARX systems, but with unknown but bounded (UBB) noise (see
Section 1.1.3). The number of submodels is not fixed. The approach consists
of three main steps. To get the initial assignment of data samples to different
submodels and an initial estimate of θ(vj) (and the number of submodels), an al-
gorithm is used to approximately find the largest subset of inequalities of the form
|ϕ(t)T θ(v1)−y(t)| ≤ δ that has a feasible solution. Having got an estimate of θ(v1),
the process is repeated on the remaining data samples to get θ(v2), etc.

In the second phase the points are reassigned to different submodels according
to the following scheme:

• Points that satisfy |ϕ(t)T θ(vi) − y(t)| ≤ δ for only one i are assigned to the
corresponding class.

• Points that satisfy |ϕ(t)T θ(vi) − y(t)| ≤ δ for several values of i are called
undecidable, and are not assigned to any class.

• Points that do not satisfy |ϕ(t)T θ(vi)− y(t)| ≤ δ for any value of i are called
infeasible, and are not assigned to any class.

10.1 Existing Approaches 143

Given the new classification, θ(v1), . . . , θ(vnv) are reestimated. This is iterated
until convergence. During this procedure, submodels that are too similar to each
other are merged. Also, submodels containing too few points are removed. In this
way, the number of submodels can be kept low.

In the last step, an algorithm similar to the first step is used to find the sep-
arating hyperplanes, giving the least possible number of misclassified points. Op-
tionally, support vector machines (SVM) can then be used to optimize the location
of the separating hyperplanes.

Hoffmann and Engell [65, 66] consider a hybrid system model with several
modes, where the dynamics of each mode is affine. When the state reaches one
of several switching regions, the system switches to another mode according to a
table. State jumps (see Section 9.3) are also allowed, and are modelled by affine
functions, one for each switching region.

The identification process is divided into several steps: First the mode switches
are detected with a standard change detection algorithm, where a model

x(k + 1) = Ax(k) + Bu(k) + d(k)H(k −K)

is fitted to a window of the time series. When ‖d(k)‖ exceeds a given threshold,
this indicates that a mode switching has occurred.

In the second step, the switching points are clustered and classified as belonging
to different switching regions, and the regions are approximated by hyperspheres.
Then a possible mode sequence is found. From this a discrete model for the different
mode switchings is built.

In the last steps, the affine functions for the state jumps and the continuous dy-
namics of each mode are estimated using standard linear identification techniques.

One problem with the approach by Hoffmann and Engell is that the system
model is only valid along the trajectories of the experimental data. This is due
to the very flexible hybrid model, which does not allow any conclusions about
unexplored parts of the state-space to be drawn, since there might for instance be
an undiscovered switching region anywhere in these parts.

In Münz and Krebs [109], the authors propose to, as a first step, use separat-
ing hyperplanes which are parallel to the coordinate axes. The position of these are
optimized one by one in an iterative fashion. Having done this, each rectangular
subregion is divided into simplices for which affine subsystems are identified.

In Skeppstedt et al. [143, 144], an online approach is considered. The
models taken into consideration are of PWARX type. A multiple-model recursive
parameter estimation algorithm called XAFFM is used to estimate the current
parameter value. XAFFM does not only give estimates of the parameters, but also
of the covariance matrix and posterior probability of the parameter estimate.

By applying Bayes’ rule, using information about the operating point and the
output of the sample, it is determined to which of the affine submodels that the
current sample most likely belongs. If the posterior probability of the current
estimated parameter value is high enough, the parameter value of the submodel is
updated. However, if the estimate of the current parameter value and the previously

144 Identification of Piecewise Affine Systems

estimated submodel parameter value differ too much, no updating is done. Instead,
if this happens repeatedly, a new submodel is added to the total model.

After the update of the dynamics, the separating hyperplanes are updated by
a standard procedure for linear discrimination.

The Switching Dynamical Systems considered in Petridis and Kehagias [119]
do not really belong to the model classes considered so far in this chapter. They
consist of a number of subsystems, between which switchings occur with a certain
probability for each time step. The dependence between the current state and
mode, which is inherent in the models considered previously, is not considered in
[119].

For these systems, an iterative identification algorithm related to the algorithm
by Skeppstedt et al. is presented. Initially, the number of submodels K is set to
one, t = 1 and a threshold ε is chosen. Then the following steps are executed
iteratively:

1. For k = 1, . . . , K, compute predictions ŷk(t) of y(t) using the current models.

2. For k = 1, . . . , K, if |y(t)− ŷk(t)| < ε, let y(t) be assigned to model k and go
directly to step 3. If no model satisfies the requirement, let K = K + 1, add
one model and assign y(t) to this model.

3. Estimate all submodels using the data assigned to them. Let t = t + 1 and
go to 1.

Some convergence results are given, in the sense that the ratio between the falsely
and the correctly classified data points will asymptotically approach 0 with prob-
ability 1.

In Gelfand and Ravishankar [55], a tree structure is used to partition the
state-space. Each node represents a subregion, and to each node the best affine
model of the particular subregion is associated. The structure will be considered
in some more detail in Section 10.1.4. To update the parameters and to prune the
tree, an online, gradient-based, two-step updating procedure is used.

Medeiros et al. [104, 105] use an algorithm called GRASP (Greedy Ran-
domized Adaptive Search Procedure) to iteratively and heuristically find good par-
titions of the state-space. When a partition is given, the remaining parameters are
estimated using least squares, and the mean squared error is taken as a measure of
how good the partition was.

Related to this category are the Local Learning methods of [110, 111] by
Murray-Smith and Gollee, also considered in [112]. They use local linear mod-
els, which are interpolated to get the total system model. The interpolation implies
that the resulting systems are not piecewise affine systems. The identification pro-
cess follows an iterative algorithm, where the model structure is first determined
using a priori knowledge. Then the model parameters are identified locally for each
submodel. After this, the algorithm determines where the model structure needs
improvement, and the structure is adjusted. The last two steps are then iterated
until the result is satisfactory.

10.1 Existing Approaches 145

There are also some relationships to the local modelling methods in Part I, and
similar methods [122, 141]. In fact, if estimating a local linear model from a given
set of estimation data, using a weighted least squares criterion and a piecewise con-
stant weight function, the resulting global model will be a piecewise affine system
(even if it consists of a very large number of submodels). The shapes of the different
regions and the submodels are determined by the choice of weight function, which
(as described earlier) becomes a trade-off between incorporating as much data as
possible to decrease the variance of the estimate, and building a model which is as
local as possible to avoid a biased model.

10.1.4 Using Predetermined Regions

One possible approach is to partition the state-space in a regular grid, with one
affine subsystem for each region in the grid. Since both the partitioning of the state-
space and the identification of the subsystems become very easy (given enough ex-
perimental data in each region), this approach might work well for low-dimensional
systems. However, the number of regions grows exponentially with the dimen-
sions, so both the computational complexity and the need for experimental data
are exponential in the number of dimensions, making the approach infeasible for
higher-dimensional systems.

One example of this kind of approach is given by Billings and Voon [15],
where the state-space is partitioned into rectangular regions, with sides parallel to
the coordinate axes. Another example is found in [78] by Julián (see also [76]).
Here the author considers nonlinear function approximation using the HL CPWL
class (see Section 9.2.3). Also Simani et al. [140] use a given simplicial partition
and identify affine models for each subregion. Some of the noise characteristics is
also identified.

Instead of deciding on the partition completely independently of the experi-
mental data, another option might be to take the distribution of the regression
vectors into account. In this way, the state-space can be partitioned in such a
way that each region gets a proper amount of experimental data to allow for the
estimation of an affine subsystem, and the exponential complexity can be avoided.
The approach in [26] and the model trees proposed in [148] fall into this category.

In [26] by Choi and Choi, a method is proposed, where the state-space is first
partitioned into hypertriangles, with experimental data points in each corner. For
each hypertriangle an affine subsystem is fitted. Since only n+1 points are used to
fit each n-dimensional subsystem, this method is quite sensitive to noise. Therefore,
the authors also suggest to use an unsupervised learning algorithm with fewer cells
to get the partition. Then the problem of estimating the affine subsystems becomes
a standard identification problem.

In the neural network literature, one can find several other examples of methods
that start by clustering the data, and then build local linear models for each cluster;
see, e.g., [82, 103, 152, 154].

The model trees proposed by Strömberg et al. [148] stem from the Classifi-
cation and Regression Trees (CART) [24]. Here, a binary tree is built, where each

146 Identification of Piecewise Affine Systems

node represents a region of the state-space, and the regions of the children nodes
form a partition of the region of the parent node. Then one linear subsystem is
associated with each leaf of the tree.

The obvious disadvantage with just considering the distribution of the regression
vectors, and not the corresponding y values, is that a set of data which really should
belong to the same subsystem might be split arbitrarily. To somewhat make up
for this drawback, one option is to make the partition rather fine (with many
regions), and then afterwards merge adjacent regions with similar subsystems (cf.
the pruning strategy in [148]). A minor problem with this approach is that the
merged regions may be of varying shapes and sizes, and it might be difficult to
represent them efficiently. For models represented as a tree structure, this is no
problem as long as the adjacent regions are also adjacent leaves in the tree. Then, all
that needs to be done is to erase the leaves and let their parent node become a new
leaf representing the merged region. However, if the regions belong to completely
different branches of the tree, it may even be hard to determine whether they are
adjacent or not.

One idea would be to use Breiman’s Hinge Finding Algorithm (or the modified
version in [124]) to find good partitions for the model trees. This would reduce the
risk that two adjacent regions with similar dynamics would end up in completely
different branches of the tree. This is what is done by Ernst in [46].

In Gelfand and Ravishankar [55], the splitting of a region is decided based on
the best affine model for that region. A threshold is chosen as the mean of the
experimental outputs in that region. If the predicted output from the best affine
model of the region exceeds this threshold, the data sample is assigned to one of
the children nodes; otherwise it is assigned to the other. In this way, the nodes
are assigned approximately the same number of data samples, but the problem of
adjacent regions with similar dynamics being split into different branches is not
necessarily avoided.

10.2 Discussion

The recurring problems with piecewise affine system identification concern how
to find good solutions (a global minimum or a good local minimum) to the iden-
tification problem given a model structure, and how to keep the computational
complexity and model complexity (number of model parameters) low. The com-
putational complexity for a given algorithm is a function both of the number of
regions/subsystems, the number of experimental data, and of the number of di-
mensions of the regression vector. Hence, there are many trade-off situations when
comparing different methods and tuning parameters for given algorithms.

One such issue was mentioned already in Section 1.2.2: The choice between
choosing an a priori grid or estimating the partitioning together with the subsys-
tems. The first option leads to a simple estimation process, but to get a good
result, the numbers of regions and data needed will increase exponentially with
the number of dimensions. Hence, this approach may be good for low-dimensional

10.2 Discussion 147

systems, but for systems of higher dimensions another approach might be preferred.
Let us take a closer look at the requirements on the data. Assume that the

true system is piecewise affine. To be able to identify a system in a satisfactory
way, several or all modes (depending on the system structure) have to be excited
by the data, and furthermore, each mode has to be excited for a sufficiently long
time. A set of data that, given the model structure and a criterion function,
uniquely determines the system will here be called persistently exciting (cf. [94]).
For example, for the case of predetermined regions and mutually independent affine
subsystems (as in a PWARX system), we need at least as many linearly independent
data samples in each mode as the dimension of the regression vector. When the
regions are to be estimated as well, we might even need more data, as the following
example shows.

−3
−2

−1
0

1
2

3
−2

0

2

−6
−4
−2

0
2
4

u(t−1)y(t−1)

y(
t)

(a) True system.

−3
−2

−1
0

1
2

3
−2

0

2

−6
−4
−2

0
2
4

u(t−1)y(t−1)

y(
t)

(b) False system.

Figure 10.1: The system that is identified in Example 10.1.

Example 10.1 (Insufficient data) Consider the system

y(t) =


(
1 −1 1

)
ϕ(t) ϕ3(t) < 0(

−1 −1 −1
)

ϕ(t) ϕ3(t) ≥ 0

where ϕ(t) =
(
1 −y(t− 1) u(t− 1)

)T
(and hence ϕ3(t) = u(t − 1)). Suppose

that we are given the data samples (ϕ(t), y(t)):

{
(

 1
−1
2

 ,−2), (

1
1
2

 ,−4), (

 1
−2
1

 , 0),

148 Identification of Piecewise Affine Systems

(

 1
−1
−2

 , 0), (

 1
2
−1

 ,−2), (

 1
1
−2

 ,−2)
}

Given the true partition of the state-space, these points determine the system
uniquely, since there are three linearly independent samples in each region (see
Figure 10.1(a)). However, we could alternatively choose another, incorrect par-
tition and get a completely different system. An example of this is shown in
Figure 10.1(b), where the system

y(t) =


(
−2.5 −1.5 −0.5

)
ϕ(t) ϕ2(t) < 0(

−3.5 0.5 −0.5
)

ϕ(t) ϕ2(t) ≥ 0

is shown to match the experimental data perfectly.

The need for enough data from each subsystem limits the number of subsys-
tems that would be feasible to identify. Therefore, for larger examples it becomes
advantageous to allow the regions to be formed according to the data, to allow for
fewer regions and parameters.

Another trade-off issue is the one concerning the choice between the three first
categories of the previous sections. The first category – simultaneous identification
of all parameters – is perhaps the most straightforward and general option, since
any numerical optimization algorithm can be applied. The other categories are
more heuristic, and the problem is split up into several subproblems, each of which
might be easier to solve than tackling the entire problem directly. Generally, it
is hard to say which strategy should be preferred, regarding the quality of the
solutions and the computational complexity. Some comparisons exist, e.g., the one
in [124] mentioned previously, but no extensive study comparing several methods
and their performance has been found by the author.

There is also a trade-off between model complexity and the result quality. The
more degrees of freedom that are built into the model structure, the closer the
model can approximate the experimental data. However, since in practice data are
more or less corrupted by noise, a too large degree of model flexibility might cause
the model to adjust to the actual noise realization, thereby causing overfitting.
This is a general problem of system identification, occurring not only for piecewise
affine systems.

Finally, there is a trade-off between the computational complexity of the algo-
rithm chosen, and the quality of the resulting model. This is most obvious in the
algorithms where all parameters are identified simultaneously. The risk of ending
up in a local minimum varies, depending on what numerical optimization algorithm
is chosen. For example, having chosen a Gauss-Newton method, a simple way of
increasing the chance of finding at least a good suboptimal model is to run the
Gauss-Newton method several times, starting from different initial values. This
will (on average) increase the quality of the solution, but at the same time increase
the computational complexity. In the next chapter we will see another example of
improving the result at the cost of increased complexity.

11

PWA Identification Using

MILP/MIQP

The algorithms described in Chapter 10 all have one property in common: They
cannot guarantee that the optimal solution, i.e., the global minimum of (10.2), is
found. In this chapter, a type of algorithms that reach the globally optimal solution
in a finite number of steps is presented. The algorithms are based on mixed-integer
linear/quadratic programming (MILP/MIQP), which is described in Section A.4
in the Appendix. The basic algorithms are described in Section 11.1, and some
extensions are presented in Section 11.2.

Although it was shown, e.g., that the hinge-finding algorithm, proposed in [22]
and described in Section 10.1.2, converges to the global minimum for a noiseless
system consisting of one single hinge, local minima can lead to problems even in
very simple cases for noisy systems or systems with multiple hinges. The following
example illustrates this.

Example 11.1 Consider the problem of fitting a hinge function to the six data
samples given in Figure 11.1(a), using a 2-norm criterion. Figure 11.1(a) also
shows the corresponding globally optimal function, with the optimal cost 0.98.
In Figure 11.1(c) the cost is plotted as a function of the position of the hinge
(recall that once the hinge position is known, the identification problem is simple),
and we can see that there is a local minimum between 4 and 5 with the cost
2.25. The corresponding function is plotted in Figure 11.1(b). Furthermore, simple

149

150 PWA Identification Using MILP/MIQP

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

(a) Data samples (∗)
and globally optimal
model (dashed).

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

(b) Locally (solid) and

globally (dashed)
optimal model.

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

Hinge position

V
(θ

)

(c) Cost as a function
of hinge position for
Example 11.1.

Figure 11.1: Identification of a single hinge function.

calculations show that Breiman’s method [22] will not converge to the optimal
solution (regardless of the initial value), but will in most cases converge to the
local minimum. The modified method provided in [124] will converge to the global
optimum if starting sufficiently close to it, but will converge to the local optimum
if the hinge is originally placed between 4 and 5.

It should be said from the beginning that the computational complexity of the
globally optimal algorithms presented in this chapter is such that they are not a
realistic alternative for identifying larger piecewise affine systems, or using large
sets of experimental data. This subject is treated in more detail in Section 11.3.
Another question is if it is really necessary to find the global optimum in practice,
or if a good suboptimal solution will do. This issue becomes even more relevant
when using piecewise affine systems as approximations to general nonlinear systems,
and when the experimental data are corrupted by noise. Nevertheless, algorithms
that guarantee convergence to the global optimum in finite time may still be of
theoretical interest.

Furthermore, there are special cases where it might be feasible to use identifica-
tion algorithms based on MILP/MIQP. One example is the problem of identifying
a piecewise affine Wiener model, which is described in Section 11.4. Another case
is when a system only seldom changes modes, which allows for a change detec-
tion algorithm to be used to reduce the complexity. This case is considered in
Section 11.6. Finally, one idea is to use an MILP/MIQP solver to get a decent,
suboptimal solution, which can be used as an initial value for a conventional opti-
mization algorithm. This is studied in Section 11.5.

The way we formulate the identification problem can also be used together with
different methods similar to some of the approaches in Chapter 10. We will consider
two Newton-like algorithms in Section 11.7.

11.1 Formulating the Identification Problem as an MILP/MIQP Problem 151

11.1 Formulating the Identification Problem as an
MILP/MIQP Problem

The system class we will consider in this section is the class of hinging hyperplane
systems given by (9.10) and repeated here for convenience:

y(t) = ϕT (t)θ0 +
M∑
i=1

±max{ϕT (t)θi, 0}+ e(t) (11.1)

Recall that this is shorthand notation for

y(t) = ϕT (t)θ0 +
M+∑
i=1

max{ϕT (t)θi, 0} −
M∑

i=M++1

max{ϕT (t)θi, 0}+ e(t)

where we assume M+ and M to be known. As mentioned in Section 9.2.2, two
properties of this class are that the piecewise affine function is continuous, and that
the affine subsystems are separated by the hyperplanes ϕT (t)θi = 0.

Letting θ =
(
θT

0 . . . θT
M

)T , the predicted output ŷ(t|θ) becomes

ŷ(t|θ) = ϕT (t)θ0 +
M∑
i=1

±max{ϕT (t)θi, 0} (11.2)

As in Chapter 8, we are given y(t), ϕ(t), t = 1, . . . , N , and would like to minimize
the prediction error according to some criterion function, i.e.,

min
θ

V (θ, ZN
1) =

N∑
t=1

`(ε(t, θ)) (11.3)

where

ε(t, θ) = y(t)− ŷ(t|θ) = y(t)−
(

ϕT (t)θ0 +
M∑
i=1

±max{ϕT (t)θi, 0}
)

In this chapter, we will use
`2(ε) = ε2

and
`1(ε) = |ε|

The main question of this section is: How can we rewrite these problems to fit
into the mixed-integer programming (MILP/MIQP) framework? If we would be
able to formulate the piecewise affine system identification problem as an MILP
or MIQP, then the optimal solution could be found in a finite number of steps,
e.g., by using the algorithm described in Section A.4. There are two steps to
accomplish that: To rewrite (11.3) as a linear/quadratic function of the unknowns

152 PWA Identification Using MILP/MIQP

by introducing auxiliary variables, and to rewrite the constraints of the auxiliary
variables as linear inequalities plus the constraint on some of the variables to be
discrete.

To be able to make the reformulation into a MILP or MIQP, we will need bounds
on the products ϕT (t)θi. Therefore, we will make the assumption that there are
known bounds for the parameters θi. These bounds could be in any norm without
affecting the later results, but for simplicity the Euclidean norm is chosen here,
i.e.,

‖θi‖ ≤ Uθi , i = 1, . . . ,M

This implies that ϕT (t)θi are bounded:

Li(t) , −‖ϕ(t)‖Uθi ≤ ϕT (t)θi ≤ ‖ϕ(t)‖Uθi , Ui(t)

This is not a serious restriction, since the bounds can be chosen arbitrarily large.
However, the tighter the bounds, the more efficiently the optimization can be per-
formed. Other types of bounds that could be imagined include componentwise
bounds on θi, i.e.,

Lθi 4 θi 4 Uθi

where 4 denotes componentwise inequalities. If this type of bounds is used, the
definitions of Li(t) and Ui(t) should be changed accordingly.

11.1.1 Reformulating the Criterion Function

Let us start with the criterion function. The problem here is that ŷ(t|θ) is a
nonlinear function of θ. To eliminate that problem, introduce the auxiliary variables

zi(t) = max{ϕT (t)θi, 0}, i = 1, . . . , M, t = 1, . . . , N (11.4)

and regard these as unknown variables in our minimization. The criterion function
for `2(ε) now takes the form

V2 =
N∑

t=1

(
y(t)−

(
ϕT (t)θ0 +

M∑
i=1

±zi(t)

))2

(11.5)

which is quadratic in the unknowns θ0 and zi(t). The corresponding function for
`1(ε) is

V1 =
N∑

t=1

∣∣∣∣∣y(t)−
(

ϕT (t)θ0 +
M∑
i=1

±zi(t)

)∣∣∣∣∣ (11.6)

This function is unfortunately neither linear, nor quadratic. However, there is
a standard trick for rewriting functions like this as a linear function with linear
constraints. Introduce the slack variables s1, . . . , sN . Then, minimizing V1 is the

11.1 Formulating the Identification Problem as an MILP/MIQP Problem 153

same as solving

min
θ,z,s

N∑
t=1

st

subj. to st ≥ y(t)− ϕT (t)θ0 −
M∑
i=1

±zi(t) (11.7)

st ≥ −
(

y(t)− ϕT (t)θ0 −
M∑
i=1

±zi(t)

)
zi(t) = max{ϕT (t)θi, 0}

Now the criterion function is linear at the price of increasing the number of variables
by N and the number of linear constraints by 2N . However, in the context this is
not a very serious complexity increase, since it is generally the discrete variables
introduced in the next section that determine the complexity.

11.1.2 Reformulating the Constraints

By introducing the auxiliary variables zi(t), we have also introduced the additional
nonlinear constraints (11.4). The next step in our reformulation process is to
rewrite these constraints as linear constraints, with the help of additional discrete
variables. To that end, define

δi(t) =

{
0 ϕT (t)θi < 0
1 ϕT (t)θi ≥ 0

i = 1, . . . , M (11.8)

This means that we can write zi(t) as

zi(t) = δi(t)ϕT (t)θi

Notice also that geometrically, δi(t) tells us on what side of the ith hinge ϕ(t) is
positioned. Now we can use the method described in [12] to transform the con-
straints (11.4) and (11.8) to linear inequalities. However, there is a more efficient
way, which will now be described. This transformation method is related to the
method of transforming boolean expressions into linear inequalities, described in
[106], and should be possible to use in many applications, where similar transfor-
mations are needed.

Consider zi(t) and δi(t) for given i and t. In Figure 11.2, the feasible region
for the two constraints (definitions) (11.4) and (11.8) is drawn as two solid lines.
What we would like is to be able to express that region as the intersection between
a polyhedron (the linear constraints) and the set δi(t) = {0, 1}. The simplest
way of doing this is to construct the convex hull (see Section A.3) of the feasible
region (marked with dashed lines in Figure 11.2). This will both give the smallest
polyhedron including the original feasible region and the smallest set of linear

154 PWA Identification Using MILP/MIQP

0

0.5

1 −0.5

0

0.5

10

0.2

0.4

0.6

0.8

1

φT(t)θ
i

Feasible region for relaxed δ

δ
i
(t)

z i(t
)

Figure 11.2: The feasible region for the constraints (11.4) and (11.8) in the
(δi(t), ϕ

T (t)θi, zi(t)) space (solid lines), and its convex hull (the dashed tetrahedron).
Here we have assumed that Li(t) = −0.5, Ui(t) = 1.

inequalities∗. The fact that we get the smallest polyhedron is a general property
of convex hulls, while the second property follows since four linear inequalities
(together with the requirement δ ∈ {0, 1}) are needed to define each of the two
line segments of the feasible region. By choosing the linear inequalities to the ones
defining the complex hull, both line segments are defined by the same inequalities.

Example 11.2 (Tightness of the linear constraints) Consider the case

ϕ(1) =
(

1
1

)
, ϕ(2) =

(
1
0

)
, ϕ(3) =

(
1
−1

)
Li(1) = −2, Li(2) = −1.25, Li(3) = −2
Ui(1) = 1, Ui(2) = 2, Ui(3) = 1

which gives the feasible region for θi shown in Figure 11.3. Here the upper bound
Ui(2) = 2 for ϕT (2)θi will never be reached, since the bounds on ϕT (1)θi and

∗Note, though, that this only holds as long as we neglect the influence that variables from
different timepoints have on each other, and as long as the bounds Li(t) and Ui(t) are as tight
as possible. Otherwise, the bounds on ϕT (t0)θi may be reduced if bounds on ϕT (t)θi for other
timepoints limit the possible values of θi. This would make the feasible region smaller. Example
11.2 illustrates this.

11.1 Formulating the Identification Problem as an MILP/MIQP Problem 155

-

6

�
�

�
�

�
�
�
��

@
@

@
@

@
@
@
@@ �

�
�
���

@
@
@
@@R

�
�

�
�

�
�

�
��@

@
@
@@

�
�
�
��@

@
@
@
@
@
@
@@

-

θi2

θi1

ϕ(1)

ϕ(2)

ϕ(3)

Figure 11.3: The feasible region (bounded by the thick outer lines) in Example 11.2.
The thin lines show ϕT (1)θi = 0 and ϕT (3)θi = 0.

ϕT (3)θi also give an implicit bound on ϕT (2)θi (corresponding to the rightmost
vertex of the feasible region). Furthermore, if ϕT (1)θi ≥ 0 (i.e., δi(1) = 1), the
lower bound Li(2) = −1.25 for ϕT (2)θi (corresponding to the leftmost vertical line
in Figure 11.3) will not be reached either. Hence, whether or not Li(2) is a tight
lower bound on ϕT (2)θi depends on the value of δi(1).

At first sight, the convex hull in Figure 11.2 seems to be defined by
zi(t) ≥ 0
zi(t) ≤ Ui(t)δi(t)
ϕT (t)θi ≤ zi(t)
(1− δi(t))Li(t) + zi(t) ≤ ϕT (t)θi

(11.9)

However, there is one problem in using these inequalities. According to (11.8),
the point (δi(t), ϕT (t)θi, zi(t)) = (0, 0, 0) should not be part of the feasible region.
This means that the convex hull is described by the union of all regions obtained
by different positive µ in the following inequalities

zi(t) ≥ 0
zi(t) ≤ Ui(t)δi(t)
(1− δi(t))µ + ϕT (t)θi ≤ zi(t)
(1− δi(t))Li(t) + zi(t) ≤ ϕT (t)θi

µ > 0 (11.10)

which is a description that might be awkward to work with, due to the nonfixed
parameter µ. Actually, this is more of a theoretical than a practical problem. The
reason for this is best understood geometrically: When ϕT (t)θi = 0, it means that

156 PWA Identification Using MILP/MIQP

ϕ(t) is lying on the ith hinge, and then it does not really matter to what side we
assign it, i.e., we can let δi(t) be 0 or 1. Therefore, we can let µ = 0.

Putting (11.5) and (11.9) together now gives us the following problem:

min
θ,z,δ

V2 =
N∑

t=1

(
y(t)−

(
ϕT (t)θ0 +

M∑
i=1

±zi(t)

))2

subj. to zi(t) ≥ 0
zi(t) ≤ Ui(t)δi(t) (11.11)

ϕT (t)θi ≤ zi(t)

(1− δi(t))Li(t) + zi(t) ≤ ϕT (t)θi

δi(t) ∈ {0, 1}

This is an MIQP problem, and we are done with the reformulation.
In the same way, minimizing V1 can be reformulated as an MILP problem using

(11.7) and (11.9):

min
θ,z,δ,s

N∑
t=1

st

subj. to st ≥ y(t)− ϕT (t)θ0 −
M∑
i=1

±zi(t)

st ≥ ϕT (t)θ0 +
M∑
i=1

±zi(t)− y(t) (11.12)

zi(t) ≥ 0
zi(t) ≤ Ui(t)δi(t)

ϕT (t)θi ≤ zi(t)

(1− δi(t))Li(t) + zi(t) ≤ ϕT (t)θi

δi(t) ∈ {0, 1}

11.1.3 Restricting the Search Space

We have now reached the MILP/MIQP formulations, so in principle, we are ready
to apply an MILP/MIQP solver to find the optimal parameter values. However,
as noted in Section 9.2.2, the parameter values are not uniquely determined in the
expressions above, which means that there will be several optimal solutions, all
describing the same system. To avoid this, we can restrict the search space by
requiring that 0 ≤ wT θ1 ≤ · · · ≤ wT θM+ and 0 ≤ wT θM++1 ≤ · · · ≤ wT θM for a
given constant (nonzero) vector w, just as in Section 9.2.2.

An interesting choice of w is w = −ϕ(t) for some t, say, t = 1. This gives the

11.1 Formulating the Identification Problem as an MILP/MIQP Problem 157

inequalities

ϕT (1)θM+ ≤ · · · ≤ ϕT (1)θ1 ≤ 0

ϕT (1)θM ≤ · · · ≤ ϕT (1)θM++1 ≤ 0
(11.13)

that should be included in (11.11) and (11.12). In particular, we can set{
δi(1) = 0
zi(1) = 0

i = 1, . . . , M

which means that we can exclude these 2M variables from the optimization, thus
getting a somewhat smaller optimization problem.

It should be emphasized that this reduction of the search space not necessarily
leads to a faster computation time, even if it often helps. This is something that
needs to be investigated more thoroughly. See [159] for a discussion of the relations
between number of variables, number of constraints, and computation time.

11.1.4 Some Examples

Let us now look at some examples of using MILP/MIQP for piecewise affine system
identification.

Example 11.3 In the following example, we consider a noiseless system described
by

y(t) = y(t− 1)− u(t− 1) + 2
+ max{y(t− 1) + u(t− 1)− 1, 0}
−max{u(t− 1)− 1, 0}

(11.14)

which we can rewrite as

y(t) = ϕT (t)θ0 + max{ϕT (t)θ1, 0} −max{ϕT (t)θ2, 0} (11.15)

with

ϕ(t) =

 1
−y(t− 1)
u(t− 1)

 (11.16)

and

θ0 =

 2
−1
−1

 , θ1 =

−1
−1
1

 , θ2 =

−1
0
1

 (11.17)

which are the parameters to be identified. The set of experimental data consists
of (u(t), y(t)), t = 0, . . . , 12, and can be shown to be persistently exciting (see
Section 10.2). In Figure 11.4, the function to be identified and the data are plotted.

158 PWA Identification Using MILP/MIQP

−10

0

10

−10
0

10

−40

−20

0

20

40

y(t−1)
u(t−1)

y(
t)

Figure 11.4: The function defined in (11.14) and the experimental data.

Table 11.1: The experimental data, and the correct values of δi(t).

t u(t− 1) y(t− 1) δ1(t) δ2(t)
1 0 0 0 0
2 0 2 1 0
3 5 5 1 1
4 16 7 1 1
5 10 0 1 1
6 2 -8 0 1
7 3 -9 0 1
8 2 -12 0 1
9 -10 -13 0 0
10 0 -1 0 0
11 0.5 1 1 0
12 -1 3 1 0

Let us now formulate this system in a form suitable for the MILP/MIQP iden-
tification algorithms. Following (11.4) and (11.8), we start by introducing

zi(t) = max{ϕT (t)θi, 0}, i = 1, 2

and

δi(t) =

{
0 ϕT (t)θi < 0
1 ϕT (t)θi ≥ 0

, i = 1, 2

Table 11.1 shows the correct values of δi(t), which show that the data are well
distributed over the different modes. Now, depending on what criterion function
we would like to use, we can formulate the identification problem exactly as in
(11.11) or (11.12). We can also add the restrictions (11.13). Then a conventional
MILP/MIQP solver can be used to identify the parameters. The computation time

11.1 Formulating the Identification Problem as an MILP/MIQP Problem 159

for this experiment was a few seconds, and a few hundred nodes in the MILP/MIQP
search trees were visited before the correct parameter values were found (100-800
nodes, depending on implementation and strategy of the MILP/MIQP solvers).

The following example is taken from [13].

Example 11.4 Consider the system

y(t) = 0.8y(t− 1) + 0.4u(t− 1)− 0.1
+ max{−0.3y(t− 1) + 0.6u(t− 1) + 0.3, 0}

(11.18)

The model is identified on the data reported in Figure 11.5(a), by solving an MILP
with 66 variables (of which 20 integers) and 168 constraints. For this example,
the translation into inequalities given by [12] was used instead of the method in
(11.9). The problem was solved by using Cplex [70] (1014 LP solved in 0.68 s
on a Sun Ultra 10 running Matlab 5.3), and, for comparison, was solved again
using BARON [139] (73 LP solved in 3.00 s, same machine), which results in a zero
output prediction error (Figure 11.5(b)). The fitted hinging hyperplane model is
shown in Figure 11.6. By adding a random Gaussian noise with zero mean and
variance 0.1 on the measured output y(t), the following model

y(t) = 0.8315y(t− 1) + 0.3431u(t− 1)− 0.2014
+ max{−0.3391y(t− 1) + 0.6205u(t− 1) + 0.3977, 0}

(11.19)

was identified in 1.39 s (3873 LP solved) using Cplex (7.86 s, 284 LP using
BARON) on the estimation set reported in Figure 11.7(a), and produces the vali-
dation data reported in Figure 11.7(b). For comparison, a linear ARX model was
identified on the same estimation data, with the following result

y(t) = 0.8250y(t− 1) + 0.7217u(t− 1) (11.20)

The results for validation data are found in Figure 11.8 (higher order ARX models
did not produce significant improvements). Clearly, the error generated by driving
the ARX model in open-loop with the validation input u(t) is much larger than for
the hinging hyperplane model, and would not make (11.20) suitable for instance
for formal verification tools, where a good performance of open-loop prediction is
a critical requirement.

In Figure 11.9 we compare the performance in terms of LP/QPs and total
computation time of the linear criterion (11.6) versus the quadratic criterion (11.5).
The reported numbers are computed on a Sun Ultra 60 (2 × 360 MHz) running
Matlab 5.3 and the solver BARON [139], by averaging the result of ten estimation
data sets generated by feeding random Gaussian inputs u(t) and zero output noise
to system (11.18).

160 PWA Identification Using MILP/MIQP

0 5 10 15 20
−3

−2

−1

0

1

2
Input

0 5 10 15 20
−1

0

1

2
Output

(a) Estimation data.

0 5 10 15 20
−2

−1

0

1

2

3
Input

0 5 10 15 20
−1

−0.5

0

0.5

1
Validation − Output Prediction Error

(b) Validation data.

Figure 11.5: Identification of model (11.18) – noiseless case.

−1
0

1
2

−3−2−1012
−3

−2

−1

0

1

2

3

y(t−1)

Estimation data and identified HH model

u(t−1)

y(
t)

Figure 11.6: Identification of model (11.18) – noiseless case. Identified hinging hyper-
plane model.

11.2 Extensions

The MILP/MIQP formulations in Section 11.1 assumed that the system could be
described by hinging hyperplane functions with a known number of max functions
(M known), and known signs of the max functions (M+ known). In this section,
several extensions will be considered. Firstly, the case when M+ is not known
will be discussed in Section 11.2.1. Secondly, in Section 11.2.2 we will extend the
hinging hyperplane models by allowing various forms of discontinuities. We will
also consider a kind of robust hinging hyperplane models in Section 11.2.3. In the
last extension (in Section 11.2.4), the identification problem for general PWARX
systems (described in Section 9.2.1) will be considered. The extensions in Sections

11.2 Extensions 161

0 5 10 15 20
−2

−1

0

1

2
Input

0 5 10 15 20
0

1

2

3
Output

(a) Estimation data.

0 5 10 15 20
−4

−2

0

2

4
Input

0 5 10 15 20
−1

−0.5

0

0.5

1
Validation − Output Prediction Error

(b) Validation data.

Figure 11.7: Identification of model (11.18) – noisy case, y(t) is perturbed by a random
Gaussian noise with zero mean and variance 0.1.

0 5 10 15 20
−1

0

1

2

3
Validation − Output (true,model)

0 5 10 15 20
−1

−0.5

0

0.5

1
Validation − Output Prediction Error

Figure 11.8: Result of identification of a linear ARX model – same estimation and
validation data as in Figure 11.7.

11.2.2 and 11.2.3 are taken from [13].
Only the quadratic criterion function V2 will be considered. The reformulation

of V1 follows immediately, by using slack variables as in (11.7).

11.2.1 Unknown Number of Positive Max Functions

When M+ is unknown, the sign of each max function has to be determined. Here,
two ways of doing this will be described. In the first method, we introduce M

162 PWA Identification Using MILP/MIQP

0 5 10 15 20 25
0

50

100

150

200

250

300

350
LPs vs. #QPs

(a) Average number of LPs and QPs.

0 5 10 15 20 25
0

2

4

6

8

10

12
Time LP vs. time QP (s)

(b) Average computation time (Sun Ul-

tra 60 (2×360 MHz) running Mat-

lab 5.3 and the solver BARON).

Figure 11.9: Identification of model (11.18) – MILP vs. MIQP (results are averaged
on ten estimation data sets generated by random Gaussian inputs u(t) and zero output
noise). The horizontal axes show the number of estimation data samples. The results from
MILP are marked with diamonds, and the results from MIQP are marked with squares.

discrete variables σi ∈ {0, 1}, and rewrite the predicted output as

ŷ(t, θ, σ) = ϕT (t)θ0 +
M∑
i=1

(2σi − 1)max{ϕT (t)θi, 0} (11.21)

Using the same definition of zi(t) as before (see (11.4)) yields

ŷ(t, θ, σ) = ϕT (t)θ0 +
M∑
i=1

(2σi − 1)zi(t) (11.22)

This expression is still not linear in the unknowns, which means that the criterion
functions will not be so either. Therefore we define

ζi(t) = σizi(t), i = 1, . . . ,M (11.23)

and get

ŷ(t, θ, σ) = ϕT (t)θ0 +
M∑
i=1

(2ζi(t)− zi(t)) (11.24)

The criterion function V2 becomes

V2 =
N∑

t=1

(
y(t)−

(
ϕT (t)θ0 +

M∑
i=1

(2ζi(t)− zi(t))

))2

(11.25)

11.2 Extensions 163

which is quadratic in θ0, ζi(t) and zi(t).
What remains now is to formulate the definitions of σi, zi(t), and ζi(t) as linear

inequalities. For this we need the auxiliary discrete variables δi(t), defined as in
(11.8). Following a similar line of reasoning as in Section 11.1, one arrives at the
inequalities 

ζi(t) ≥ 0
ζi(t) ≤ zi(t)
zi(t) ≤ Ui(t)δi(t)
ζi(t) ≤ Ui(t)σi

(1− δi(t))Li(t) + zi(t) ≤ ϕT (t)θi

ϕT (t)θi ≤ zi(t)
zi(t)− ζi(t) ≤ Ui(t)(1− σi)

(11.26)

which can easily be checked by testing all possible values of (δi(t), σi).
Since M+ is unknown, we cannot include the inequalities (11.13) right away.

However, we can restrict the search space to some extent by including

ϕT (1)θi ≤ 0, i = 1, . . . , M (11.27)

Furthermore, we can let

σi+1 ≤ σi, i = 1, . . . ,M − 1 (11.28)

to order the max functions, so that the positive max functions come first.
An alternative way of dealing with the problem of unknown M+ is to write the

predicted output as

ŷ(t|θ) = ϕT (t)θ0 +
M∑
i=1

(max{ϕT (t)θ+
i , 0} −max{ϕT (t)θ−i , 0}) (11.29)

where we require that

ϕT (t)θ+
i ≥ 0 ⇔ ϕT (t)θ−i ≥ 0 (11.30)

This can be regulated with the help of the discrete variables δi(t), where

δi(t) = 1 ⇔ ϕT (t)θ+
i ≥ 0 ⇔ ϕT (t)θ−i ≥ 0 (11.31)

Furthermore, we introduce the auxiliary variables

zi(t) = max{ϕT (t)θ+
i , 0} −max{ϕT (t)θ−i , 0} = δi(t)ϕT (t)(θ+

i − θ−i) (11.32)

We also need the lower and upper bounds

L+
i (t) ≤ ϕT (t)θ+

i ≤ U+
i (t)

L−i (t) ≤ ϕT (t)θ−i ≤ U−i (t)

Li(t) ≤ ϕT (t)(θ+
i − θ−i) ≤ Ui(t)

164 PWA Identification Using MILP/MIQP

The problem can now be written as

min
θ±,z,δ

V2 =
N∑

t=1

(
y(t)−

(
ϕT (t)θ0 +

M∑
i=1

zi(t)

))2

subj. to ϕT (t)θ+
i ≥ L+

i (t)(1− δi(t))

ϕT (t)θ+
i ≤ U+

i (t)δi(t)

ϕT (t)θ−i ≥ L−i (t)(1− δi(t))

ϕT (t)θ−i ≤ U−i (t)δi(t)
zi(t) ≥ Li(t)δi(t)
zi(t) ≤ Ui(t)δi(t)

ϕT (t)(θ+
i − θ−i) ≥ zi(t) + Li(t)(1− δi(t))

ϕT (t)(θ+
i − θ−i) ≤ zi(t) + Ui(t)(1− δi(t))

δi(t) ∈ {0, 1}

(11.33)

Here the method from [12] is used to transform the definitions of zi(t) and δi(t)
into inequalities. The first four inequalities establish the relation between θ+

i , θ−i ,
and δi(t), while the last four inequalities define zi(t).

The advantage of this method compared to the first alternative is that we need
fewer variables. A drawback is that θ+

i and θ−i cannot be uniquely determined; if
(θ+

i

∗
, θ−i

∗
) is a solution, so is, e.g., (θ+

i

∗
+ λθ+

i

∗
, θ−i

∗
+ λθ+

i

∗
) for λ ≥ 0, as long as

the upper and lower bounds are not reached. Another drawback is that the two
hinging hyperplanes given by θ+

i and θ−i will not always correspond to one single
hinging hyperplane giving the same partition of the estimation dataset.

To restrict the search space, we can include the following inequalities that cor-
respond to (11.13):{

ϕT (1)θ+
i ≤ 0 i = 1, . . . ,M

ϕT (1)(θ+
1 − θ−1) ≤ · · · ≤ ϕT (1)(θ+

M − θ−M)

which makes the variables δi(1), zi(1) redundant.

11.2.2 Discontinuous Hinging Hyperplane Models

In hinging hyperplane models, the output y(t) is a continuous function of the
regressor ϕ(t). On the other hand, hybrid systems often consist of piecewise affine
discontinuous mappings. In order to tackle discontinuities, we can modify the
hinging hyperplane model (11.2) in the form

ŷ(t|θ) = ϕT (t)θ0 +
M∑
i=1

(ϕT (t)θi + ai)δi(t) (11.34a)

δi(t) =

{
0 ϕT (t)θi < 0
1 ϕT (t)θi ≥ 0

(11.34b)

11.2 Extensions 165

where ai, i = 1, . . . ,M are additional free parameters, a−i ≤ ai ≤ a+
i . This

modification allows a discontinuity of constant size along each hinge. A more
general class is obtained by using

ŷ(t|θ) = ϕT (t)θ0 +
M∑
i=1

ϕT (t)θiδi(t) (11.35a)

δi(t) =

{
0 Ciϕ(t) < 0
1 Ciϕ(t) ≥ 0

(11.35b)

where Ci, i = 1, . . . ,M are additional free (row) vectors of parameters, control-
ling the partitioning of the state-space independently of θi. By introducing new
continuous variables zi(t)

zi(t) = (ϕT (t)θi + ai)δi(t)

or
zi(t) = ϕT (t)θiδi(t)

respectively, both the problems of identifying (11.34) and (11.35) can again be
recast as an MILP/MIQP. Using the transformations from [12], from (11.35) we
get

min
θ,z,δ,C

V2 =
N∑

t=1

(
y(t)−

(
ϕT (t)θ0 +

M∑
i=1

zi(t)

))2

subj. to Ciϕ(t) ≥ LCi(t)(1− δi(t))
Ciϕ(t) ≤ UCi(t)δi(t)− (1− δi(t))µ
zi(t) ≥ Li(t)δi(t)
zi(t) ≤ Ui(t)δi(t)

ϕT (t)θi ≥ zi(t) + Li(t)(1− δi(t))

ϕT (t)θi ≤ zi(t) + Ui(t)(1− δi(t))
δi(t) ∈ {0, 1}

(11.36)

where µ is a small number (just as in (11.10)), which we in practice can choose,
e.g., to the machine precision†; and LCi(t) and UCi(t) are lower and upper bounds
on Ciϕ(t).

Note that the problem (11.36) mostly does not have a unique solution. For
instance, once θi, zi(t), and δi(t) have been fixed, in general there exist infinitely
many vectors Ci satisfying the constraints (11.35b) (cf. the general PWARX sys-
tems in Section 11.2.4).

†Here µ cannot be set to zero, since zi(t) is discontinuous where δi(t) switches between 0 and 1
(compare with the discussion just after (11.10)).

166 PWA Identification Using MILP/MIQP

11.2.3 Robust Hinging Hyperplane Models

As will be discussed in Chapter 12, in formal verification methods, model uncer-
tainty needs to be handled in order to provide safety guarantees. Typically, the
model is associated with a bounded uncertainty. In the context of symbolic solvers
for timed automata, differential inclusions a ≤ ẋ ≤ b are handled, for instance
by the solver HyTech [63]. As another example, for piecewise affine and MLD
systems (see Section 9.2), the verification algorithm proposed in [14] handles model
uncertainty as additive input disturbances entering a nominal model.

In the present context of hinging hyperplane models, we wish to find an uncer-
tainty description of the form

ϕT (t)θ−0 +
M∑
i=1

±max{ϕT (t)θ−i , 0} ≤ y(t) ≤ ϕT (t)θ+
0 +

M∑
i=1

±max{ϕT (t)θ+
i , 0}

(11.37)
(that should hold for all t) for an inclusion-type of description, or the form

y(t) = ϕT (t)θ0 +
M∑
i=1

±max{ϕT (t)θi, 0}+ e(t), e− ≤ e(t) ≤ e+ (11.38)

for an additive-disturbance-type of description. With a finite number of data sam-
ples, it is naturally impossible to guarantee the inclusions of (11.37) or (11.38) to
hold for any kind of input and initial conditions, so what will be proposed here are
methods for making the inclusions hold at least for the experimental data.

If we consider the inclusion-type of uncertainty description (11.37), a pair of ex-
treme models with parameters θ−, θ+ can be obtained by solving (11.11) or (11.12)
with the additional linear constraints

y(t) ≥ ϕT (t)θ−0 +
M∑
i=1

±z−i (t), t = 1, . . . , N (11.39)

for estimating θ−, and

y(t) ≤ ϕT (t)θ+
0 +

M∑
i=1

±z+
i (t), t = 1, . . . , N (11.40)

for estimating θ+, respectively. Turning to the additive-disturbance description of
the form (11.38), it can computed in two alternative ways:

1. First, identify the model parameters θ̂ by solving (11.11) or (11.12), and then
compute

e+ , max
t=1,...,N

y(t)− ŷ(t, θ̂)

e− , min
t=1,...,N

y(t)− ŷ(t, θ̂)
(11.41)

11.2 Extensions 167

2. Modify the MILP (11.12) by using only one slack variable s, i.e., replace all
entries of st in (11.12) by s. The objective function that should be minimized
simply becomes s. The corresponding optimum then provides a nominal
model such that the bound on the norm of the additive disturbance e(t) is
minimized.

11.2.4 General PWARX Systems

In Section 9.2.1, PWARX systems were defined as being of the following type:

y(t) = ϕT (t)θ(v) + e(t) (11.42)

where the key vector v is a function of ϕ(t), ϕ(t) consists of old inputs and outputs
plus a constant element, and the regions of the different subsystems are polyhedral.
We assume that the regions are separated by M hyperplanes {ϕ ∈ Rn

∣∣ Ciϕ = 0},
i = 1, . . . ,M , where Ci ∈ R1×n are unknown normal vectors of the hyperplanes,
and n is the dimension of ϕ. In order to better fit into the framework of this
chapter, v will be defined slightly different compared to Section 9.1.1:

vi =

{
0 if Ciϕ < 0
1 if Ciϕ ≥ 0

We can notice directly that in most cases, it will be impossible to determine
Ci uniquely from the experimental data, since there is a continuum of hyperplanes
which will split the set of vectors ϕ(t) in the same partitions.

Let us now consider the special case of M = 2 for the remainder of the section.
The reformulation for other values of M is completely analogous. First we can
write ŷ(t|θ) as

ŷ(t|θ) = ϕT (t)θ(v)

= ϕT (t)
[
θ(

(
0
0

)
)(1− v1(t))(1− v2(t)) + θ(

(
1
0

)
)v1(t)(1− v2(t))

+θ(
(

0
1

)
)(1− v1(t))v2(t) + θ(

(
1
1

)
)v1(t)v2(t)

]
Rearranging the terms gives

ŷ(t|θ) = ϕT (t)
[
θ(

(
0
0

)
) + v1(t)

(
−θ(

(
0
0

)
) + θ(

(
1
0

)
)
)

+ v2(t)
(
−θ(

(
0
0

)
) + θ(

(
0
1

)
)
)

+v1(t)v2(t)
(

θ(
(

0
0

)
)− θ(

(
1
0

)
)− θ(

(
0
1

)
) + θ(

(
1
1

)
)
)]

, ϕT (t)
[
θ̃0 + v1(t)θ̃1 + v2(t)θ̃2 + v1(t)v2(t)θ̃3

]

168 PWA Identification Using MILP/MIQP

where the new variables θ̃0, . . . , θ̃3 have been introduced as different linear combi-
nations of θ(v) for the different values of v. Now we can identify θ̃0, . . . , θ̃3, and
then solve for θ(v), but first the expression for ŷ must be linear in the unknown
variables. To accomplish that, introduce

z1(t) = v1(t)ϕT (t)θ̃1

z2(t) = v2(t)ϕT (t)θ̃2

z3(t) = v2(t)ϕT (t)θ̃3

z4(t) = v1(t)z3(t)

to get
ŷ(t|θ) = ϕT (t)θ̃0 + z1(t) + z2(t) + z4(t)

and the quadratic criterion function

V2 =
N∑

t=1

(
y(t)−

(
ϕT (t)θ̃0 + z1(t) + z2(t) + z4(t)

))2

What is left now is to rewrite the definitions of zj(t) as linear inequalities.
Since the values of vj(t) do not depend on θ̃k, but on Ci, we cannot use the same
procedure as in Section 11.1.2. Instead, the method in [12] is used again, which
yields {

Ciϕ(t) ≥ LCi(t)(1− vi(t))
Ciϕ(t) ≤ UCi(t)vi(t)− (1− vi(t))µ

i = 1, 2
zj(t) ≤ Uθ̃j

(t)vj(t)
zj(t) ≥ Lθ̃j

(t)vj(t)
ϕT (t)θ̃j ≥ zj(t) + Lθ̃j

(t)(1− vj(t))
ϕT (t)θ̃j ≤ zj(t) + Uθ̃j

(t)(1− vj(t))

j = 1, 2


z3(t) ≤ Uθ̃3

(t)v2(t)
z3(t) ≥ Lθ̃3

(t)v2(t)
ϕT (t)θ̃3 ≥ z3(t) + Lθ̃3

(t)(1− v2(t))
ϕT (t)θ̃3 ≤ z3(t) + Uθ̃3

(t)(1− v2(t))
z4(t) ≤ Uθ̃3

(t)v1(t)
z4(t) ≥ Lθ̃3

(t)v1(t)
z3(t) ≥ z4(t) + Lθ̃3

(t)(1− v1(t))
z3(t) ≤ z4(t) + Uθ̃3

(t)(1− v1(t))

Here, µ is a small number, e.g., the machine precision. UCi(t), LCi(t), Uθ̃i
(t), and

Lθ̃i
(t) are upper and lower bounds on Ciϕ(t) and ϕT (t)θ̃i, respectively, which can

be derived from bounds on Ci and θ(v) given a priori.

11.3 Computational Complexity and Theoretical Aspects 169

r
r

r
b

A
A
A
A
A
A
AA��

��
��

��
��
�XX

XXX
XXX

XXX
XXX

X

ϕ(t0)
δi(t0) = 0

ϕ(t1)
δi(t1) = 1

ϕ(t2)
δi(t2) = 1

ϕ(t3)
δi(t3) = 1

Figure 11.10: An infeasible assignment of δi(t) values. No hyperplane can separate
ϕ(t0) from ϕ(t1), ϕ(t2), and ϕ(t3), so if δi(t1) = δi(t2) = δi(t3) = 1, then we must also
have δi(t0) = 1.

To restrict the search space a bit more, we can also, e.g., require that

Ciϕ(1) = −1, i = 1, 2

which also implies that v1(1) = v2(1) = 0 and zj(1) = 0, j = 1, . . . , 4.

11.3 Computational Complexity and Theoretical
Aspects

As mentioned in Section A.4, the general MILP or MIQP problem is NP -hard
[49, 151], so that, in the worst case, every combination of δ values has to be tested.
However, in practice not all combinations of δ values are feasible, which improves
the complexity a bit. This is the subject of the following section. We will only
consider the systems of Section 11.1, although some of the discussion is relevant
also to the extensions in Section 11.2. No rigorous complexity analysis will be
made; instead some aspects of it will be discussed.

11.3.1 Number of Feasible δ Combinations

Since the identification problem is easily solved once we know the correct partition-
ing of the data (it reduces to an LP or a convex QP problem), we can look at the
optimization process as trying to find the best way of partitioning the set of vectors
ϕ(t), i.e., to partition the regression vector space into different regions. As we have
also seen, δi(t) describes on what side of the ith hinge that ϕ(t) is positioned. In
other words, for each t, δ1(t), . . . , δM (t) together work as a key vector, telling us
in what region ϕ(t) is situated. Each leaf in the MILP/MIQP search trees (see
Section A.4 in the Appendix) corresponds to a certain combination of δ values that
is to be tested. However, in all cases of interest, many combinations of values of
the δi(t) variables will be infeasible, i.e., they will not correspond to a possible
partitioning of the state-space. For example, if a regression vector ϕ(t0) belongs to
the convex hull of some other regression vectors ϕ(t1), . . . , ϕ(tk) (see Figure 11.10),
and we assign the values δi(t1) = δi(t2) = · · · = δi(tk) = 1, then δi(t0) = 1 by

170 PWA Identification Using MILP/MIQP

necessity, since no hyperplane ϕT θi = 0 can separate ϕ(t0) from ϕ(t1), . . . , ϕ(tk).
The natural question arises: How many feasible combinations of δi(t) values are
there?

If the dimension of ϕ(t) equals n + 1, the question can also be formulated as:
In how many ways can we group N points in Rn (that is, the points composed by
elements number 2 to n + 1 of ϕ(t), t = 1, . . . , N) by separating them with M hy-
perplanes? This question is answered in Corollary A.2. Note that ϕ(t) corresponds
exactly to the vectors used in the proof of Corollary A.1, since the first element of
ϕ(t) always equals 1.

To be able to use Corollary A.2, we need the data to be in general position,
but since – according to Section A.5 – for a randomly chosen set of points in Rn,
this condition should be satisfied with probability one, the restriction should not
be too serious, especially if we assume white noise in our experimental data.

We assume that M and M+ are known, and that the data set is persistently
exciting. This implies that trivial partitions like having one hinge going outside
the data set, or several hinges positioned at the same place, are – albeit feasible –
unnecessary to try.

We also have to remember that some of the hinge functions should be positive
and some negative. This will increase the number of δ combinations that have to
be tested, since at each possible position for a hinge, both a positive and a negative
hinge function has to be tested.

We summarize the previous discussion in the following corollary:

Corollary 11.1
Assume that N samples of data in general position are given, and that a hinging
hyperplane model with M+ positive and M− = M −M+ negative hinge functions
should be fitted to it, using (11.11) or (11.12). Then the number of combinations
of values of δi(t) that have to be tested equals

fδ(n,N,M,M+) =
(

f(n + 1, N)/2− 1
M

)
·
(

M

M+

)
(11.43)

where

f(n,N) = 2
n−1∑
k=0

(
N − 1

k

)

Proof According to Corollary A.2, there are
(
f(n+1,N)/2−1

M

)
nontrivial ways in

which a set of N points in Rn can be partitioned by M hyperplanes. For each
partition, we should decide which of the M hyperplanes that should be hinges of
the positive hinge functions. In other words, out of M hinge functions, we should
choose M+ to be positive. �

A MILP/MIQP search tree with only the feasible, nontrivial solutions as leaves,
and the other cut away, would therefore have fδ(n,N,M,M+) leaves, and conse-
quently contain 2fδ(n,N,M,M+)−1 nodes altogether. Table 11.2 lists some values

11.3 Computational Complexity and Theoretical Aspects 171

Table 11.2: Number of feasible δ combinations for some different values of n, M , and
N . Here we assume M+ = M .

(n,M)
N (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1)
20 19 171 969 190 17955 1125180 1159
50 49 1176 18424 1225 749700 3.1 · 108 19649
100 99 4851 156849 4950 1.2 · 107 2.0 · 1010 161799
200 199 19701 1293699 19900 2.0 · 108 1.3 · 1012 1313599
500 499 124251 2.1 · 107 124750 7.8 · 109 3.2 · 1014 2.1 · 107

of fδ(n,N,M,M+). However, one should keep in mind that the computation of
fδ(n,N,M,M+) just considers the feasibility of different δ combinations. Since the
standard MILP/MIQP algorithms (such as branch-and-bound) can throw away ob-
viously bad solutions, much fewer nodes will probably be tested in practice. The
following examples illustrate this. It should be noted that in the MILP cases in
these examples – like all MILP examples in this chapter – the Cplex MILP solver
[70] was used. This is a general-purpose MILP solver, and does not (to the author’s
knowledge) explicitly make use of the feasibility properties special to this problem.

Example 11.5 For the system in Example 11.3, the number of feasible combi-
nations of δ values is fδ(2, 12, 2, 1) = 4290, so an MILP/MIQP search tree could
contain 2 · 4290 − 1 = 8579 nodes. However, as previously mentioned only a few
hundred nodes were actually visited. The total number of δ combinations (feasible
and infeasible) is 2MN = 224 = 1.7 · 107.

Example 11.6 A noiseless hinging hyperplane system described by

y(t) = 0.6312 + 0.0518y(t− 1)− 0.2881u(t− 1)
+ max{−0.6019 + 0.8529y(t− 1) + 0.3759u(t− 1), 0}
−max{0.1238− 0.5255y(t− 1) + 1.8081u(t− 1), 0}

(11.44)

was identified from 300 data samples, using a 1-norm criterion function and the
Cplex MILP solver. Although the number of feasible δ combinations equals
fδ(2, 300, 2, 1) = 2.0 · 109, the problem was solved after having visited about 1000
nodes, taking about 5 minutes on a SunBlade100 machine. The total number of δ
combinations is 2600 = 4.1 · 10180.

Although the results of the previous examples are encouraging, the systems are
rather simple, and the algorithms might not be feasible to use for larger examples.
Another problem is that the algorithms seem to slow down when trying to identify
systems with noise. However, some systems have a structure which can be exploited

172 PWA Identification Using MILP/MIQP

B(q)
A(q) f(x)- --u(t) x(t) y(t)

Figure 11.11: Wiener process with piecewise affine static output mapping.

to restrict the search space further, and to speed up the algorithm. In Section 11.4,
piecewise affine Wiener models are considered.

Another option is to interrupt the algorithm before it is completed, and use the
best solution found so far, or use it as an initial value for, e.g., a Gauss-Newton
algorithm. This is described in Section 11.5. One could also use a change detec-
tion algorithm to detect timepoints when it seems more probable that a switching
between different modes has occurred, and in this way reduce the number of com-
binations needed to consider. This will be considered in Section 11.6.

11.4 Piecewise Affine Wiener Models

As already mentioned, using MILP/MIQP directly on the problem formulations in
Section 11.1 might be too complex to be used in realistic examples. However, there
are some model classes where the special model structure allows us to simplify the
computations considerably. Let us now turn to the class of piecewise affine Wiener
models. These models consist of a linear system, followed by a static nonlinearity.
The model structure is shown in Figure 11.11, and can be described by the relations

A(q)x(t) = B(q)u(t)
y(t) = f(x(t))

(11.45)

where A(q) = 1+
∑na

h=1 ahq−h, B(q) =
∑nb

k=1 bkq−k, and q−1 is the delay operator,
q−1x(t) = x(t − 1). For simplicity of notation, we assume that na ≥ nb (this has
no effect on the results). We assume that f(x) is a piecewise affine, continuous,
invertible function (without restrictions we can assume that f is strictly increasing),
and parameterize its inverse as

x(t) = y(t)− α0 +
M∑
i=1

±max{βiy(t)− αi, 0} (11.46)

The ± signs before the max functions are allowed in order to be able to represent
nonconvex functions, and we use the shorthand notation introduced for hinging
hyperplane models in (9.10); i.e., (11.46) is equivalent to

x(t) = y(t)− α0 +
M+∑
i=1

max{βiy(t)− αi, 0} −
M∑

i=M++1

max{βiy(t)− αi, 0}

where M+ and M are assumed to be known. To avoid overparameterization,
we assume that the coefficient of the linear part in (11.46) equals 1 (this can be

11.4 Piecewise Affine Wiener Models 173

compensated for in the B(q) polynomial). As max{−p, 0} = −p + max{p, 0} for
all p ∈ R, without loss of generality we can also assume βi ≥ 0.

Note that, in general, the piecewise affine Wiener models do not belong to the
class of hinging hyperplane models, and therefore we cannot directly use the same
kind of problem reformulations as in Section 11.1. To see this, we can rewrite the
system using

x(t) = (1−A(q))x(t) + B(q)u(t) (11.47)

to get

y(t) = f ([1−A(q)] x(t) + B(q)u(t))

= f
(
[1−A(q)] f−1(y(t)) + B(q)u(t)

)
From Lemma A.4 (see Section A.6 in the appendix), we get an expression for f
given (11.46). We can then see that the expression for y(t) contains nested max
functions. In fact, the model class is not a subset of the class of hinging hyperplane
models, but of Güzeliş’ model class (see (9.7)).

Like before, we would like to minimize a criterion function as in (11.3), with
` = `2 or ` = `1. We assume that there are known bounds for the values of the
unknown parameters ah, bk, αi, and βi. We also introduce

θ = (a1 . . . ana b1 . . . bnb α0 . . . αM β1 . . . βM)T

In the case of noisy systems, we assume that the noise enters the system ac-
cording to the following equation

A(q)x(t) = B(q)u(t) + e(t)
y(t) = f(x(t))

(11.48)

where E[e(t)] = 0 and e(t) is independent of {ut−1
1 , xt−1

1 , yt−1
1 }. However, the

algorithm may work well also when the noise enters the system differently, as
illustrated in Example 11.7.

The problem of identification of Wiener models has been subject to considerable
research, and there are many papers published (see, e.g., [25, 60, 153, 157]).

11.4.1 Reformulating the Identification Problem

Like in the hinging hyperplane formulation, the first thing to do is to get rid of the
max functions. This is done by introducing the discrete variables

δi(t) =

{
0 βiy(t)− αi < 0
1 βiy(t)− αi ≥ 0

i = 1, . . . ,M (11.49)

An additional problem for this model structure is that we will get products
between the coefficients ah of the A(q) polynomial and the coefficients inside the
max functions, βi and αi. Furthermore, since ah may very well be negative, the

174 PWA Identification Using MILP/MIQP

inequalities in the definition (11.49) of δi(t) may change directions if we multiply by
ah. This is not desirable, so to get rid of these problems, first define ah = a+

h −a−h ,
where a+

h , a−h ≥ γ, and γ > 0 is any positive scalar. Here we let γ = 1. Then

ah max{βiy(t− h)− αi, 0}
= (a+

h − a−h)max{βiy(t− h)− αi, 0}
= max{a+

h βiy(t− h)− a+
h αi, 0} −max{a−h βiy(t− h)− a−h αi, 0}

= max{c+
ihy(t− h)− d+

ih, 0} −max{c−ihy(t− h)− d−ih, 0}

where

c±ih , a±h βi, i = 1, . . . , M, h = 1, . . . , na

d±ih , a±h αi, i = 1, . . . , M, h = 1, . . . , na

Let also

ci0 = c+
i0 = c−i0 , βi, i = 1, . . . ,M

di0 = d+
i0 = d−i0 , αi, i = 1, . . . , M

d0h , ahα0, h = 1, . . . , na

d00 , α0,

and

d̄0 ,
na∑

h=0

d0h =

(
1 +

na∑
h=1

ah

)
α0

As a+
h , a−h > 0, from (11.49) it now follows

δi(t) =

{
0 a±h βiy(t)− a±h αi < 0
1 a±h βiy(t)− a±h αi ≥ 0

i = 1, . . . ,M, h = 1, . . . , na

and hence

δi(t) =

{
0 c±ihy(t)− d±ih < 0
1 c±ihy(t)− d±ih ≥ 0

i = 1, . . . ,M, h = 0, . . . , na (11.50)

Introduce the auxiliary continuous variables

zih(t) = δi(t− h)
(
(c+

ih − c−ih)y(t− h)− (d+
ih − d−ih)

)
, h = 1, . . . , na

zi0(t) = δi(t)(ci0y(t)− di0)
(11.51)

for i = 1, . . . ,M , t = na + 1, . . . , N .

11.4 Piecewise Affine Wiener Models 175

To rewrite the criterion function (11.3), we first try to express y(t) as a linear
function of our unknowns. First we note that, by (11.46) and (11.51),

x(t) = y(t)− d00 +
M∑
i=1

±zi0(t)

a1x(t− 1) = a1y(t− 1)− d01 +
M∑
i=1

±zi1(t)

...

anax(t− na) = anay(t− na)− d0na +
M∑
i=1

±zina(t)

(11.52)

Now, using (11.48) and (11.52), we get

x(t) = y(t)− d00 +
M∑
i=1

±zi0(t)

= −
na∑

h=1

(
ahy(t− h)− d0h +

M∑
i=1

±zih(t)

)
+

nb∑
k=1

bku(t− k) + e(t)

which provides the relation

y(t) = −
na∑

h=1

ahy(t− h) +
nb∑

k=1

bku(t− k) + d̄0 −
M∑
i=1

na∑
h=0

±zih(t) + e(t) (11.53)

and therefore

ŷ(t|θ) = −
na∑

h=1

ahy(t− h) +
nb∑

k=1

bku(t− k) + d̄0 −
M∑
i=1

na∑
h=0

±zih(t) (11.54)

This means that the criterion function (11.3) using the `2 norm can be written as

V2(θ, ZN
1) =

N∑
t=na+1

(
y(t) +

na∑
h=1

ahy(t− h)−
nb∑

k=1

bku(t− k)

−d̄0 +
M∑
i=1

na∑
h=0

±zih(t)

)2 (11.55)

If 1-norm is used, we can rewrite the criterion function similarly and then introduce
slack variables, analogously to what was done in (11.7).

The next step is to translate the definitions (11.51) of zih(t) and (11.50) of
δi(t) into linear inequalities. This is done using the method in [12]. The resulting

176 PWA Identification Using MILP/MIQP

inequalities are{
c±ihy(t)− d±ih ≥ L±ih(t)(1− δi(t))
c±ihy(t)− d±ih ≤ U±ih(t)δi(t)

i = 1, . . . ,M, h = 0, . . . , na, t = 1, . . . , N
zi0(t) ≥ Li0(t)δi(t)
zi0(t) ≤ Ui0(t)δi(t)
ci0y(t)− di0 ≥ zi0(t) + Li0(t)(1− δi(t))
ci0y(t)− di0 ≤ zi0(t) + Ui0(t)(1− δi(t))

i = 1, . . . ,M, t = na + 1, . . . , N


zih(t) ≥ Lih(t)δi(t− h)
zih(t) ≤ Uih(t)δi(t− h)
(c+

ih − c−ih)y(t− h)− (d+
ih − d−ih) ≥ zih(t) + Lih(t)(1− δi(t− h))

(c+
ih − c−ih)y(t− h)− (d+

ih − d−ih) ≤ zih(t) + Uih(t)(1− δi(t− h))

h = 1, . . . , na

(11.56)

where U±ih(t), L±ih(t), Uih(t), and Lih(t) are upper and lower bounds on c±ihy(t)−d±ih
and (c+

ih− c−ih)y(t− h)− (d+
ih− d−ih), respectively, computed from the known upper

and lower bounds on ah, bk, αi, and βi. Note also that if c±ihy(t) − d±ih = 0,
δi(t) is allowed to be either 0 or 1. This is analogous to what was discussed in
Section 11.1.2, and corresponds to a data sample lying on a breakpoint of the
nonlinearity.

Beside the previously mentioned reformulations, that are very similar to the
ones in the hinging hyperplane case, we can also introduce some extra constraints
that will help the MILP/MIQP solver to discard infeasible solutions, thereby reduc-
ing the complexity. Without loss of generality, we can assume that the breakpoints
for the positive max functions in the piecewise affine output nonlinearity are or-
dered, and similarly for the negative max functions. Therefore,

δi(t) = 1 ⇒ δj(t) = 1 (11.57)

should hold for all i, j ≤M+ such that j < i, and for all i, j > M+ such that j < i.
Each constraint (11.57) is translated into

δi(t)− δj(t) ≤ 0, j < i (11.58)

where i, j ≤M+ or i, j > M+. Now, since

δi(t)− δj(t) ≤ 0, δj(t)− δk(t) ≤ 0 ⇒ δi(t)− δk(t) ≤ 0

we only need to include the inequalities (11.58) for pairs of consecutive indices i, j.
Not only the breakpoints, but also the output data y(t) can easily be ordered.

This means that we can also get additional relations on δi(t) by using (11.49). In
fact, if δi(t0) = 1 and y(t1) ≥ y(t0), it must follow that δi(t1) = 1. Like above, we
can translate these relations into

δi(t0)− δi(t1) ≤ 0, ∀t1 6= t0 : y(t1) ≥ y(t0), t0, t1 = 1, . . . , N (11.59)

11.4 Piecewise Affine Wiener Models 177

Table 11.3: Estimation results.

Parameter True value Noiseless data |e(t)| < 0.01 |e(t)| < 0.1
a1 -0.5 -0.5000 -0.4990 -0.5360
b1 2 2.0000 2.0024 2.0003
α0 -2 -2.0000 -2.0001 -1.7748
α1 0.5 0.5000 0.5095 0.5509
α2 -1.5 -1.5000 -1.4924 -1.4999
β1 0.5 0.5000 0.5016 0.5028
β2 0.5 0.5000 0.4988 0.4876

The final MIQP problem that we need to solve is

min
N∑

t=na+1

(
y(t) +

na∑
h=1

ahy(t− h)−
nb∑

k=1

bku(t− k) (11.60a)

− d̄0 +
M∑
i=1

na∑
h=0

±zih(t)

)2

subj. to constraints (11.56), (11.58), (11.59) (11.60b)

with respect to the continuous variables {ah, bk, ci0, di0, d̄0, c
±
ih, d±ih, zih(t)} and the

binary variables {δi(t)}; h = 1, . . . , na, i = 0, . . . ,M , k = 1, . . . , nb, t = 1, . . . , N .
The solution to (11.60) provides the optimal parameter estimates âh, b̂k, and

α̂0 =
ˆ̄d0

1 +
∑na

h=1 âh
(11.61)

α̂i = d̂i0 (11.62)

β̂i = ĉi0 (11.63)

Finally, since the nonlinearity f(x) is invertible, we can obtain the estimate
f̂(x) by using the result of Lemma A.4.

Example 11.7 The following example is taken from [13]. A Wiener model,
consisting of a first-order linear system and a piecewise affine nonlinearity with two
breakpoints, is identified using N = 20 estimation data points. The system is first
identified using noiseless data, and then using noisy measurements ỹ(t) = y(t)+e(t),
where e(t) are independent random variables, uniformly distributed on a symmetric
interval around zero. The resulting estimated parameters are shown in Table 11.3.
Apparently, the estimated parameters are overall very close to the true values, the
closer the lower the intensity of the output noise, as should be expected.

The estimated model was also tested on a set of validation data, and in Fig-
ure 11.12 the resulting one-step-ahead predicted output and output error are plot-

178 PWA Identification Using MILP/MIQP

0 2 4 6 8 10 12 14 16 18
−10

−5

0

5
Output and Predicted Output

0 2 4 6 8 10 12 14 16 18
−6

−4

−2

0

2
x 10

−5 Output Prediction Error

(a) System estimated with noiseless
data.

0 2 4 6 8 10 12 14 16 18
−10

−5

0

5
Output and Predicted Output

0 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1
Output Prediction Error

(b) System estimated with output

noise |e(t)| ≤ 0.01 (dashed line),
and |e(t)| ≤ 0.1 (dot-dashed line).

Figure 11.12: Validation results.

ted. Note that such a good performance cannot be achieved by using standard
linear identification techniques.

11.4.2 Complexity Analysis

The complexity of the problem is tightly connected to the number of discrete
variables, which equals MN . However, by imposing the constraints expressed by
(11.58) and (11.59), the degrees of freedom for the integer variables are reduced
considerably. If we would only have positive (or only negative) max functions,
instead of having to test 2MN different cases (the number of feasible and infeasible
combinations of δ values) in the worst case, only

(
M+N

M

)
combinations would have

to be tested. Furthermore, of these combinations only
(
N−1
M

)
are nontrivial (so

that every affine region of the nonlinearity contains at least one data sample). If
we have M+ positive and M− = M −M+ negative max functions, this number
must be multiplied by a factor

(
M

M+

)
to account for the fact that the positive

and negative max functions could be ordered in different ways. For example, for
N = 20 and M = 2 this means that the number of possible combinations of integer
variables decreases from approximately 1012 to 231 (in the case of only positive max
functions) or 462 (for one positive and one negative max function). Of these, 171
combinations (or 342, respectively) are nontrivial. In general, for a fixed M , the
worst-case complexity grows as NM . Note that this simplification is possible since
the nonlinearity is one-dimensional, which allows an ordering of the breakpoints
and of the output data. In fact, the number of nontrivial combinations equals
fδ(1, N,M,M+), calculated in Corollary 11.1.

11.5 Using Suboptimal MILP/MIQP Solutions 179

11.5 Using Suboptimal MILP/MIQP Solutions

One advantage with the MILP/MIQP algorithms is that they give intermediate
results, which are suboptimal, but get better and better the longer the algorithm
runs. This feature could be used for complex MILP/MIQP problems, where the
time to find the optimal solution (and then prove that it really is optimal) might
be extremely long. Instead of waiting for the optimal solution, one can abort the
computations and use the best solution found so far.

In the case of piecewise affine system identification, one possibility is to use
the suboptimal solutions obtained from the MILP/MIQP solver as initial values
for a standard local minimization algorithm, e.g., Gauss-Newton (see Section 8.2).
Finding good initial values for minimization algorithms is an important issue, and
hopefully, using the intermediate solutions from MILP/MIQP as initial values gives
better results than just using randomly picked initial values. Experiments show
that this is often the case. However, it might sometimes take a little while until the
MILP/MIQP solver finds suboptimal solutions that are worth using. The following
examples illustrate this.

Example 11.8 Consider once again the system in Example 11.3 and the 2-norm
criterion function. The intermediate results from a simple, straightforward Mat-

lab implementation of an MIQP solver are shown in Table 11.4. The parameters
of these suboptimal solutions were then used as initial values of the Matlab opti-
mization functions fminsearch and lsqnonlin, and the resulting criterion function
values are also found in Table 11.4.

As comparison, a number of random values were given as initial parameters
to fminsearch and lsqnonlin. In Figure 11.13, the values obtained by using
the intermediate results from MIQP as initial values are compared to the mean
result of using random initial values. We can see that already after about 250
visited nodes, the combined MIQP/fminsearch and MIQP/lsqnonlin algorithms
perform better than using only fminsearch and lsqnonlin, respectively.

Example 11.9 Consider the system in Example 11.6, but with white noise added
to y(t) in (11.44). The variance of the noise is 0.1, while the input is white noise
with unit variance. The system was identified using 100 such data samples and the
1-norm criterion function. The problem was reformulated according to (11.12) and
given to the Cplex MILP solver. The intermediate solutions were used as initial
values to the Matlab function fminsearch. Just as in Example 11.8, a number
of random initial values to fminsearch were also used as comparison. Table 11.5
shows the resulting values of the criterion function. In Figure 11.14, the values of
the criterion function are shown as a function of the approximative computation
time for the MILP (on a SunBlade 100). Here, the combined MILP/fminsearch
performs better than using random initial values from the very first intermediate
result produced by the MILP solver.

180 PWA Identification Using MILP/MIQP

Node MIQP fminsearch lsqnonlin
23 15.6967 11.9709 15.6967
68 15.1356 15.1356 15.1356
97 14.7320 11.9709 14.5412
100 14.7320 11.9709 14.5412
108 14.5007 11.9709 11.9132
110 11.9711 11.9709 11.8683
144 11.9711 11.9709 11.8683
188 11.8921 11.8629 11.8640
200 11.8632 11.8631 11.8632
253 10.9457 1.5977 0.3908
291 10.4377 0.0145 0.0564
293 8.3370 0.5000 0.0564
300 8.3370 0.5000 0.0564
385 7.3687 0.3188 0.0564
391 7.3687 0.3188 0.0564
458 6.7620 0.0000 0.0564
520 0.4540 0.4496 0.0000
523 0.4540 0.4496 0.0000
560 0.4514 0.4496 0.0000
563 0.4796 0.1817 0.0000
565 0.1834 0.1817 0.1669
581 0.1122 0.0000 0.0000
583 0.0044 0.0000 0.0000

Table 11.4: Intermediate results for the system in Examples 11.3 and 11.8. The first
column shows the number of the node where the result was found (e.g., the first result was
found in the 23rd node visited). The second column contains the values of the criterion
function V2 for the different solutions obtained by the MIQP solver. The third and fourth
columns contain the values of V2 after the solutions have been improved by running the
Matlab routines fminsearch and lsqnonlin, respectively.

Example 11.10 The noiseless system

y(t) = 1.1515− 0.5557y(t− 1)− 0.3370y(t− 2) + 1.3795u(t− 1)
+ max{−0.4898 + 0.0672y(t− 1) + 1.9245y(t− 2)− 0.3428u(t− 1), 0}
+ max{−0.0336 + 0.4396y(t− 1) + 0.1561y(t− 2)− 1.3756u(t− 1), 0}
−max{−0.3871− 1.6273y(t− 1) + 0.3843y(t− 2) + 1.6882u(t− 1), 0}
−max{1.0491− 0.0629y(t− 1) + 0.9997y(t− 2)− 1.3911u(t− 1), 0}

was identified using 100 data samples and the 1-norm criterion function. The
Cplex MILP solver was used to solve the MILP problem obtained, and the inter-
mediate solutions were used as initial values to the Matlab function fminsearch.

11.5 Using Suboptimal MILP/MIQP Solutions 181

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Nodes visited

V
2

(a) Using fminsearch.

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

Nodes visited

V
2

(b) Using lsqnonlin.

Figure 11.13: The intermediate results of Example 11.8 plotted against node number.
The dashed lines show the V2 values of the results from MIQP, the solid lines show the
V2 values after improving the solutions with fminsearch (a) and lsqnonlin (b), and the
dash-dotted lines show the mean values of V2 after using fminsearch (a) and lsqnonlin

(b) on random initial values.

0 1 2 3 4 5
5

10

15

20

25

30

35

40

45

50

Time (min.)

V
1

Figure 11.14: The criterion function values of the different solutions in Table 11.5
(Example 11.9) as a function of the computation time: The criterion function values after
using only MILP (dashed line), after improving the results by using fminsearch (solid
line), and the mean result from using fminsearch with random initial values (dash-dotted
line).

182 PWA Identification Using MILP/MIQP

Node Time MILP fminsearch
1 0 0.1 47.2966 23.0627
2 2310 0.8 19.9396 14.5632
3 2439 0.8 16.9958 14.0697
4 2500 0.8 14.7300 14.6152
5 2526 0.8 14.5641 14.5168
6 3100 1.0 14.5217 11.9073
7 3150 1.0 14.5137 14.5137
8 5940 1.7 9.9354 7.0514
9 6230 1.8 9.7185 7.6424

10 8010 2.3 9.0228 7.4318
11 8750 2.5 9.0206 7.4650
12 10220 2.8 8.9276 7.1749
13 11640 3.2 8.4372 6.9383
14 11717 3.2 8.3458 6.8154
15 12190 3.3 8.2480 6.8169
16 13590 3.7 7.6014 6.5391
17 13628 3.7 6.9740 6.6377
18 13700 3.7 6.9599 6.6272
19 16840 4.4 6.9572 6.6519

Table 11.5: Identification of the system in Example 11.9. Results of using intermediate
solutions from an MILP algorithm as input to fminsearch: The number of visited nodes,
the computation time (in minutes, using a SunBlade 100 machine), and the values of V2

for the solutions before and after using fminsearch.

�
�
���

@
@
@@R

PPPPq

��
��1

-

-

-

-
@
@
@@RPPPPq

��
��1

�
�
���

-

-

?

-

-

-

-

max{x, 0}

max{x, 0}

max{x, 0}

max{x, 0}

w0

w1

w2

w3

w4

a1

a2

a3

a4

ϕ + y

Figure 11.15: The structure of the neural network used in Example 11.10.

11.5 Using Suboptimal MILP/MIQP Solutions 183

Node Time MILP fminsearch NN
1 0 0.1 76.3178 45.5419 19.3366
2 2270 2.5 59.7858 57.0291 11.1362
3 3510 3.7 52.9559 46.2431 19.0352
4 3520 3.7 51.3513 46.2964 10.6999
5 7040 7.1 48.2320 29.7991 18.8824
6 13780 13.4 48.0376 44.5297 18.6923
7 13796 13.4 48.0274 46.1497 10.6867
8 21690 20.1 46.7244 45.3083 19.2758
9 22110 20.4 46.6540 45.7513 19.2948

10 22120 20.4 46.6491 39.9945 18.6721
11 23330 21.4 32.6644 19.6507 0.1239
12 23490 21.5 30.5823 19.3618 0.2066
13 23820 21.8 28.0669 21.5232 0.6236
14 23880 21.8 28.0649 22.8920 16.8954
15 23910 21.9 27.8096 22.4603 0.2265
16 24930 21.9 27.7681 24.3475 14.7952
17 24390 22.2 27.2844 26.1267 0.3424
18 29930 26.4 27.2509 21.6040 0.5424
19 30060 26.5 27.0350 23.0246 11.4028
20 30210 26.6 26.3121 21.1705 19.0251
21 30230 26.6 26.2591 21.5190 0.5986

Table 11.6: Identification of the system in Example 11.10. Results of using interme-
diate solutions of an MILP algorithm as input to fminsearch and the neural network
in Figure 11.15: The number of visited nodes, the computation time (in minutes, using
a SunBlade 100 machine), the values of V2 for the MILP solutions, and the values of
V2 after improving the MILP solutions using fminsearch and the neural network (NN),
respectively.

They were also used as initial values to a neural network with the structure shown
in Figure 11.15. The network was then trained using a backpropagation algorithm
with variable learning rate (traingdx in the Neural Network Toolbox in Matlab).

Table 11.6 shows the resulting values of the criterion function. The computation
time shown in the table (and in subsequent figures) is the time for finding the
intermediate solution with the MILP solver (on a SunBlade 100 machine). Running
fminsearch once took about 15 seconds on average, while the time for training the
neural network was approximately 3-25 minutes. The results from the combined
MILP/fminsearch solver are visualized in Figure 11.16(a), where the values of
the criterion function are shown as a function of the computation time, and are
compared to the mean result using random initial values. After about 20 minutes,
the combined solver works better than just using fminsearch with random initial
values. An interesting thing to note here is that the 11th intermediate result – where
the combined solver starts working better – is the first solution where both positive

184 PWA Identification Using MILP/MIQP

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

Time (min.)

V
1

(a) The criterion function values after

using only MILP (dashed line), af-
ter improving the results by using
fminsearch (solid line), and the
mean result from using fminsearch

with random initial values (dash-
dotted line).

20 30 40 50 60 70 80
0

2

4

6

8

10

V
1

N
um

be
r

of
 e

st
im

at
es

(b) The distribution of results using
fminsearch with random initial
values for 30 minutes.

Figure 11.16: (a) The criterion function values of the different solutions in Table 11.6
(Example 11.10) as a function of the computation time (using fminsearch), and (b) the
results from using fminsearch during 30 minutes.

and negative hinge functions are used. Figure 11.16(b) shows the distribution of
results when fminsearch was run repeatedly during 30 minutes with random initial
values. As we can see, the combined MILP/fminsearch solver performed better
(the best result when using fminsearch with random initial values was 23.3, while
the best result from the combined solver was 19.4).

The results from the neural network are shown in Figure 11.17, also here with
the criterion function value as a function of the computation time. We can see that
also in this case, using the intermediate results from the MILP solver as initial
values for the network training mostly gives better results than the average result
for using random initial values.

11.6 Using Change Detection to Reduce
Complexity

Some PWA systems of interest may not switch so frequently between the different
dynamics of the different submodels. For such systems, it should be possible to use
a change detection algorithm to roughly find the timepoints when switches occur,
and use this information to reduce the complexity of (11.12) or (11.11) by forcing
several samples, lying in the same interval between two switches, to belong to the
same subsystem. Here we propose to use an MILP algorithm over a sliding window

11.6 Using Change Detection to Reduce Complexity 185

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Time (min.)

V
1

Figure 11.17: The criterion function values of the different solutions in Table 11.6
(Example 11.10) as a function of the computation time (using the neural network in
Figure 11.15): The criterion function values after using only MILP (dashed line), after
improving the results by using a neural network (solid line), and the mean result from
training the neural network with random initial values (dash-dotted line).

as a change detection algorithm. The formulation (11.12) is used, taking only data
from time t0, . . . , t0 + L − 1 into account, where L is the length of the window.
Furthermore, only one switch is allowed in each window. Hence, the MILP solved
takes the form

min
s,θ,z,δ

t0+L−1∑
t=t0

st

subj. to st ≥ y(t)− ϕT (t)θ0 − z1(t) + z2(t)

st ≥ ϕT (t)θ0 + z1(t)− z2(t)− y(t)
δ(t0) ≤ · · · ≤ δ(t0 + L− 1)
inequalities (11.9) with δ1(t) = δ2(t) = δ(t)

(11.64)

Note that we only need two hinges (one positive and one negative) and L discrete
variables since only one switch is allowed, compared to the MN discrete variables
needed in (11.12). (If the PWARX structure we would like to identify just contains
positive hinges, we would only need one (positive) hinge in (11.64).) Furthermore,
the inequalities δ(t0) ≤ · · · ≤ δ(t0 + L − 1) also help to reduce the complexity
drastically. As an alternative to (11.64) we could also use one of the methods in
Section 11.2.1 with M = 1.

In each position t0 of the window, the fit of the local hinging hyperplane model
(i.e., the optimal value of the cost function in (11.64)) is compared to the fit of a
linear model over the same window. The value of the relative improvement of the

186 PWA Identification Using MILP/MIQP

cost function,

kt0 = 1− V ∗HHARX

V ∗ARX

(11.65)

is assigned to the time point of the change, and as the window is moving, these
values are summed up (for each time point). If the sum of the relative improvements
for a certain time point exceeds a threshold K0, chosen by the user, this time point
will be considered as a possible switch time.

The advantage of using (11.64) instead of a standard change detection algo-
rithm, e.g., Brandt’s GLR method (see, e.g., [58]), is that the latter does not
require linear separability between the classes; nor does it take the continuity of
the PWA function into account.

After having obtained the estimated possible time points of the switches as
described above, we solve (11.12) or (11.11), but using the same δ variable for all
samples lying in the same time interval between two consecutive possible switches.
This will force the samples to belong to the same submodel, and will reduce the
complexity considerably. To summarize, the algorithm consists of two phases:

1. Use a sliding window with a local MILP algorithm to detect possible switches
and divide the time series into segments.

2. Use an MILP to simultaneously assign the different segments to different
submodels and estimate the parameters of the submodels.

Once again, note that in the first step, the MILP solved just uses two hinges,
independently of how many hinge functions the final global model contains.

Example 11.11 The system

y(t) = −0.3 + 1.2y(t− 1)− u(t− 1)
+ max{−1.2 + 2u(t− 1), 0}
−max{−0.2y(t− 1), 0}+ e(t)

(11.66)

where e(t) is white Gaussian noise with variance 0.01, is identified using 100 data
samples. The true system function and the data samples are shown in Figure
11.18(a). The proposed sliding window algorithm was used with L = 15 and
K0 = 1. This resulted in the system shown in Figure 11.18(b). Table 11.7 shows
the values of the objective function V1 (11.6) for the true system and the identified
model, for the estimation data and a set of validation data. As can be seen, the
identified model shows a good performance. The computation time running Cplex

on a 333 MHz Pentium II laptop (128 MB RAM) was 144 s (42 s for the sliding
windows and 102 s for the final large MILP). This should be compared to solving
the MILP (11.12) directly, which did not return a solution within a maximum
allotted time of 3 hours on the same computer.

11.6 Using Change Detection to Reduce Complexity 187

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

−y(t−1)

True system function and estimation data

u(t−1)

y(
t)

(a) System function (11.66) and estima-
tion data.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−2

−1

0

1

2

3

−y(t−1)

Estimated system function and estimation data

u(t−1)

y(
t)

(b) Identified model.

Figure 11.18: Identification of (11.66).

Table 11.7: Identification of (11.66) – values of the objective function V1.

True system Identified model
Estimation data 7.8213 7.4833
Validation data 7.8668 8.6777

11.6.1 Complexity

The advantage of the described sliding window algorithm, compared to solving
(11.12) or (11.11) directly, lies in the reduction of the computational complexity.
In the sliding window phase, the complexity is linear in the number of data N when
using a window of fixed size, as opposed to the exponential complexity of (11.12)
and (11.11).

For the second phase, the complexity is closely related to the number of possible
switches. Here, the thresholding procedure makes it possible to explicitly trade off
between complexity of the algorithm and optimality: The higher the threshold
value, the fewer possible switch times will be considered. If it is high enough, no
switches will be allowed, which means that all samples will be forced to belong to
the same submodel, and we will end up with a linear model. If, on the other hand,
the threshold value is chosen to be zero, every time point will be considered as a
possible switch time, and we will again get the globally optimal solution.

As previously mentioned, the described algorithm requires the system to switch
only seldom, staying in each submodel for a period at least in the order of the
window length, L. The general issue of designing input signals having the desired
properties of sufficiently exciting the modes of the system and letting the system

188 PWA Identification Using MILP/MIQP

switch seldom is a subject for future research.

11.6.2 Approximating General Nonlinear Systems

To give another example of the described sliding window algorithm, the problem of
approximating a simple nonlinear system is considered. The capability of approxi-
mating arbitrary nonlinear systems is an interesting issue. Since hinging hyperplane
functions have the universal approximation property, as mentioned in Section 9.2.2,
they can (under mild conditions) approximate any function arbitrarily well, given
a large enough number of hinges. As a very simple illustration, a quadratic NARX
(nonlinear ARX) system is approximated by a hinging hyperplane model in the
following example.

Example 11.12 Consider the system

y(t) = −0.5y(t− 1)2 + 0.7u(t− 1) + e(t) (11.67)

where e(t) is white Gaussian noise with variance 0.01, is identified using 100 data
samples. The input is designed to make the output change sign only seldom (about
every 25 samples). The true system function and the data samples are shown in
Figure 11.19(a). Using the sliding window algorithm with one hinge, L = 10, and
a threshold K0 = 1, resulted in the system shown in Figure 11.19(b). We can see
that the parabola is approximated by the hinge in a natural way. The computation
time running Cplex on a 333 MHz Pentium II laptop (128 MB RAM) was 19.7 s
(17.7 s for the sliding windows and 2 s for the final large MILP). Solving the MILP
(11.12) directly required about 1300 s of computations.

If we instead use three hinges to approximate the true system function, we get
the result shown in Figure 11.19(c). The computation time was 152 s (20 s for the
sliding windows and 132 s for the final large MILP).

11.7 Related Approaches

The formulation of the piecewise affine system identification problem using discrete
variables δi(t) can also be used as a basis for other algorithms than those described
in this chapter. To highlight the relation between the MILP/MIQP approach and
other, previously proposed algorithms, two Newton-like methods using δi(t) will be
discussed here. The second algorithm has, to the author’s knowledge, not appeared
previously in the literature.

Consider once more the predicted output (11.2), repeated here for convenience:

ŷ(t|θ) = ϕT (t)θ0 +
M∑
i=1

±max{ϕT (t)θi, 0} (11.68)

11.7 Related Approaches 189

−5

0

5

−5

0

5

−20

−15

−10

−5

0

5

−y(t−1)

True system function and estimation data

u(t−1)

y(
t)

(a) System function (11.67) and
estimation data.

−5

0

5

−5

0

5

−10

−8

−6

−4

−2

0

2

4

−y(t−1)

Estimated system function and estimation data

u(t−1)

y(
t)

(b) Identified model using one
hinge.

−5

0

5

−5

0

5

−10

−8

−6

−4

−2

0

2

4

−y(t−1)

Estimated system function and estimation data

u(t−1)

y(
t)

(c) Identified model using three
hinges.

Figure 11.19: Identification of (11.67).

Using the definition (11.8) of δi(t), we can rewrite (11.68) as

ŷ(t|θ) = ϕT (t)θ0 +
M∑
i=1

±δi(t)ϕT (t)θi (11.69)

=
(
ϕT (t) ±δ1(t)ϕT (t) . . . ±δM (t)ϕT (t)

)︸ ︷︷ ︸
ΦT (t,δ(t))


θ0

θ1

...
θM


︸ ︷︷ ︸

θ

where we also introduce δ(t) =
(
δ1(t) . . . δM (t)

)
for notational convenience.

(ΦT (t, δ(t)) is not to be confused with Φ in (2.20) in Part I.) The criterion function

190 PWA Identification Using MILP/MIQP

V2 from (11.5) can now be written

V2 =
N∑

t=1

(y(t)− ΦT (t, δ(t))θ)2 (11.70)

This form can be used as the starting point for several different identification
algorithms not using MILP/MIQP, often related to the approaches presented in
Chapter 10. Here, some of the possible approaches will be discussed.

For a given set of δ(t), (11.70) would be minimized by

θ̂ =

(
N∑

t=1

Φ(t, δ(t))ΦT (t, δ(t))

)−1 N∑
t=1

Φ(t, δ(t))y(t)

However, the fact that δ(t) is determined by θ and ϕ(t) has been neglected here.
What one could do is to compute the value of δ(t) corresponding to θ̂. Let us call
this value δ̂(0)(t). Now we can iterate, letting

θ̂(k) =

(
N∑

t=1

Φ(t, δ̂(k−1)(t))ΦT (t, δ̂(k−1)(t))

)−1 N∑
t=1

Φ(t, δ̂(k−1)(t))y(t) (11.71a)

and

δ̂
(k)
i (t) =

{
0 ϕT (t)θ̂(k)

i < 0
1 ϕT (t)θ̂(k)

i ≥ 0
(11.71b)

When, for some k, θ̂(k+1) = θ̂(k), we have reached a local minimum.
This algorithm is a variant of the hinge-finding algorithm due to Breiman,

described in [22]. The difference between them is that this version considers all
hinge functions simultaneously, instead of fitting one hinge function at a time. The
last property makes it belong to the first category of approaches listed in Chapter
10. Like the hinge-finding algorithm, there is no guarantee for convergence, but
the algorithm can be modified to guarantee convergence. In this case it becomes
the same algorithm as in [124].

Another option, inspired by one of the algorithms proposed in [69], is to solve
the convex QP

min
θ

V2 =
N∑

t=1

(y(t)− ΦT (t, δ(t))θ)2

subj. to

{
ϕT (t)θi ≤ 0 if δi(t) = 0
ϕT (t)θi ≥ 0 if δi(t) = 1

(11.72)

for given δi(t). The algorithm is as follows:

11.8 Conclusions 191

Algorithm 11.1

1. Assign initial values to δi(t) and solve the corresponding QP (11.72).

2. There are two possibilities for the resulting θ̂:

• If θ̂ does not satisfy ϕT (t)θ̂i = 0 for any t = 1, . . . , N , i = 1, . . . ,M ,

this means that θ̂ lies in the interior of the feasible region of (11.72). In
other words, no data sample ϕ(t) lies on a hinge. This means that a local
minimum for the original problem (11.70) is found, and we stop.

• Otherwise, we collect all pairs (t, i) such that ϕT (t)θ̂i = 0, and change the
values of the corresponding δi(t) (or a subset of them). This is the same
as assigning some of the data points ϕ(t) lying on a hinge to the region
on the other side of the hinge. Then go to 3.

3. Solve (11.72) for the new set of δi(t) values. If ϕT (t)θ̂i = 0 for the same pairs
(t, i) as before, go to 4. Otherwise, go to 2.

4. If not all possible assignments of values to δi(t) for the pairs (t, i) with

ϕT (t)θ̂i = 0 are tested, choose a new assignment and go to 3. Otherwise,
we have found a local minimum, and stop.

Note that the value of V2 will never increase, since the optimal solution of the
previous problem is a feasible solution to the new problem as well. This means
that the algorithm will converge.

This algorithm is almost a damped Newton algorithm, as explained in Sec-
tion 10.1.2 for the corresponding algorithm in [69]. The differences compared to
the algorithm in [69] are that hinging hyperplanes are used instead of hinging
sigmoids, and that all parameters are updated simultaneously.

11.8 Conclusions

In this chapter, an approach to piecewise affine system identification using mixed-
integer programming has been considered. The theoretical advantage of this ap-
proach, compared to, e.g., using standard local minimization tools, is that we are
guaranteed to find the global optimum in a finite number of steps. Furthermore, an
upper bound on the number of steps can be given. In practice, however, the compu-
tational complexity is too large to make the approach applicable to medium-sized
or large identification problems of general piecewise affine systems.

In spite of this, using MILP/MIQP for identification might be a feasible option
in some cases. As described in Section 11.4, some model structures, like the piece-
wise affine Wiener models, allow a significant reduction of the complexity, due to
the fact that the nonlinearity is one-dimensional. Another, potentially attractive,
way of utilizing the MILP/MIQP formulation was described in Section 11.5, where
intermediate solutions from the MILP/MIQP solver were used as initial values for

192 PWA Identification Using MILP/MIQP

a local minimization algorithm. One problem with the MILP/MIQP formulations
is that the computational complexity increases quite rapidly with the number of
experimental data. However, if we are only interested in obtaining good initial val-
ues for another algorithm, we might very well choose a subset of the experimental
dataset, consisting of, say, a few hundred data samples, that are well distributed
over the state-space, and use these for the MILP/MIQP algorithm.

For the case when the estimation data not so frequently switch between different
modes, a change detection approach was proposed. However, one should keep in
mind that the task of designing a seldom-switching input, which at the same time is
persistently exciting, might not be an easy task. Furthermore, much could probably
be done to develop and improve the proposed algorithm.

Finally, the relation between the mixed-integer programming approach and
some Newton-like methods was pointed out, and an extension of an algorithm
proposed in [69] was given.

There are still issues that need to be investigated. One interesting topic is what
conditions can be given to ensure that the experimental data is persistently exciting,
given different model structures. For continuous-time piecewise affine systems in
Chua’s canonical form, some work has been done on this [75]. The MILP/MIQP
solving strategies could probably also be specialized to exploit the structure of this
kind of problems. More experiments could be done to compare the performance of
different algorithms. In particular, the algorithms of Section 11.5 should only be
seen as a first step in exploring the approach of using intermediate results from an
MILP/MIQP solver. These algorithms could probably be developed substantially.

Part III

Robust Verification

193

12

Robust Verification

As mentioned in Section 1.3, the problem of verification is to prove that a set of
bad states is always avoided, or alternatively that a set of target states is actually
reached. These types of questions often arise in applications in connection with
safety issues. Verification of discrete systems is a well-established research field,
with a broad range of applications. With the growing interest of hybrid systems
in the last decade, verification of hybrid systems has also found a number of ap-
plications in control. One application area where verification methods for hybrid
systems have been applied is the chemical industry, where safety is an important
issue [44]. Another application example is the verification of some properties of the
landing gear system of a certain Swedish aircraft [43, 114]. Verification has also
been used for special cases of a collision avoidance system for air-traffic around
airports [93].

In this chapter, the main question will be the one of proving that some states
are never reached. As most system models contain uncertainties in one way or the
other, an important question is how large uncertainties can be tolerated before the
verified properties can no longer be guaranteed to hold. The system may also be
disturbed by noise, which must be taken into account in the verification. These
two problems will be addressed.

We will consider systems, where the state-space is partitioned into several poly-
hedral regions, with one affine subsystem for each region. The mathematical def-
inition of the system class is done in Section 12.1. As in Example 1.5, we will

195

196 Robust Verification

study the behavior of the trajectories at the boundaries of the regions. From this
information, a finite automaton which is an outer approximation of the original
system can be constructed, analogously to what was done in Example 1.5. The
concept of inner and outer approximations was explained in Section 1.3. We will
not consider how the discrete verification problem is performed, given the approx-
imating automaton. This is described in more detail in, e.g., [43]. Instead we will
assume that we are given a set of transitions, for which we should prove if they
will possibly occur or not. In other words, we expect to be given a guarantee of
the kind: “If these transitions never occur, then the set of bad states will never
be reached”. In the example in Section 12.8, we will see that it can sometimes be
quite easy to find such sets of transitions by direct inspection. The problems solved
in this chapter are formulated in Section 12.2 and Section 12.3.

The methods can also be extended to find an inner approximation of the system
behavior, and hence to show that a set of states will really be reached in finite time.
How this can be done is studied in Section 12.7.1. In Section 12.7.2, we will show
that the methods work for switched systems as well.

It would also be nice to be able to combine the verification with other objectives.
Section 12.8 shows an example of how this could be done.

12.1 Some Notation and Assumptions

The systems considered in this chapter are in the form (9.2), that is,

ẋ = A(v)x + b(v), x ∈ X(v) , v ∈ {−1, 0, 1}M (12.1)

where A(v) ∈ Rn×n, b(v) ∈ Rn are given for all v ∈ {−1, 1}M such that X(v)
is nonempty (this will be explained in more detail below). The vector v is a key
vector, which is a piecewise constant function of x and can be seen as a label for
each region X(v). The regions X(v) ⊂ Rn are polyhedra, separated from each
other by M hyperplanes. These are defined by

{x ∈ Rn
∣∣ Cix = di}, i = 1, . . . , M (12.2)

where Ci ∈ R1×n and di ∈ R are given. To allow for a compact representation, we
let Ci form the rows in an M × n matrix C, and collect di into the vector d.

Now v is defined according to the following rule:

vi =


−1 if Cix < di

0 if Cix = di

1 if Cix > di

(12.3)

In this way there is a one-to-one relationship between v and X(v). Since vi = 0
implies that X(v) ⊆ {x ∈ Rn

∣∣ Cix = di}, we notice that a nonempty X(v) will
be contained in an (n− 1)-dimensional affine subspace of Rn if and only if there is
at least one zero entry in v. Nonempty polyhedra X(v) corresponding to vectors

12.2 Problem Formulation for Known Systems 197

v with no zero entries will be called full-dimensional polyhedra. The corners of
a full-dimensional polyhedron will be regions X(vc), where vc contains (at least)
n zeros. Here we will only treat the case when vj contains exactly n zeros; other
cases can be regarded as degenerate special cases of this, with several corners in
the same point.

As mentioned, we assume that A(v) and b(v) are given for all full-dimensional
polyhedra X(v). For the faces, corners etc., we assume that the dynamics is given
as a convex combination (whose weights might be unknown) of the dynamics of all
adjacent full-dimensional polyhedra. The following example clarifies this assump-
tion.

Example 12.1 Consider two adjacent full-dimensional polyhedra X(v1),X(v2) ∈
R2, the face X(vf) between them, and the corners X(vc1), X(vc2) at the ends of
the face. Figure 12.1 shows three different ways in which the trajectories could be
directed, and the corresponding outer approximating automata.

In Figure 12.1(a), the trajectories from X(v1) are pointing towards X(vf),
while the trajectories in X(v2) are going away from X(vf). Since the dynamics of
X(vf) is a convex combination of the two, this implies that the trajectories will go
through X(vf) in the direction from X(v1) to X(v2). If the transition from X(v1)
to X(vf) takes place at the right corner X(vc2), we might get a transition to the
corner, since the trajectories at X(vf) always have a component pointing to the
right.

In Figure 12.1(b), the trajectories from both regions X(v1) and X(v2) are all
going inwards towards X(vf). This means that we will have a chattering along the
line. According to our assumption, the state could go either to X(v1) or X(v2)
from X(vf), but as soon as it leaves X(vf), it will be immediately pushed back. In
the automaton we approximate this behavior by stating that there cannot be any
transitions at all from X(vf) to X(v1) or X(v2). However, since all trajectories
are pointing to the right, we know that the state will eventually end up in X(vc2).

Figure 12.1(c) is quite similar to Figure 12.1(b) in the sense that we will get a
chattering behavior along X(vf), but here we do not know in which corner (if any)
we will end up, X(vc1) or X(vc2).

12.2 Problem Formulation for Known Systems

Now consider one of the full-dimensional polyhedra X(v), and how the trajectories
x(t) behave inside it. Let X(v′) be one of the faces of the polyhedron (which means
that v′i = 0 for some i, and v′j = vj , j 6= i). Basically, there are three different
options for the qualitative behavior of the trajectories near X(v′) (see Figure 12.2):

(a) They are all exiting X(v) (some may be parallel to X(v′)).

(b) They are all entering X(v) (some may be parallel to X(v′)).

198 Robust Verification

��
��

��
��

��
����

��
��
��

�
�
��

�
�
��

�
�
��

�
�
��

- -

6

6

X(v1)

X(v2)

X(vf)

X(vf)

X(v2)

X(v1)

X(vc1) X(vc2)

(a)

��
��

��
��

��
����

��
��
��

�
�
��

�
�
��

@
@
@R

@
@
@R

- -
?

6

X(v1)

X(v2)

X(vf)

X(vf)

X(v2)

X(v1)

X(vc1) X(vc2)

(b)

��
��

��
��

��
����

��
��
��

�
�
��

�
�
��

�
�
�	

�
�
�	

�- �-

?

6

X(v1)

X(v2)

X(vf)

X(v2)

X(v1)

X(vc1) X(vc2)

(c)

Figure 12.1: Three different cases for the dynamics at a boundary X(vf), and the
corresponding outer approximating automata. X(vc1) is the left corner of X(vf), and
X(vc2) is the right corner.

(c) Some trajectories are entering and some are exiting X(v).

Since the system is affine inside the polyhedron, the trajectories are smooth, and
therefore these three cases are the only possible options. The special case of all
trajectories being parallel to X(v′) is included in both the first cases, but this is of
little practical importance.

The three different cases will lead to different approximating automata (see
Figure 12.3). What we need to find out is therefore which of the cases we get,
given A(v), b(v). From (12.3), it is not hard to see that Ci is a normal vector of the
polyhedron face X(v′). Using this together with (12.1), we can rewrite the three
different cases as

(a) Ci(A(v)x + b(v)) ≥ 0 for all x ∈ X(v′)∗.

(b) Ci(A(v)x + b(v)) ≤ 0 for all x ∈ X(v′).

(c) Ci(A(v)x1 + b(v)) > 0 and Ci(A(v)x2 + b(v)) < 0 for some x1, x2 ∈ X(v′).

∗Note that this condition corresponds to the case “All trajectories are exiting X(v)” only if
Ci is pointing out of X(v), that is, if vi = −1. Otherwise conditions (a) and (b) are switched.
To avoid this, one could replace condition (a) by “viCi(A(v)x+ b(v)) ≤ 0 for all x ∈ X(v′)”, and
similarly for condition (b). However, this is mainly a matter of taste.

12.3 The Problem of Robust Verification 199

(a) (b) (c)

Figure 12.2: Three options for the behavior of the trajectories in the vicinity of a
polyhedron face.

��
����
��

��
����
��

��
����
��

�
��7 �

��/ �
���
�

��	

X(v)

X(v′)

X(v)

X(v′)

X(v)

X(v′)

Figure 12.3: Parts of the automata corresponding to the three cases in Figure 12.2.

These conditions can all be easily checked for given A(v), b(v), C and d, for example
by finding the maximum and minimum values on X(v′) of Ci(A(v)x+b(v)), yielding
two LP problems.

12.3 The Problem of Robust Verification

In Section 12.2, we assumed that the dynamics of the system was completely known.
In practice, however, there will almost always be model errors, and the systems
might be disturbed by noise. To that end, let us introduce some uncertainty in our
system model:

ẋ = (A(v)−∆(v))x + b(v)− δ(v), x ∈ X(v) , v ∈ {−1, 0, 1}M (12.4)

where v is defined by

vi =


−1 if Cix < di + γi

0 if Cix = di + γi

1 if Cix > di + γi

(12.5)

Depending on the applications, the matrices ∆(v) ∈ Rn×n, δ(v) ∈ Rn and γ ∈ RM

can be viewed either as uncertainties in the model, or as matrices of our choice
(the latter case can occur, e.g., in the control design process). We can see that

200 Robust Verification

the different matrices affect the system dynamics in different ways: ∆(v) and δ(v)
affect the dynamics of the different subsystems, while γ affects the partitioning of
the state-space.

We will only allow values of γ that do not affect the topology of the state-space
partition compared to the case γ = 0. In other words, the regions X(v) will always
have the same number of faces and the same neighbors as they would have if the
separating hyperplanes were defined by Cx = d. This also means that we will
not allow regions to disappear or new regions to be created when changing γ. An
equivalent way of stating this assumption is to say that for each corner X(vc), vc

should remain constant, and not be changed because a γ value causes the corner
to cross another hyperplane. The following example illustrates this.

Example 12.2 (Preserving topology) Consider the polyhedral partition of
the state-space in Figure 12.4 (which is the same as in Example A.1). The partition
can be described using the matrices

C =

1 1
1 −1
1 0

 , d =

 1
0
−1


The open polytope corresponding to P in Example A.1 can now be written as

X(v), where v =
(
−1 −1 1

)T
(P is the closure of this open polytope).

Now assume that we do not know where the real location of the hyperplane
corresponding to the third row of C and d (so far modelled by x1 = −1) is. We can
include this uncertainty in the model by writing x1 = −1 + γ3. Now, if γ3 > 1.5,
we can see that the hyperplane is moved to the right of the corner where the other
two hyperplanes meet. In this way, the polytope P disappears, and a new polytope
is created. To avoid these kinds of phenomena, we can require that γ3 < 1.5.

Assuming (12.4), the three cases from the previous section now become

(a) Ci[(A(v)−∆(v))x + b(v)− δ(v)] ≥ 0 for all x ∈ X(v′).

(b) Ci[(A(v)−∆(v))x + b(v)− δ(v)] ≤ 0 for all x ∈ X(v′).

(c) Ci[(A(v)−∆(v))x1+b(v)−δ(v)] > 0 and Ci[(A(v)−∆(v))x2+b(v)−δ(v)] < 0
for some x1, x2 ∈ X(v′).

An interesting question is: How much could ∆(v), δ(v) and γ change, without
changing the qualitative behavior at each face of the polyhedron, i.e., without one
face switching from, say, case (a) to case (c)? In other words, for what values of
∆(v), δ(v) and γ do the different cases occur? This is the main question of this
chapter.

Depending on how many of the parameters are varied simultaneously, this ques-
tion may be more or less difficult to answer. If all of them are varied, the problem is

12.4 Solutions to the Robust Verification Problems 201

−2 −1 0 1 2
−2

−1

0

1

2

3

Figure 12.4: The polytope in Example 12.2.

a nonconvex quadratic problem, and will just be mentioned shortly. In the follow-
ing section the question is answered for some different combinations of parameter
variations, and an example is given in Section 12.8. We will mostly consider the
two first cases (all trajectories exiting/entering the polytope), since the solution
sets of these problems will turn out to be the easiest to describe. The solution sets
for the third case can be obtained, either as the complement of the union of the
other solution sets, or in some problems as a union of hyperplanes (see [127]).

12.4 Solutions to the Robust Verification Prob-
lems

Let us now consider the problem corresponding to case (a) of the previous sections.
Rearranging the terms, we can write it as

Ci(A(v)x + b(v)) ≥ Ci(∆(v)x + δ(v)) for all x ∈ X(v′) (12.6)

This form has a natural interpretation: On the left hand side we have the nominal
flow through the face of the polyhedron, and the right hand side is the part of the
flow that is affected by the variable matrices ∆(v) and δ(v). What (12.6) tells us
is that the variable flow (the one caused by ∆(v) and δ(v)) must be made small
enough, or that X(v′) must lie in a region where the variable flow is small enough;
otherwise we will get a total flow in the other direction from what was specified.

In the following subsections we solve this problem for some special cases, when
at least one of ∆(v), δ(v) and γ is zero. Problem (b) can be solved completely
analogously. Problem (c) is considered in a special case in Section 12.4.1.

202 Robust Verification

12.4.1 ∆(v) = 0, γ = 0, δ(v) is Varied

The simplest problem arises when we only allow δ(v) in (12.4) to vary, and let ∆(v)
and γ equal 0. Equation (12.6) then takes the form

Ci(A(v)x + b(v)) ≥ Ciδ(v) for all x ∈ X(v′) (12.7)

This problem can be solved immediately by solving the LP problem

min
x

Ci(A(v)x + b(v))

subj. to x ∈ X(v′)
(12.8)

where X(v′) is the closure of X(v′) (see Section A.3). Denoting the solution of the
LP problem by x∗, the solution set to (12.7) is

Sδ = {δ ∈ Rn
∣∣ Ciδ ≤ Ci(A(v)x∗ + b(v))} (12.9)

Problem (b) is solved by maximizing instead of minimizing Ci(A(v)x+ b(v)) to
get the limit x∗, and the solution set consists of all δ satisfying Ciδ ≥ Ci(A(v)x∗+
b(v)). The values of δ for which Ciδ lies in between x∗ and x∗ are solutions to
problem (c). Thus, in this case all solution sets will be convex.

12.4.2 γ = 0, ∆(v) and δ(v) are Varied

When letting both ∆(v) and δ(v) vary, we need to find a direct representation
(see Section A.3) of X(v′) to get a solution to (12.6). For the case when X(v′) is
bounded, the direct representation will be on the following form:

X(v′) = {
r∑

j=1

λjx
j

∣∣ λj ∈ R, λj > 0,
r∑

j=1

λj = 1} (12.10)

Here xj ∈ Rn, j = 1, . . . r are the corners of X(v′).
According to Equation (A.11), when X(v′) is unbounded, we must include in

the direct representation some vectors, xr+1, . . . , xr+h, which are parallel to the
unbounded edges of X(v′). A direct representation of X(v′) would then be:

X(v′) = {
r+h∑
j=1

λjx
j

∣∣ λj ∈ R, λj > 0,

r∑
j=1

λj = 1} (12.11)

Note that, as in (A.11), λr+1, . . . , λr+h are not included in the set of λj that should
sum up to one; they can be arbitrarily large. In some cases there are no corners,
e.g., when X(v′) consists of an entire hyperplane. As mentioned in Section A.3, in
such cases, a “dummy” corner must be introduced somewhere in X(v′).

For notational simplicity, let us drop the argument v of A(v) etc. for a while.
Now the following theorem gives the solutions to our problem.

12.4 Solutions to the Robust Verification Problems 203

Theorem 12.1
Consider the system given by (12.4) and (12.5). Assume that γ = 0. Then the set
of solutions to the problem (12.6) is given by

S∆δ = {(∆, δ)
∣∣ Ci(Axj + b) ≥ Ci(∆xj + δ), j = 1, . . . , r;

CiAxr+j ≥ Ci∆xr+j , j = 1, . . . , h} (12.12)

Proof To show that the inequality (12.6) is satisfied for an arbitrary point x ∈
X(v′), we use the direct representation (12.11):

Ci(Ax + b) = Ci(A
r+h∑
j=1

λjx
j + b)

=
r∑

j=1

λjCi(Axj + b) +
r+h∑

j=r+1

λjCiAxj

≥
r∑

j=1

λjCi(∆xj + δ) +
r+h∑

j=r+1

λjCi∆xj

= Ci(∆
r+h∑
j=1

λjx
j + δ)

= Ci(∆x + δ)

To see that the first r conditions of (12.12) are necessary, we just need to notice
that they are precisely (12.6) for the corners of X(v′). If a corner would not satisfy
(12.6), then for continuity reasons, there would be points in X(v′) not satisfying
(12.6) either. To show the necessity of the last h conditions, fix ∆ and δ, suppose
that CiAxr+j < Ci∆xr+j for some j, and study x = x1 + λxr+j ∈ X(v′), where
λ > Ci(Ax1+b−∆x1−δ)

Ci(∆xr+j−Axr+j) > 0. We then have

Ci(Ax + b) = Ci(Ax1 + b) + λCiAxr+j

= Ci(Ax1 + b) + λCi(Axr+j −∆xr+j) + λCi∆xr+j

< Ci(Ax1 + b)− Ci(Ax1 + b−∆x1 − δ) + λCi∆xr+j

= Ci(∆x1 + δ) + λCi∆xr+j

= Ci(∆x + δ)

where the direction of the inequality follows since λ is multiplied by a negative
number. This means that (∆, δ) is outside the solution set, and the necessity is
shown. �

When X(v′) is a polytope, Theorem 12.1 can interpreted as follows: The in-
equality (12.6) holds for all x ∈ X(v′) if and only if it holds for the corners of
X(v′). This property follows directly from the inequality being linear in x.

Note that the solution set S∆δ is a polyhedron in the space Rn×n × Rn, and
therefore convex.

204 Robust Verification

12.4.3 Multiple Requirements

So far, we have only been looking at one single polyhedron face. In most cases, the
requirements may stipulate that several transitions of an approximating automaton
should remain invariant. This case is easily handled by partitioning the problem
into subproblems of the form treated above, and then taking the intersection of the
solution sets as the solution set for the entire problem. How many transitions we
need to consider will depend on the system and what we want to verify. For exam-
ple, if all we are interested in is keeping the state on one side of a hyperplane, we
only need to consider transitions through this hyperplane. It should be noted that
considering fewer transitions will lead to a larger – and therefore less conservative
– solution set, and will also require less computations.

12.4.4 ∆ = 0, δ and γ are Varied

The problem gets more complicated as soon as γ is not fixed anymore. We imme-
diately notice from (12.4) and (12.5) that the regions X(v) will no longer be fixed,
but vary with γ. We also have to consider several regions X(v) simultaneously,
since moving a hyperplane will affect all regions adjacent to it. As mentioned in
Section 12.3, we will only allow values of γ that keep the topology of the state-space
regions invariant. If we do not make this requirement, new regions – for which we
do not know the system dynamics – can be created by moving the hyperplanes
defined by Cx = d + γ.

With this requirement, and with ∆(v) = 0 for all v, the problem is still convex,
as will be shown in the following. What we need to do first is to express the
corners as functions of γ. Having done that, we can use these functions to express
the topology preservation requirements and the properties to be verified.

First, remember that each corner xj of the full-dimensional polyhedron X(v) is
itself a region X(vj), where vj contains n zeros. The zeros of vj correspond to the
equations Cix

j = di +γi that xj satisfies. To be able to pick out the corresponding
rows of Ci, di, and γi, we need to introduce some new matrices.

Let D[vj] = diag(vj). From D[vj] we then construct Q[vj] ∈ R(M−n)×M by
deleting all rows containing only zeros. Similarly, we define P[vj] ∈ Rn×M by
deleting all rows in I −D2

[vj] containing only zeros.
Now P[vj] has the following property: When multiplying another matrix from

the left by P[vj], it picks out the rows corresponding to the zero entries of vj . Q[vj],
on the other hand, picks out the rows not picked out by P[vj], and furthermore
multiplies the rows corresponding to the −1 entries of vj by −1.

With this notation, we can pick out the equalities in (12.5) by writing

P[vj]Cxj = P[vj](d + γ)

Since xj is uniquely determined by the equalities in (12.5), P[vj]C will always be
invertible. Hence, we can write

xj = (P[vj]C)−1P[vj](d + γ) (12.13)

12.4 Solutions to the Robust Verification Problems 205

Example 12.3 Consider once again the partition in Examples A.1 and 12.2. The

corner xj =
(

1/2
1/2

)
corresponds to the key vector vj =

(
0 0 1

)T
. Hence,

D[vj] =

0 0 0
0 0 0
0 0 1

 , Q[vj] =
(
0 0 1

)
, P[vj] =

(
1 0 0
0 1 0

)

Assume now that the positions of the hyperplanes are not certain, but that they
could be translated by γ. By (12.13), we can write the corner xj as

xj = (P[vj]C)−1P[vj](d + γ)

=

(
1 0 0
0 1 0

) 1 1
1 −1
1 0

−1 (
1 0 0
0 1 0

) 1
0
−1

 + γ


=

(
1 1
1 −1

)−1 ((
1
0

)
+

(
γ1

γ2

))
= (1 + γ1)

(
1/2
1/2

)
+ γ2

(
1/2
−1/2

)

Note that if γ = 0, we retain the original point.

The requirement that the topology should be preserved is the same as saying
that it should always be possible to express each corner xj as a region X(vj),
where vj must be constant. In other words, the equalities and inequalities (12.5)
that define vj should remain invariant. Of course, the equalities are satisfied (xj

is constructed from them in (12.13)). Thus, we get the following set of inequalities
for each corner X(vj) and all i = 1, . . . ,M :

Ci(P[vj]C)−1P[vj](d + γ) < di + γi if vj
i = −1 (12.14)

Ci(P[vj]C)−1P[vj](d + γ) > di + γi if vj
i = 1

or more compactly

Q[vj]

(
C(P[vj]C)−1P[vj] − I

)
(d + γ) � 0 (12.15)

where � denotes componentwise inequality.

206 Robust Verification

Example 12.4 For the point xj in Example 12.3, the inequality (12.15) becomes

0 <
(
0 0 1

)
·

·


1 1

1 −1
1 0

 (
1 0 0
0 1 0

) 1 1
1 −1
1 0

−1 (
1 0 0
0 1 0

)
−

1 0 0
0 1 0
0 0 1


 ·

·

 1
0
−1

 + γ


=

3
2

+
1
2
γ1 +

1
2
γ2 − γ3

Here we can note that, if γ1 = γ2 = 0, we get back the requirement that was
imposed on γ3 in Example 12.2.

What we need to do now is to take care of the requirements on the flow through
the surfaces. This can be done completely analogously to what was done in Sec-
tion 12.4.2, but with ∆ = 0. However, we need to plug in the expression for the
corners into the inequalities of (12.12), to get, e.g.,

Ci(A(P[vj]C)−1P[vj](d + γ) + b) ≥ Ciδ, j = 1, . . . , r (12.16)

CiAxr+j ≥ 0, j = 1, . . . , h

for problem (a). Since the surfaces are only translated, the directions of the un-
bounded edges do not change, so xr+j are not affected by γ. Inequalities like these,
together with (12.15), give the final solution set. As can be seen, all inequalities
are linear in δ and γ, and the resulting solution set is therefore a polyhedron.

12.4.5 ∆, δ and γ are Varied

The final case, when all parameters are allowed to vary, is quite similar to the one
when only ∆ is fixed. Like in Section 12.4.4 we get the inequalities (12.15). We
also get the requirements on the flow through the surfaces of a region by plugging
in the expression (12.13) for xj into (12.12):

Ci

(
(A−∆)(P[vj]C)−1P[vj](d + γ) + b− δ

)
≥ 0, j = 1, . . . , r (12.17)

CiAxr+j ≥ Ci∆xr+j , j = 1, . . . , h

However, here the inequalities become quadratic, and the solution set is nonconvex.
This makes it harder to efficiently represent and work with the solution set, and
therefore this case will not be further discussed.

12.5 Interpretations 207

12.5 Interpretations

Perhaps the most obvious interpretation is to view ∆(v), δ(v) and γ in (12.4)
and (12.5) as uncertainties due to model errors and/or noise. The methods in
Section 12.4 then provide bounds for the uncertainties for the requirements of the
approximating automata to hold. For natural reasons, the bounds may be very
asymmetric, indicating that the system is more sensitive to certain types of model
errors than to others.

The problem formulation is quite general in that no structure of ∆(v), δ(v)
or γ is assumed. It should be stressed that these uncertainties by no means need
to be constant over time; we have showed that as long as they are kept within
the computed bounds, the verification will hold, no matter how the uncertainties
vary. The only structure that is assumed is the topology of the different polyhedral
regions X(v). If the uncertainty has some further structure, we can parameterize
∆(v) and δ(v) accordingly, thereby reducing the dimensionality and simplifying the
problem. For example, if only the upper left element of A(v) is uncertain, we can
write ∆(v) as

∆(v) =
(

∆1 0
0 0

)
Another example is to set ∆(v) = 0 as in Section 12.4.1, which can be interpreted
as a model with additive noise:

ẋ = A(v)x + b(v)− δ(v), x ∈ X(v) , i = 1, . . . , N (12.18)

A nonzero ∆(v) can also be interpreted as multiplicative noise.
Another type of parameterization is used in the example in Section 12.8. In this

parameterization, some of the elements of ∆(v) and δ(v) are common to several
polyhedra.

An alternative interpretation is to consider ∆(v), δ(v) and/or γ as parameters
of our choice, to be used for control design. One natural parameterization would
then be γ = 0, δ(v) = 0, ∆(v) = B(v)L(v), where B(v) are fixed vectors that
depend on the system, while we can choose L(v) freely. In this way we get (piece-
wise) linear state feedback control, and the problem becomes that of finding the
linear state feedback vectors L(v) that make our system fulfill the requirements
on the approximating automata. Another parameterization would be the one in
Section 12.4.4, where we can regard γ as a vector that lets us place the switching
surfaces of a controller in an optimal manner.

12.6 Computational Complexity

In this section, some aspects on the computational complexity will be discussed.
However, no rigorous analysis is made.

The computational complexity depends on what parameters we let vary. As we
could see in Section 12.4.1, when only δ is varied we just need to solve one or two
LP problems for each requirement. This can be done efficiently (see, e.g., [39]).

208 Robust Verification

When only γ is fixed, the complexity gets a bit worse. From Section 12.4.2
we see, that once we know a direct representation of X(v′), it is trivial to divide
Rn×n × Rn into the three solution sets corresponding to problem (a), (b) and (c).
Conversely, if we want the solutions to be written as intersections of half-spaces
(as in (12.12)), we need to know the direct representation of X(v′). Therefore the
computational complexity for this problem is essentially identical to that of finding
the direct representation. Unfortunately, the number of vectors needed in such a
representation grows very quickly with the size of the problem. An upper bound
for the number of corners in a polyhedron can be calculated in the following way:
In a corner, n linearly independent faces meet (where n is still the dimension of
the state-space). Since the polyhedron has m faces, the number of corners cannot
be larger than

(
m
n

)
(i.e., the binomial coefficient).

However, if we restrict ourselves to the case where the polyhedra are formed by
the state-space being divided by hyperplanes (as we have done in this chapter), it
is fairly easy (but still quite time-consuming) to calculate the direct representation
of all the polyhedra once and for all. The total number of corners is then bounded
above by

(
M
n

)
, where M is the number of separating hyperplanes.

Finally, letting δ and γ vary leads to a similar set of inequalities as in the
previous case. However, we cannot find the corners directly, since they are functions
of γ. Instead we can store the inverses (P[vj]C)−1 for each corner. Thus, we will
need n times as large storage, and about the same amount of computations as when
δ and ∆ vary.

12.7 Extensions

The considered methods can be extended in different ways. We will consider two
kinds of extensions: Using inner instead of outer approximations (that can be used
to prove that a certain region of the state-space really is reached in finite time),
and extending the model class to switched systems.

12.7.1 Inner Approximations

So far, we have only dealt with the behavior of the trajectories at the border of each
region. As we have seen, using the analysis of this behavior we can construct outer
approximating finite automata, with the help of which we may be able to guarantee
that some states are never reached. Another kind of verification, that one might
be interested in, is to prove that a certain region really is reached. This can be
harder, since it is not enough to consider only what happens at the borders of a
region. The reason for this is that the state, being in a region X(v), might never
get to the border of X(v) if the system has a stable equilibrium or a limit cycle
inside X(v). Another difficulty with this kind of verification is that even if we know
that the state trajectory leaves the region X(v), we might not know through which
face it will exit, since this information may be lost when approximating the system
with a discrete automaton. We only know that one out of a set of transitions will

12.7 Extensions 209

occur. Following the terminology of [43], we say that the transitions are guaranteed
to occur nondeterministically.

In this thesis, we will not go into detail with how the analysis of the resulting
nondeterministic approximating automata is performed. For more details about
this, see [43]. Instead, a sufficient condition for the trajectories to be guaranteed
to exit X(v) will be given. This condition also comes from [43]:

Proposition 12.1
A sufficient condition for the state trajectory to exit a polyhedron, X(v), is that
the normal vector, Ci, of one of its faces, X(v′), satisfies

viCiẋ < 0, ∀x ∈ X(v) (12.19)

Proof See [43]. �

Intuitively, the condition in Proposition 12.1 means that the velocity vector is
always pointing towards the hyperplane Cix = di (or Cix = di + γi for a system
with uncertainties). Now, given the face X(v′), we can include this case in our
framework with the following theorem:

Theorem 12.2
Consider the system given by (12.4) and (12.5). Let a direct representation of X(v)
be given by

X(v) = {
s+k∑
j=1

λjx
j

∣∣ λj ∈ R, λj > 0,
s∑

j=1

λj = 1} (12.20)

Assume that γ = 0. Then, for a given X(v′), the set of solutions to (12.19) is given
by

S∆δ = {(∆, δ)
∣∣ viCi(Axj + b) < viCi(∆xj + δ), j = 1, . . . , s;

viCiAxs+j < viCi∆xs+j , j = 1, . . . , k} (12.21)

If we assume instead that ∆ = 0, the set of solutions is given by

Sδγ = {(δ, γ)
∣∣ Ci(A(P[vj]C)−1P[vj](d + γ) + b) ≥ Ciδ, j = 1, . . . , s;

CiAxs+j ≥ 0, j = 1, . . . , k (12.22)
Q[vc]

(
C(P[vc]C)−1P[vc] − I

)
(d + γ) � 0, ∀ corners vc}

Proof Analogous to the proof of Theorem 12.1 and the results in Section 12.4.4.
�

Note that since in Theorem 12.2 a face X(v′) must be given, the condition is
somewhat more restrictive than in Proposition 12.1, where it is sufficient that any
of the faces satisfies (12.19).

210 Robust Verification

12.7.2 Switched Systems

The methods described in this chapter can also be extended to switched systems,
as defined in Section 9.1.1. Looking back at the equations, we can see that what
is required is that we have a polyhedral partition of the state-space, and affine
systems within each region. We should also be able to approximate the system by
inner and outer approximating finite automata.

In the case of switched systems, there may be several possible systems in each
region, depending on the input v to the plant. This means that the approximating
automata will also need to have several states for each region, namely one state for
each possible affine subsystem in that region. Switchings between these states can
only occur if a border of a polyhedral region is reached, or if an external input is
received. If there is no external input, essentially nothing is changed in our analysis
methods above. However, if the system can receive an external input signal at any
time, which causes switchings between a set of different affine subsystems, the
situation is a bit different. The properties to be verified then need to be checked
for all the subsystems reachable by only giving external input signals.

In the following section, an example of a switched system will be considered.

On/Off

On/Off

On/Off

On/Off

On/Off

Heater Cooler

Figure 12.5: A schematic picture of the chemical reactor.

12.8 An Example: A Chemical Reactor

To demonstrate the properties of this kind of problems and solutions, we can look at
a simple example. In [42], a (fictional) chemical reactor is modelled, and a control

12.8 An Example: A Chemical Reactor 211

strategy is proposed, after which some properties are verified. Here we assume that
some of the parameter values are uncertain, and try to determine how large errors
can be tolerated before the verification is not valid any more.

12.8.1 System Model

A picture of the chemical reactor is shown in Figure 12.5. It consists of a tank
containing a mixture of two fluids. When a certain temperature is reached, an
exothermal reaction between the two fluids starts, giving the desired product. The
temperature can be controlled by a heater and a cooler. There is also a blender
helping to mix the fluid. The mixture is provided through an inflow valve. There
is also a draining valve. The valves can be either open or closed.

The system model derived in [42] has two continuous state variables: the fluid
level x1 and the temperature x2. Furthermore, there are six control signals, each
one taking a value in {0, 1}. They are described in Table 12.1. It could be worth
mentioning that ur is an artificial, uncontrollable signal that indicates whether or
not the reaction is in progress.

Table 12.1: Inputs to the chemical reactor.

Signal Interpretation
ub blender signal
ui inflow valve signal
ud draining valve signal
uh heater signal
uc cooler signal
ur reaction signal

The plant dynamics is described by

ẋ = A(u)x + b(u) (12.23)

where

A(u) =
(
−ahud 0

0 −(aT1(1− ub) + aT2ub)

)
(12.24)

b(u) =
(

bhui

bheatuh + bcooluc + breacur

)
(12.25)

To begin with, we will assume here that the coefficients in A(u) and b(u) are
uncertain, and that they are given by

ah

aT1

aT2

bh

bheat

bcool

breac


=



1.23 · 10−3

0.15 · 10−3

0.22 · 10−3

9.838
29.43 · 10−3

−44.15 · 10−3

44.15 · 10−3


−



δah

δT1

δT2

δbh

δheat

δcool

δreac


(12.26)

212 Robust Verification

0 2 4 6 8 10 12
0

50

100

150

Level, x1

T
em

p
er

a
tu

re
,
x

2

Figure 12.6: The switching hyperplanes and an example trajectory.

where the numerical values are the nominal parameter values used in [42].
The controller is designed such that the control signals are switched on or off

when the state reaches certain hyperplanes. The rules are listed below (the last
rule is given by the physical properties of the system):

1. ub = 0 when x1 < 3, ub = 1 otherwise.

2. ui is set to 0 when 25x1 + x2 ≥ 300, and is set to 1 when 25x1 + x2 ≤ 250.

3. ud = 0 when x2 < 50, ud = 1 otherwise.

4. uh = 1 when x2 < 50, uh = 0 otherwise.

5. uc is set to 0 when x2 ≤ 110, and is set to 1 when x2 ≥ 130.

6. ur = 0 when x2 < 50, ur = 1 otherwise.

Note that the system contains hysteresis in ui and uc. This is handled by con-
sidering each polyhedron where the hysteresis occurs as two polyhedra with two
different subsystems.

In Section 12.8.4, we will consider changing the thresholds for different control
actions.

The switching hyperplanes and an example trajectory are shown in Figure 12.6.
For further details concerning the system model, see [42].

12.8.2 What to Verify

There are certain requirements on the controller, which are verified in [42]. These
are:

12.8 An Example: A Chemical Reactor 213

1. The temperature should stay between 0 and 150.

2. The tank must not be empty, and it must not overflow. The maximum level
is 13.

3. There should be an operating region with moderate temperature and fluid
level which should be invariant. In [42], this region is chosen to be

{x
∣∣ 250 ≤ 25x1 + x2 ≤ 300, 110 ≤ x2 ≤ 130} (12.27)

4. The operating region should always be reached from the initial states in finite
time. For simplicity, and to avoid introducing additional conservatism, we
will not consider this requirement in this thesis.

The requirements can be translated to mathematical formulas:

1. (a) ẋ2 ≥ 0 when 0 ≤ x1 ≤ 13, x2 = 0.
(b) ẋ2 ≤ 0 when 0 ≤ x1 ≤ 13, x2 = 150.

2. (a) ẋ1 ≥ 0 when x1 = 0, 0 ≤ x2 ≤ 150.
(b) ẋ1 ≤ 0 when x1 = 13, 0 ≤ x2 ≤ 150.

3. (a) ẋ2 ≥ 0 when 250 ≤ 25x1 + x2 ≤ 300, x2 = 110, and uc = 0.
(b) ẋ2 ≤ 0 when 250 ≤ 25x1 + x2 ≤ 300, x2 = 130, and uc = 1.
(c)

(
25 1

)
ẋ ≥ 0 when 25x1 + x2 = 250, 110 ≤ x2 ≤ 130, and ui = 1.

(d)
(
25 1

)
ẋ ≤ 0 when 25x1 + x2 = 300, 110 ≤ x2 ≤ 130, and ui = 0.

We also have to know what affine subsystems ẋ will satisfy in the different cases.
We get those by considering the control rules.

12.8.3 Deriving Bounds for Parameter Uncertainties

Since we assume that the parameter values are uncertain, the question is how large
the errors can get before the requirements are violated. Following the procedure in
Section 12.4.2, we first need to find the direct representation to all polytope sides
involved in the mathematical formulations of the requirements, which is basically
the same as finding all the corners. Then, by using (12.12) we can get an exact
answer to our question: The errors have to lie in a polyhedron described by

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 150 0 0 0 −1 −1
0 0 150 0 0 −1 −1
13 0 0 0 0 0 0
−140 0 −110 25 0 0 1
−120 0 −130 25 0 0 1

0 0 −110 0 0 0 1
−140 0 −110 25 0 1 1
−120 0 −130 25 0 1 1

0 0 130 0 0 −1 −1
190 0 110 0 0 0 −1
170 0 130 0 0 0 −1
190 0 110 0 0 −1 −1
170 0 130 0 0 −1 −1





δah

δT1

δT2

δbh

δheat

δcool

δreac


4



9.8380
0.0294
0.0225
0.0330
0.0160

245.7977
245.8179
0.0200

245.7536
245.7738
0.0286
0.2137
0.1935
0.2579
0.2377



(12.28)

214 Robust Verification

−2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1
x 10

−3

δ
ah

δ T
2

(a) The entire allowed region.

−1 −0.5 0 0.5 1 1.5 2

x 10
−3

−5

0

5
x 10

−4

δ
ah

δ T
2

(b) Close-up near the origin.

Figure 12.7: The allowed region for δh and δT2 , assuming that the other errors are equal
to zero. Figure 12.7(b) shows a close-up of the region near the origin.

The expression above has been simplified, in that redundant inequalities have been
removed. We notice immediately that the polyhedron contains the origin, which
means that the nominal system satisfies the requirements. To get a more intuitive
feeling for the bounds, one can also consider a subset of the errors and set the
other errors to zero. For example, suppose that only ah and aT2 are uncertain.
In order not to violate the requirements, their deviations from the nominal values
have to be contained in the polyhedron shown in Figure 12.7. As we can see, the
basic effect of the requirements (12.28) in this case is that δT2 has to lie in the
interval [−0.18 · 10−3, 0.22 · 10−3], while δh approximately can vary between −1.76
and 1 · 10−3.

12.8.4 Adjusting Control Rules

Let us now turn to the question of finding bounds, inside which we can move the
thresholds of the controller rules without affecting the properties to verify. Here
we assume that A(u) is known exactly, but that the parameters of b(u) are still
unknown. The hyperplanes we are going to move are

x1 = 3 + γ1

25x1 + x2 = 250 + γ2

25x1 + x2 = 300 + γ3

x2 = 110 + γ4

x2 = 130 + γ5

12.8 An Example: A Chemical Reactor 215

These are the thresholds for the blender, the inflow valve, and the cooler signals.
The other hyperplanes are assumed to be fixed (by physical properties of the plant).
We would like to know how much we can change the values of γ1, . . . , γ5.

First we should make sure that we preserve the topology. Applying (12.15) to
all corners yields the condition (after removing several redundant inequalities)

−1 0 0 0 0
1 0 0 0 0
0 −1 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 1
25 −1 0 1 0
25 −1 0 0 1
25 −1 0 0 0
25 0 −1 1 0
25 0 −1 0 1
25 0 −1 0 0
0 1 −1 0 0
0 −1 0 1 0
0 1 0 −1 0
0 −1 0 0 1
0 1 0 0 −1
0 0 −1 1 0
0 0 1 −1 0
0 0 −1 0 1
0 0 1 0 −1
0 0 0 1 −1



γ ≺



3
10
100
75
150
25
60
40
80
20
65
45
25
115
95
75
50
140
185
120
205
190
135
170
155
20



(12.29)

The first ten inequalities make sure that the moving hyperplanes do not pass any
of the corners of the fixed hyperplanes (compare with Figure 12.6). The remaining
inequalities state the relations between the moving hyperplanes (for example, the
last inequality tells us that the cooler should be turned off at a lower temperature
than when it is turned on).

In addition to the topological requirement, the system also has to satisfy the
properties to verify. This is achieved if δbh, δheat, δcool, δreac, and γ satisfy the
following set of inequalities, obtained from (12.16):

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0
25 0 0 1 0 0.0012 0 −0.001 0
25 0 0 1 0 0.0012 0 0 −0.001
0 0 0 1 0 0 0 0.0002 0
25 0 1 1 0 0.0012 0 −0.001 0
25 0 1 1 0 0.0012 0 0 −0.001
0 0 −1 −1 0 0 0 0 −0.0002
0 0 0 −1 0 0 −0.0012 0.001 0
0 0 0 −1 0 0 −0.0012 0 0.001
0 0 −1 −1 0 0 −0.0012 0.001 0
0 0 −1 −1 0 0 −0.0012 0 0.001





δbh

δheat

δcool

δreac

γ1

γ2

γ3

γ4

γ5


4



9.8380
0.0294
0.0225

245.7977
245.8179
0.0200

245.7536
245.7738
0.0286
0.2138
0.1935
0.2579
0.2377


(12.30)

Together with (12.29), (12.30) now describes the region, in which the values of
δbh, δheat, δcool, δreac, and γ are allowed to vary. We can also note that setting
δah = δT1 = δT2 = 0 in (12.28) and γ = 0 in (12.30) both give the same restrictions
for the remaining uncertainties δbh, δheat, δcool, and δreac.

216 Robust Verification

From (12.30), one can go further and, e.g., find the values of γ that allow
as large uncertainties as possible in the b parameters. This gives in a sense the
maximally robust controller satisfying the verification, and is calculated similarly
to the computation of the Chebychev center of a polyhedron (the center of the
largest sphere inscribed in a polyhedron; see [19]). Here we would like to find the
largest disc, parallel to the γ coordinate axes and with its center somewhere along
the subspace δ = 0, inscribed in the polyhedron defined by (12.29) and (12.30).
Let us represent the disc as

D = {
(

0
γ

)
+

(
δ
0

) ∣∣ ‖δ‖ ≤ R} (12.31)

where the vector
(

0
γ

)
is the center of the disc and R is the radius. We would like to

maximize R subject to the constraint that D satisfies (12.29) and (12.30). Let us
stack (12.29) and (12.30) on top of each other, and denote the resulting matrices
according to

F

(
δ
γ

)
4 g (12.32)

For each row i in (12.32), the constraint that D should satisfy Fi

(
δ
γ

)
≤ gi can be

expressed

Fi

(
0
γ

)
+ sup
‖δ‖≤R

Fi

(
δ
0

)
≤ gi

But since

sup
‖δ‖≤R

Fi

(
δ
0

)
= sup
‖δ‖≤R

Fi

(
I
0

)
δ = R

∥∥∥∥Fi

(
I
0

)∥∥∥∥
(where I is an identity matrix with the same number of rows as δ), we get

Fi

(
0
γ

)
+ R

∥∥∥∥Fi

(
I
0

)∥∥∥∥ ≤ gi

This is a linear inequality in γ and R, and the desired value of γ can be computed
from the LP

max
γ,R

R

subj. to Fi

(
0
γ

)
+ R

∥∥∥∥Fi

(
I
0

)∥∥∥∥ ≤ gi, i = 1, . . . ,MF

(12.33)

where MF is the number of rows of F .

12.9 Conclusions

We have suggested an approach to investigate how sensitive approximating au-
tomata for piecewise affine systems might be to changes in the underlying subsys-
tems, to noise, and to translations of the switching surfaces. Section 12.4 provided

12.9 Conclusions 217

the sets of system matrices that satisfy certain requirements on the behavior of
the system. As pointed out, these can either be seen as giving a measure of how
robust the approximating automata are to uncertainties in the system, or as giving
limits for how much the system can be changed, e.g., in a control design process,
without altering the overall behavior described by the approximating automata.
The methods can also be extended to switched systems, which was mentioned in
Section 12.7.2.

It would be natural to combine these requirements with other objectives. One
example of this was given in Section 12.8.4. To give another example, when using
the state feedback parameterization described in Section 12.5, one would probably
want to find L(v) that are optimal in a certain respect. Since the solution sets of
the two first problems in Section 12.4.2 and Section 12.4.4 are convex, we can form
all sorts of convex optimization problems, which can be solved very efficiently once
we know the direct representations of the polyhedra (see for example [19]).

218 Robust Verification

Part IV

Appendices

219

A

Mathematical Preliminaries

In this appendix, some general concepts and results needed in previous chapters
are introduced. These include some material about convex sets and polyhedra,
system identification, mixed-integer programming, and some combinatorial aspects
in classification. References for further reading are given in each section.

A.1 Explicit Solution of a System of Linear Equa-
tions

In Part I, we need to be able to solve a certain form of systems of linear equations.
This is accomplished using the following lemma.

Lemma A.1
Let ρ > 0, x, z ∈ Rn where n ≥ 2, and let x have at least two elements that are
not equal. Then −ρzzT − I 1n x

1T
n 0 0

xT 0 0

 w
µ1

µ2

 =

0
1
0

 (A.1)

221

222 Mathematical Preliminaries

(with w ∈ Rn and µ1, µ2 ∈ R) is nonsingular, and has the solution

wi =
1
ζ

γ
n∑

k=1

x2
k −

(
n∑

k=1

xkzk

)2
 +

(
n∑

k=1

zk

n∑
k=1

xkzk − γ
n∑

k=1

xk

)
xi (A.2)

+

(
n∑

k=1

xk

n∑
k=1

xkzk −
n∑

k=1

x2
k

n∑
k=1

zk

)
zi

)

µ =
(

µ1

µ2

)
=

1
ζ


γ

n∑
k=1

x2
k −

(
n∑

k=1

xkzk

)2

−γ

n∑
k=1

xk +
n∑

k=1

zk

n∑
k=1

xkzk

 (A.3)

where

γ =
1
ρ

+ zT z

ζ =
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(xi(zk − zj) + xj(zi − zk) + xk(zj − zi))
2 +

1
2ρ

n∑
i=1

n∑
k=1

(xi − xk)2

Remark A.1 Note that both γ and ζ are strictly positive.

Proof Let

G = −ρzzT − I, A =
(

1T
n

xT

)
First we need to show that (A.1) is nonsingular. It is easy to show (see, e.g., [161,
Theorem 2.2]) that

det
(

G AT

A 0

)
= det(G) det(−AG−1AT)

Since A has full rank and G is negative definite, it follows that AG−1AT is negative
definite, and hence the system (A.1) is nonsingular.

Now,

(
w
µ

)
=

(
G AT

A 0

)−1
 0(

1
0

) =
(

G−1AT (AG−1AT)−1

−(AG−1AT)−1

)(
1
0

)
(A.4)

according to well-known matrix inversion formulas (see, e.g., [161, Theorem 2.4]).
Furthermore,

G−1 = −I +
1
γ

zzT

A.1 Explicit Solution of a System of Linear Equations 223

G−1AT = −
(
1n x

)
+

1
γ

z
(∑n

k=1 zk

∑n
k=1 xkzk

)
AG−1AT =

1
γ

·
(

−γn + (
∑n

k=1 zk)2 −γ
∑n

k=1 xk +
∑n

k=1 zk

∑n
k=1 xkzk

−γ
∑n

k=1 xk +
∑n

k=1 zk

∑n
k=1 xkzk −γ

∑n
k=1 x2

k + (
∑n

k=1 xkzk)2

)

(AG−1AT)−1 =
1
ζ

·
(
−γ

∑n
k=1 x2

k + (
∑n

k=1 xkzk)2
γ

∑n
k=1 xk −

∑n
k=1 zk

∑n
k=1 xkzk

γ
∑n

k=1 xk −
∑n

k=1 zk

∑n
k=1 xkzk −γn + (

∑n
k=1 zk)2

)

The first equality can easily be checked. The second and third follow directly from
the first and the definition of A. To see that the last equality holds, we need to show
that det(AG−1AT) = ζ/γ. Then the equality holds by the well-known inversion
formula for 2-by-2 matrices. But

ζ =
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(xi(zk − zj) + xj(zi − zk) + xk(zj − zi))
2 +

1
2ρ

n∑
i=1

n∑
k=1

(xi − xk)2

=
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(xizk − xizj + xjzi − xjzk + xkzj − xkzi)
2

+
1
2ρ

n∑
i=1

n∑
k=1

(x2
i − 2xixk + x2

k)

=
1
6

n∑
i=1

n∑
j=1

n∑
k=1

(6x2
kz2

i − 6xixkz2
j − 6xixkzizk − 6x2

kzizj + 12xixkzjzk)

+
1
2ρ

n∑
i=1

n∑
k=1

(2x2
k − 2xixk)

= n

n∑
k=1

x2
k

n∑
k=1

z2
k −

(
n∑

k=1

xk

)2 n∑
k=1

z2
k − n

(
n∑

k=1

xkzk

)2

−
n∑

k=1

x2
k

(
n∑

k=1

zk

)2

+ 2
n∑

k=1

xk

n∑
k=1

zk

n∑
k=1

xkzk +
1
ρ

n

n∑
k=1

x2
k −

(
n∑

k=1

xk

)2


=

(
1
ρ

+
n∑

k=1

z2
k

)n

n∑
k=1

x2
k −

(
n∑

k=1

xk

)2
− n

(
n∑

k=1

xkzk

)2

−
n∑

k=1

x2
k

(
n∑

k=1

zk

)2

+ 2
n∑

k=1

xk

n∑
k=1

zk

n∑
k=1

xkzk

224 Mathematical Preliminaries

= γ
1
γ2

γ2n

n∑
k=1

x2
k − γn

(
n∑

k=1

xkzk

)2

− γ

(
n∑

k=1

zk

)2 n∑
k=1

x2
k

+

(
n∑

k=1

zk

)2 (
n∑

k=1

xkzk

)2

− γ2

(
n∑

k=1

xk

)2

+ 2γ
n∑

k=1

xk

n∑
k=1

zk

n∑
k=1

xkzk

−
(

n∑
k=1

zk

)2 (
n∑

k=1

xkzk

)2


= γ det(AG−1AT)

where, in the third and fourth steps, the indices of several terms are switched. This
shows the expression for (AG−1AT)−1.

From (A.4), we can now see that µ is given by the first column of (AG−1AT)−1,
multiplied by −1, which gives the desired expression (A.3). For w, (A.4) gives that
multiplying the expression for G−1AT by the first column of (AG−1AT)−1 yields
the desired expression, which is just a vector version of (A.2). �

A.2 Lipschitz Conditions

When studying multivariate functions in Chapter 4, some assumptions are made
about the pth derivative satisfying a Lipschitz condition defined in (4.1). Under
this assumption, one can show a useful inequality, given by Lemma A.3. However,
to be able to carry out the proof, the following lemma is needed. We use the
notation f

(p)
i1...ip

for

f
(p)
i1...ip

=
∂pf

∂xi1 . . . ∂xip

(A.5)

Lemma A.2
Let f : Rn → R be p times differentiable. Then

f(x + t0h)− f(x)− t0

n∑
i1=1

f ′i1(x)hi1 − . . .− tp0
p!

n∑
i1=1

. . .

n∑
ip=1

f
(p)
i1...ip

(x)hi1 . . . hip

=
∫ t0

0

∫ t1

0

. . .

∫ tp−1

0
n∑

i1=1

. . .
n∑

ip=1

(
f

(p)
i1...ip

(x + tph)− f
(p)
i1...ip

(x)
)

hi1 . . . hipdtp . . . dt2dt1

Proof The proof is carried out using induction. For p = 1, the lemma is trivial.
Now suppose that the lemma is shown for p = q − 1, and consider the case p = q.

A.2 Lipschitz Conditions 225

Then

f(x + t0h)− f(x)− t0

n∑
i1=1

f ′i1(x)hi1 − . . .− tq0
q!

n∑
i1=1

. . .
n∑

iq=1

f
(q)
i1...iq

(x)hi1 . . . hiq

=
∫ t0

0

n∑
i1=1

f ′i1(x + t1h)hi1 −
n∑

i1=1

f ′i1(x)hi1 − . . .

− tq−1
1

(q − 1)!

n∑
i1=1

. . .
n∑

iq=1

f
(q)
i1...iq

(x)hi1 . . . hiqdt1

=
∫ t0

0

n∑
i1=1

hi1

(
f ′i1(x + t1h)− f ′i1(x)− . . .

− tq−1
1

(q − 1)!

n∑
i2=1

. . .

n∑
iq=1

f
(q)
i1...iq

(x)hi2 . . . hiq

)
dt1

=
∫ t0

0

n∑
i1=1

hi1

(∫ t1

0

. . .

∫ tq−1

0

n∑
i2=1

. . .
n∑

iq=1

(
f

(q)
i1...iq

(x + tqh)− f
(q)
i1...iq

(x)
)

hi2 . . . hiqdtq . . . dt2

)
dt1

=
∫ t0

0

∫ t1

0

. . .

∫ tq−1

0
n∑

i1=1

. . .
n∑

iq=1

(
f

(q)
i1...iq

(x + tqh)− f
(q)
i1...iq

(x)
)

hi1 . . . hiqdtq . . . dt2dt1

where the induction hypothesis was used in the third step, with f replaced by f ′i1 .
The lemma is shown. �

The following lemma is a generalization of [40, Lemmas 4.1.12, 4.1.14].

Lemma A.3
Let f : Rn → R be p times differentiable and satisfy the Lipschitz condition

max
‖ξ‖=1

∣∣∣∣∣∣
n∑

i1=1

. . .

n∑
ip=1

(
f

(p)
i1...ip

(x + h)− f
(p)
i1...ip

(x)
)

ξi1 . . . ξip

∣∣∣∣∣∣ ≤ L‖h‖ (A.6)

for all h ∈ Rn. Then∣∣∣∣∣∣f(x + h)− f(x)−
n∑

i1=1

f ′i1(x)hi1 − . . .− 1
p!

n∑
i1=1

. . .
n∑

ip=1

f
(p)
i1...ip

(x)hi1 . . . hip

∣∣∣∣∣∣
≤ L

(p + 1)!
‖h‖p+1 (A.7)

226 Mathematical Preliminaries

Remark A.2 Note that for p = 1, the Lipschitz condition (A.6) reduces to

‖∇f(x + h)−∇f(x)‖ ≤ L‖h‖

and (A.7) becomes ∣∣f(x + h)− f(x)−∇T f(x)h
∣∣ ≤ L

2
‖h‖2

For p = 2, (A.6) is equivalent to

‖∇2f(x + h)−∇2f(x)‖ ≤ L‖h‖

where ∇2f is the Hessian of f , and where we use the usual induced 2-norm for
matrices. Also, (A.7) reduces to∣∣∣∣f(x + h)− f(x)−∇T f(x)h− 1

2
hT∇2f(x)h

∣∣∣∣ ≤ L

6
‖h‖3

Proof For h = 0, equality holds trivially. Now consider h 6= 0, and let h̄ = h/‖h‖.
By using Lemma A.2 we get∣∣∣∣∣∣f(x + h)− f(x)−

n∑
i1=1

f ′i1(x)hi1 − . . .− 1
p!

n∑
i1=1

. . .

n∑
ip=1

f
(p)
i1...ip

(x)hi1 . . . hip

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫ t1

0

. . .

∫ tp−1

0

n∑
i1=1

. . .

n∑
ip=1

(
f

(p)
i1...ip

(x + tph)− f
(p)
i1...ip

(x)
)

hi1 . . . hipdtp . . . dt2dt1

∣∣∣∣∣
≤

∫ 1

0

∫ t1

0

. . .

∫ tp−1

0∣∣∣∣∣∣
n∑

i1=1

. . .

n∑
ip=1

(
f

(p)
i1...ip

(x + tph)− f
(p)
i1...ip

(x)
)

hi1 . . . hip

∣∣∣∣∣∣ dtp . . . dt2dt1

= ‖h‖p
∫ 1

0

∫ t1

0

. . .

∫ tp−1

0∣∣∣∣∣∣
n∑

i1=1

. . .

n∑
ip=1

(
f

(p)
i1...ip

(x + tph)− f
(p)
i1...ip

(x)
)

h̄i1 . . . h̄ip

∣∣∣∣∣∣ dtp . . . dt2dt1

≤ ‖h‖p
∫ 1

0

∫ t1

0

. . .

∫ tp−1

0

max
‖ξ‖=1

∣∣∣∣∣∣
n∑

i1=1

. . .

n∑
ip=1

(
f

(p)
i1...ip

(x + tph)− f
(p)
i1...ip

(x)
)

ξi1 . . . ξip

∣∣∣∣∣∣ dtp . . . dt2dt1

A.3 Convex Sets and Polyhedra 227

�

$�

�

$�

�
�
�
�

hhhhhh
HH

HH
HH

A
A
A
A�

�
�
�C
C
C
C
C
C
CCx2

x1 x1
x2

Figure A.1: A convex set (left) and a nonconvex set (right).

≤ ‖h‖p
∫ 1

0

∫ t1

0

. . .

∫ tp−1

0

L‖tph‖dtp . . . dt2dt1

= L‖h‖p+1

∫ 1

0

∫ t1

0

. . .

∫ tp−1

0

tpdtp . . . dt2dt1

=
L

(p + 1)!
‖h‖p+1

and the lemma is proven. �

A.3 Convex Sets and Polyhedra

For the piecewise affine system models used in this thesis, some concepts concerning
convex sets and polyhedra will be needed. These are presented in this section.

A line passing through two different points x1, x2 ∈ Rn, x1 6= x2, can mathe-
matically be described as the set

{λx1 + (1− λ)x2

∣∣ λ ∈ R}

The (closed) line segment between x1 and x2 is the part of the line that lies between
the points (including x1 and x2). This corresponds to

{λx1 + (1− λ)x2

∣∣ 0 ≤ λ ≤ 1}

If x1 = x2, the line segment consists of the single point x1.
A set P ⊆ Rn is convex if the line segment between any two points in P lies

entirely in P (see Figure A.1). This condition can be written as

∀x1, x2 ∈ P, λ ∈ [0, 1] : λx1 + (1− λ)x2 ∈ P

For any set S, the smallest convex set P that contains S (i.e., S ⊆ P) is called
the convex hull of S.

We can extend the concept of line segment between two points to consider a
weighted mean of a number of points x1, . . . , xr:

xco =
r∑

i=1

λixi, λi ≥ 0,

r∑
i=1

λi = 1 (A.8)

228 Mathematical Preliminaries

x1

x2

x3

1
3x1

1
3x2

1
3x3

xcoHHHHHHHHHHA
A
A
A
A
A
A
A
AA�

�
�

����
���1

-XXXXXXXz��
��
��

��
��
��

��1

-XXXXXXXXXXXXXXXXXXXz

Figure A.2: An example of a convex combination. Any point in the convex hull of
{x1, x2, x3} can be written as a weighted mean (in the form (A.8)) of x1, x2 and x3.

This kind of weighted mean is called a convex combination of x1, . . . , xr (see Fig-
ure A.2). It turns out that the convex hull of a set S is the set of all convex
combinations of points in S (or alternatively, this could be used as the definition
of convex hull).

An important example of convex sets are the polyhedra. Polyhedra are sets
defined by linear inequalities, and can be written in the form

{x ∈ Rn
∣∣ Cx 4 d} (A.9)

where C ∈ RM×n, d ∈ RM , and 4 denotes componentwise inequality. A bounded
polyhedron is called a polytope.

Example A.1 (Polytope) The set P ⊆ R2 of points satisfying

x1 + x2 ≤ 1
x1 − x2 ≤ 0
−x1 ≤ 1

is a polyhedron (see Figure A.3). Furthermore, since P is bounded, it is a polytope.

Polytopes can also be represented in an alternative way, namely as the set of
convex combinations of the corners. This type of representation is called direct
representation.

Example A.2 (Direct representation) The polytope in Example A.1 can
also be represented as{

λ1

(
1/2
1/2

)
+ λ2

(
−1
2

)
+ λ3

(
−1
−1

) ∣∣∣ λi ≥ 0,

3∑
i=1

λi = 1

}

A.3 Convex Sets and Polyhedra 229

−2 −1 0 1 2
−2

−1

0

1

2

3

Figure A.3: The polytope in Example A.1.

The direct representation for unbounded polyhedra is a bit trickier. Apart from the
corners, we must also include in the representation some vectors xr+1, . . . , xr+h,
which are parallel to the unbounded edges of the polyhedron:

{
r+h∑
i=1

λixi

∣∣ λi ≥ 0,

r∑
i=1

λi = 1} (A.10)

Note here that λr+1, . . . , λr+h are not included in the set of λi that should sum up
to one; they can be arbitrarily large.

Example A.3 (Unbounded polyhedron) If we would remove the constraint
−x1 ≤ 1 from the polytope in Example A.1, we would get an unbounded polyhedron
defined by

x1 + x2 ≤ 1
x1 − x2 ≤ 0

This polyhedron can be represented as{
1
(

1/2
1/2

)
+ λ2

(
−1
−1

)
+ λ3

(
−1
1

) ∣∣∣ λi ≥ 0
}

Some special polyhedra (e.g., a hyperplane) do not have any corners. In that
case, a “dummy” corner must be introduced somewhere in the polyhedron to allow
for a direct representation.

230 Mathematical Preliminaries

Unfortunately, going from direct representation (A.10) to the form (A.9) is in
general computationally quite complex.

In Chapter 12, we are going to use open polyhedra. By this will be meant a set,
whose direct representation is

{
r+h∑
i=1

λixi

∣∣ λi > 0,

r∑
i=1

λi = 1} (A.11)

i.e., where all λi are strictly positive. Note that this does not necessarily mean
that the set is open. However, relative to the smallest affine subspace containing
the open polyhedron, it is an open set.

Example A.4 (Open polyhedron) The (open) line segment{
λ1

(
1
2

)
+ λ2

(
2
3

) ∣∣∣ λi > 0, λ1 + λ2 = 1
}

is an open polyhedron (in fact an open polytope), but not an open subset of R2.
However, seen as a subset of the line through the points (1

2) and (2
3), it is open.

An excellent introduction to convex sets can be found in [19].

A.4 MILP/MIQP

In Chapter 11, some different piecewise affine system identification problems are
formulated as Mixed-Integer Linear Programs (MILP) and Mixed-Integer Quadratic
Programs (MIQP). These are two types of optimization problems that involve both
discrete and continuous variables. In general, an MILP problem has the following
structure:

min
x,δ

pT

(
x
δ

)
subj. to C

(
x
δ

)
≤ d (A.12)

x ∈ Rn, δ ∈ {0, 1}m

The MIQP problem is almost identical, except that the objective function is quad-
ratic:

min
x,δ

(
xT δT

)
Q

(
x
δ

)
+ pT

(
x
δ

)
subj. to C

(
x
δ

)
≤ d (A.13)

x ∈ Rn, δ ∈ {0, 1}m

A.4 MILP/MIQP 231

We assume that Q is positive definite or semidefinite. If it is only positive
semidefinite, one could use regularization techniques as in Section 8.3 to make it
positive definite.

As we can see, the only difference compared to an ordinary LP or QP (Linear
or Quadratic Program) is that the δ variables are discrete. However, although LP
and QP problems can be solved efficiently using standard algorithms, it has been
shown that solving a general MILP/MIQP problem is NP-hard [49, 151]. This
means that there is no known algorithm solving the MILP/MIQP problems with
polynomial worst-case complexity, and that if such an algorithm is found, several
other hard problems would also be solvable in polynomial time. It is quite easy to
find an algorithm, for which we in the worst case have to test all combinations of
δ values, so the worst-case complexity is at most 2m times the complexity of an
LP/QP problem in n variables. However, there are algorithms that work better for
many practical cases. Some solvers for the MILP/MIQP problems can be found
in, e.g., [11, 36, 70, 139].

A.4.1 A Branch-and-Bound Algorithm

Let us take a closer look at (A.12) and (A.13). If we would replace the requirement
δ ∈ {0, 1}m by 0 ≤ δ ≤ 1, the problems would become ordinary LP or QP problems.
Similarly, if we fix some of the elements of δ to either 0 or 1 and relax the other
elements, we would also get LP/QP problems. These combined relaxations and
restrictions can be used to form a branch-and-bound algorithm, which will be
illustrated by an example:

Example A.5 (Branch-and-bound, depth first) We would like to solve the
problem

min
x,δ

J = x− 2δ1 − δ2

subj. to x + 5δ1 + 6δ2 ≤ 9 (A.14)
0 ≤ x ≤ 1
δ1, δ2 ∈ {0, 1}

Figure A.4 shows the feasible region for this problem. Let us start by solving the
relaxed problem we get by replacing δ1, δ2 ∈ {0, 1} by 0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1. This
is an LP problem with the solution

J∗ = −8/3
x = 0
δ1 = 1
δ2 = 2/3

In Figure A.4, the feasible region for the relaxed problem is the three-dimensional
region bounded by the cube and the plane x + 5δ1 + 6δ2 = 9. Let us now fix one

232 Mathematical Preliminaries

0
0.5

1 0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δ
1

Feasible region for the MILP example

x

δ 2

Figure A.4: The feasible region for Example A.5. The solid lines define the feasible
region, the dotted lines show the bounds 0 ≤ x ≤ 1, 0 ≤ δ ≤ 1, and the dashed lines show
the hyperplane defined by x+ 5δ1 + 6δ2 = 9.

of the δ variables and solve the new, more restricted LP problem we get. From
looking at the optimal solution to the relaxed problem, it seems natural to start by
fixing δ1 to 1. See Figure A.5, where the relaxed problem corresponds to the root
node, and the new problem corresponds to its right child. Note that, in general,
since we restrict the domain over which we are minimizing J , we can never get a
lower value of J than the optimum we get for the relaxed case. In this special case,
since the optimal value for δ1 was 1 already in the relaxed case, we already know
that J∗ = −8/3 and δ2 = 2/3 is the optimal solution when δ1 is set to 1. Hence
we can continue directly by fixing δ2, e.g., to 1. The problem has now become

min
x,δ

J = x− 2− 1

subj. to x + 5 + 6 ≤ 9
0 ≤ x ≤ 1

This problem is obviously infeasible, so instead we let δ2 = 0 and get

min
x,δ

J = x− 2

subj. to x + 5 ≤ 9
0 ≤ x ≤ 1

which has the optimal solution
J∗ = −2
x = 0
(δ1 = 1, δ2 = 0)

A.4 MILP/MIQP 233

@
@

@
@�

�
�
�

@
@

@
@

@
@

@@�
�
�
�
�
�
��

1: δ1, δ2 relaxed
J∗ = −8/3

2: δ1 = 1, δ2 relaxed
J∗ = −8/3

3: δ1 = 1, δ2 = 1

Infeasible

4: δ1 = 1, δ2 = 0

J∗ = −2

5: δ1 = 0, δ2 relaxed

J∗ = −1

Figure A.5: The search tree for Example A.5.

This optimum is our first feasible candidate so far for an optimum to the original
problem. However, we have not yet excluded all possible combinations of values
for δ. Therefore, we now let δ1 = 0, while δ2 is relaxed. The problem to solve is

min
x,δ

J = x− δ2

subj. to x + 6δ2 ≤ 9
0 ≤ x ≤ 1
0 ≤ δ2 ≤ 1

with the optimal solution 
J∗ = −1
x = 0
δ2 = 1
(δ1 = 0)

Apparently, this optimal point is worse than the feasible candidate point we got
previously. Since we cannot get better values of J by restricting the domain further
(i.e., fixing δ2), we can conclude that our candidate point really is the optimum for
the original problem, without having to test the remaining possibilities.

The procedure used in the previous example is summarized in the following
algorithm, which is a version of a standard algorithm that can be found, e.g., in
[160].

234 Mathematical Preliminaries

Algorithm A.1 (Branch-and-bound, depth first)

Given: A problem like (A.12) or (A.13).
Initialization: Set LB = −∞ and UB = ∞. Relax the problem by allowing
all elements in δ to take any value in the interval [0, 1]. Start building on a tree
structure by creating a root node. (Each level in the tree structure will correspond
to one more element in δ being fixed; cf. Figure A.5.)

1. Solve the current LP/QP problem. If it is infeasible, go to 4. If it is feasible,
denote the optimal point by x∗, δ∗, and the optimal value by J∗. If δ∗ ∈
{0, 1}m, go to 3. Otherwise, go to 2.

2. If J∗ > UB, the optimal solution will not be in this branch of the tree, so go
to 4. Else, fix one of the relaxed elements in δ to 0 or 1, according to some
strategy. Add one child to the current node in the tree and move to the child
node. If all of the currently fixed elements of δ have already previously been
fixed to their other possible values, and if J∗ > LB, set LB = J∗. Go to 1.

3. If J∗ < UB, set UB = J∗, and let xmin = x∗ and δmin = δ∗. Go to 4.

4. Go up one level in the tree, i.e., relax the δ element that was last fixed. If the
other possible value of that element has not yet been tested, fix the element
to that value. (In other words, if the element was fixed to 0 and has not yet
been fixed to 1, set it to 1.) Otherwise, go up one level at a time in the tree
until an untested value of a δ element is found. Then go to 1. If the root node
is reached and no untested value is found, we are done. Then set LB = UB.

When these iterations are done, the optimal value of the objective function equals
LB = UB. If LB = UB = ∞, the problem is infeasible. Otherwise, the optimal
point is given by xmin and δmin.

There are some remarks to be made. Firstly, the algorithm does not specify how
to choose the element to be fixed in step 2. There are several possible strategies
to use for this. In Example A.5, the element of δ that was closest to an integer
value was chosen. The thought behind this is to quickly reach a good feasible point
for the original problem. With its help, entire subtrees can be ruled out as being
obviously bad (or at least worse than the best value found so far), which may save
a large amount of computations, just as in the example.

During the iterations of Algorithm A.1, the variables UB and LB give an
upper and a lower bound on the optimal value. This could be useful, e.g., if the
computation is stopped before the search for the optimal value is completed. Then
the best suboptimal point so far might be usable, together with the lower bound,
that shows how far from the optimum we can be at most.

There are variants of this algorithm. For example, one can also traverse the
search tree in a best-first manner, where the nodes with the best optimal values J∗

are traversed first, or in a breadth-first manner, or in a combination of the three.
There are also several other algorithms besides the branch-and-bound algorithms
for solving the MILP/MIQP problems. A good reference is [160].

A.5 Separating Points with Hyperplanes 235

A.5 Separating Points with Hyperplanes

When investigating the computational complexity of the algorithms in Chapter
11, a question that will arise is: In how many ways can we group N points in
Rn by separating them with M hyperplanes? To be able to answer this question
unambiguously, we need to restrict ourselves to only consider a certain kind of
point sets. The terminology here partly follows [35].

Definition A.1
A set of points X ∈ Rn is in general position, if for every subset of points
x1, . . . , xk ∈ X, where k ≤ n + 1, the vectors(

1
x1

)
, . . . ,

(
1
xk

)
are linearly independent.

This definition is equivalent to specifying that no subset of k points should
be contained in an affine subspace of a lower dimension than min{k − 1, n}. For
example, if we consider points in R2, no points should coincide, and three points
should never be on a line. Note that, nonstrictly speaking, for an arbitrarily chosen
set of points in Rn, this condition is satisfied with probability one.

Let us begin by determining in how many ways a set of points can be split by
one hyperplane. This result will follow as a corollary to the following theorem,
which is also found in, e.g., [35].

Theorem A.1
Consider N hyperplanes in Rn going through the origin, such that the normal
vectors of any subset consisting of n or fewer hyperplanes are linearly independent.
Let f(n,N) be the number of regions into which Rn is divided by the hyperplanes.
Then f(n,N) can be written as a sum of binomial terms

f(n,N) = 2
n−1∑
k=0

(
N − 1

k

)
(A.15)

for n ≥ 1, N ≥ 1 (we let
(

0
0

)
= 1 and

(
N
k

)
= 0 for k > N).

Proof We prove the theorem by induction. Clearly, f(n, 1) = 2 = 2
∑n−1

k=0

(
0
k

)
for

n ≥ 1, since one hyperplane divides the space into two half-spaces. We also have
f(1, N) = 2 = 2

(
N−1

0

)
for N ≥ 1 (a one-dimensional line can only be divided into

two half-lines, no matter how many points you put in the origin).

Now suppose that the theorem has been shown for all {(n,N)
∣∣ n ≤ n0, N ≤

N0 − 1}, and suppose that we have placed N0 − 1 hyperplanes in Rn0 , and are
about to place one more (see Figure A.6(a)). The N0th hyperplane is an (n0 − 1)-
dimensional subspace of Rn0 , and will be cut by all the other N0 − 1 hyperplanes.

236 Mathematical Preliminaries

(a) Two planes crossing the origin, and a
third to be placed.

(b) The new hyperplane will be
partitioned into several pieces
by the first planes. Each of
these pieces will divide one
of the old regions in Fig-
ure A.6(a) into two new re-
gions.

Figure A.6: Illustration of Theorem A.1.

It will therefore be partitioned into f(n0 − 1, N0 − 1) pieces (Figure A.6(b)). But
each of these pieces will be a border that divides one of the original regions into
two new regions. Hence, the original f(n0, N0 − 1) regions will increase in number
by f(n0 − 1, N0 − 1) when the N0th hyperplane is placed in Rn0 . This means that
the new number of regions will be

f(n0, N0) = f(n0, N0 − 1) + f(n0 − 1, N0 − 1)

which means, according to the induction assumption,

f(n0, N0) = 2
n0−1∑
k=0

(
N0 − 2

k

)
+ 2

n0−2∑
k=0

(
N0 − 2

k

)

= 2 + 2
n0−2∑
k=0

[(
N0 − 2
k + 1

)
+

(
N0 − 2

k

)]

= 2 + 2
n0−2∑
k=0

(
N0 − 1
k + 1

)

= 2
n0−1∑
k=0

(
N0 − 1

k

)
and the theorem is proven. �

A.5 Separating Points with Hyperplanes 237

Figure A.7: Illustration of the one-to-one correspondence in Corollary A.1. The upper
hyperplane is the affine subspace containing the given point set. Their associated vectors
are normal vectors of hyperplanes dividing the space into different regions. The hyperplane
drawn with thick lines partitions the point set into two subsets. We will get different
partitions depending on in which region the normal vector of the thick-line hyperplane is.

Corollary A.1
A set of N points in general position in Rn can be partitioned in f(n + 1, N)/2
ways by a hyperplane.

Proof By considering the vectors(
1
x1

)
, . . . ,

(
1

xN

)
we can regard the points as being contained in an n-dimensional affine subspace of
Rn+1 (see Figure A.7). The vectors are normal vectors to N hyperplanes, which
by Theorem A.1 divide Rn+1 into f(n + 1, N) regions. Now consider an arbitrary
hyperplane H going through the origin of Rn+1. Its normal vector can lie in one
of two opposite regions (depending on how it is directed) among the f(n + 1, N)
regions. There is a one-to-one correspondence between the set of opposite regions
in which the normal vector of this hyperplane lies and how it∗ partitions the given
points. To see this, note that each time the normal vector of H passes a boundary
and enters a new region, the hyperplane also passes a point and gives rise to a new
partition. This one-to-one correspondence proves the theorem. �

Now when we know in how many ways one hyperplane can divide a set of points,
it is easy to extend the result to several hyperplanes. We make the restriction that
no pair of hyperplanes should divide the point set in the same way; in that case,
∗Or rather its intersection with the affine subspace in which the given points are contained.

238 Mathematical Preliminaries

they could be replaced by one hyperplane. Since the trivial partitions obtained
by letting all points lie on the same side of a hyperplane will be uninteresting
in Chapter 11, we also exclude these cases. The remaining partitions are called
nontrivial.

Corollary A.2
A set of N points in general position in Rn can be partitioned in

(
f(n+1,N)/2−1

M

)
nontrivial ways by M hyperplanes.

Proof From f(n + 1, N)/2 − 1 nontrivial options of placing one hyperplane, we
should choose M different ways to place the hyperplanes. �

A.6 Inverting a Univariate Piecewise Affine Func-
tion

In Chapter 11, we will also need to invert a univariate, continuous, piecewise affine
function. The following lemma can be used for this purpose.

Lemma A.4
Consider the function

f(x) = x− α0 +
M∑
i=1

σi max{βix− αi, 0}

βi > 0,
α1

β1
<

α2

β2
< · · · < αM

βM

(A.16)

where σi ∈ {−1, 1}, and assume that f is strictly increasing, i.e.†,

0 <

k∑
m=0

σmβm <∞ ∀k = 1, . . . ,M (A.17)

Then the inverse of f(x) is

f−1(y) = y + α0 −
M∑

k=1

σk max{β̃ky − α̃k, 0}

β̃k =
βk∑k−1

m=0 σmβm

∑k
m=0 σmβm

α̃k =
∑k−1

m=0 σm(βmαk − βkαm)∑k−1
m=0 σmβm

∑k
m=0 σmβm

(A.18)

†For the sake of a more compact notation, let σ0 = β0 = 1.

A.6 Inverting a Univariate Piecewise Affine Function 239

Proof We prove the statement by induction over M . For M = 0, we have
f(x) = x − α0, so f−1(y) = y + α0. Now suppose that the statement holds for a
certain M−1 ≥ 0, and consider a function f with M breakpoints. For x < αM/βM ,
f has only M − 1 breakpoints, so in this region f−1 can be written as in (A.18),
according to the induction assumption. For x ≥ αM/βM , we get

f(x) =

(
M∑

m=0

σmβm

)
x−

M∑
m=0

σmαm (A.19)

so

f−1(y) =
y +

∑M
m=0 σmαm∑M

m=0 σmβm

(A.20)

Since x = f−1(y), we can rewrite the condition x ≥ αM/βM as

y +
∑M

m=0 σmαm∑M
m=0 σmβm

≥ αM

βM

⇔ 1∑M
m=0 σmβm

(
y − 1

βM

M−1∑
m=0

σm(βmαM − βMαm)

)
≥ 0

⇔ y ≥ α̃M

β̃M

Now, for y ≥ α̃M/β̃M , by using simple but tedious calculations we can rewrite
(A.20) as

f−1(y) =
y +

∑M−1
m=0 σmαm∑M−1

m=0 σmβm

+
−σMβM∑M−1

m=0 σmβm

∑M
m=0 σmβm

(
y − 1

βM

M−1∑
m=0

σm(βmαM − βMαm)

)
= f−1

M−1(y)− σM (β̃My − α̃M)

where f−1
M−1(y) is the inverse of the given function without the Mth max func-

tion. Since this function equals f(x) for x < αM/βM , we get f−1
M−1(y) = f−1(y)

for y < α̃M/β̃M . Furthermore, by using a max function and by the induction
assumption we now can write

f−1(y) = f−1
M−1(y)− σM max{β̃My − α̃M , 0}

= y + α0 −
M−1∑
k=1

σk max{β̃ky − α̃k, 0} − σM max{β̃My − α̃M , 0}

= y + α0 −
M∑

k=1

σk max{β̃ky − α̃k, 0}

which is just what we wanted to prove. �

240 Mathematical Preliminaries

Bibliography

[1] H. Akaike. Information theory and an extension of the maximum likelihood
principle. In Second International Symposium on Information Theory, pages
267–281, 1973.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-
sis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22:181–201,
1996.

[4] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete ab-
stractions of hybrid systems. Proceedings of the IEEE, 88(7):971–984, July
2000.

[5] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11(1-5):11–73, Feb. 1997.

[6] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for
control. Artificial Intelligence Review, 11(1-5):75–113, Feb. 1997.

241

242 Bibliography

[7] C. G. Atkeson and D. J. Reinkensmeyer. Using associative content-
addressable memories to control robots. In The 27th IEEE Conference on
Decision and Control, pages 792–797, Dec. 1988.

[8] R. Batruni. A multilayer neural network with piecewise-linear structure and
back-propagation learning. IEEE Transactions on Neural Networks, 2(3):
395–403, May 1991.

[9] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and con-
trollability of piecewise affine and hybrid systems. IEEE Transactions on
Automatic Control, 45(10):1864–1876, Oct. 2000.

[10] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A greedy approach to
identification of piecewise affine models. In Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science. Springer-Verlag, 2003.

[11] A. Bemporad and D. Mignone. MIQP.M: A Matlab function for solving
mixed integer quadratic programs. ETH Zurich, 2000. Code available at
http://control.ethz.ch/~hybrid/miqp.

[12] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35:407–427, 1999.

[13] A. Bemporad, J. Roll, and L. Ljung. Identification of hybrid systems via
mixed-integer programming. In The 40th IEEE Conference on Decision and
Control, pages 786–792, Dec. 2001.

[14] A. Bemporad, F. D. Torrisi, and M. Morari. Optimization-based verification
and stability characterization of piecewise affine and hybrid systems. In Hy-
brid Systems: Computation and Control, volume 1790 of Lecture Notes in
Computer Science, pages 45–58. Springer-Verlag, 2000.

[15] S. A. Billings and W. S. F. Voon. Piecewise linear identification of non-linear
systems. International Journal of Control, 46(1):215–235, 1987.

[16] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[17] G. Bontempi, M. Birattari, and H. Bersini. Lazy learning for local modelling
and control design. International Journal of Control, 72(7-8):643–658, May
1999.

[18] L. Bottou and V. Vapnik. Local learning algorithms. Neural Computation,
4(6):888–900, Nov. 1992.

[19] S. Boyd and L. Vandenberghe. Convex optimization. Course Reader for
EE364, Introduction to Convex Optimization with Engineering Applications,
Stanford University, May 3, 1999.

Bibliography 243

[20] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Transactions on Automatic Control, 43
(4):475–482, Apr. 1998.

[21] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for
hybrid control: Model and optimal control theory. IEEE Transactions on
Automatic Control, 43(1):31–45, 1998.

[22] L. Breiman. Hinging hyperplanes for regression, classification, and function
approximation. IEEE Transactions on Information Theory, 39(3):999–1013,
May 1993.

[23] L. Breiman and J. H. Friedman. Function approximation using ramps. In
Snowbird Workshop. Machines that Learn, 1994.

[24] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification And
Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software,
1984.

[25] J. Bruls, C. T. Chou, B. R. J. Haverkamp, and M. Verhaegen. Linear and non-
linear system identification using separable least-squares. European Journal
of Control, 5(1):116–128, 1999.

[26] C.-H. Choi and J. Y. Choi. Constructive neural networks with piecewise
interpolation capabilities for function approximations. IEEE Transactions
on Neural Networks, 5(6):936–944, Nov. 1994.

[27] L. O. Chua and A.-C. Deng. Canonical piecewise-linear representation. IEEE
Transactions on Circuits and Systems, 35(1):101–111, Jan. 1988.

[28] L. O. Chua and S. M. Kang. Section-wise piecewise-linear functions: Canon-
ical representation, properties and applications. Proceedings of the IEEE, 65:
915–929, 1977.

[29] A. Chutinan. Hybrid System Verification Using Discrete Model Approxi-
mations. PhD thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, May 1999.

[30] A. Chutinan and B. H. Krogh. Computing approximating automata for a
class of linear hybrid systems. In Hybrid Systems V, Lecture Notes in Com-
puter Science. Springer-Verlag, 1998.

[31] A. Chutinan and B. H. Krogh. Computing polyhedral approximations to
flow pipes for dynamic systems. In The 37th IEEE Conference on Decision
and Control: Session on Synthesis and Verification of Hybrid Control Laws
(TM-01), 1998.

[32] W. S. Cleveland. Robust locally weighted regression and smoothing scatter-
plots. Journal of the American Statistical Association, 74(368):829–836, Dec.
1979.

244 Bibliography

[33] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach
to regression analysis by local fitting. Journal of the American Statistical
Association, 83(403):596–610, Sept. 1988.

[34] W. S. Cleveland and C. L. Loader. Smoothing by local regression: Principles
and methods. In W. Haerdle and M. G. Schimek, editors, Statistical Theory
and Computational Aspects of Smoothing, pages 10–49. Springer, New York,
1996.

[35] T. M. Cover. Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions on
Electronic Computers, 14(3):326–334, June 1965.

[36] Dash Associates. XPRESS-MP User Guide, 1999.

[37] L. Davis. Genetic Algorithms and Simulated Annealing. London: Pitman;
Los Altos, Calif.: Kaufmann, 1987.

[38] R. A. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartsson. Per-
spectives and results on the stability and stabilizability of hybrid systems.
Proceedings of the IEEE, 88(7):1069–1082, July 2000.

[39] D. den Hertog. Interior Point Approach to Linear, Quadratic and Convex
Programming: Algorithms and Complexity. Kluwer Academic, 1994.

[40] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, 1983.

[41] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John
Wiley & Sons, 1973.

[42] V. Einarsson. On verification of switched systems using abstractions. Li-
centiate Thesis, Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden. Thesis No. 705, 1998.

[43] V. Einarsson. Model Checking Methods for Mode Switching Systems. PhD
thesis, Department of Electrical Engineering, Linköping University, SE-
581 83 Linköping, Sweden, 2000.

[44] S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg. Continuous-discrete
interactions in chemical processing plants. Proceedings of the IEEE, 88(7):
1050–1068, July 2000.

[45] V. A. Epanechnikov. Non-parametric estimation of a multivariate probability
density. Theory of Probability and its Applications, 14:153–158, 1969.

[46] S. Ernst. Hinging hyperplane trees for approximation and identification. In
The 37th IEEE Conference on Decision and Control, volume 2, pages 1266–
1271, 1998.

Bibliography 245

[47] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chap-
man & Hall, 1996.

[48] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering
technique for the identification of piecewise affine systems. Automatica, 39
(2):205–217, Feb. 2003.

[49] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals
and Applications. Oxford University Press, 1995.

[50] A. T. Fuller. Relay control systems optimized for various performance crite-
ria. In 1st World Congress IFAC, pages 584–607, 1960.

[51] E. F. Gad, A. F. Atiya, S. Shaheen, and A. El-Dessouki. A new algorithm
for learning in piecewise-linear neural networks. Neural Networks, 13(4-5):
485–505, 2000.

[52] A. Garulli, A. Tesi, and A. Vicino, editors. Robustness in Identification and
Control. Lecture Notes in Control and Information Sciences. Springer-Verlag,
1999.

[53] T. Gasser and H.-G. Müller. Kernel estimation of regression functions. In
T. Gasser and M. Rosenblatt, editors, Smoothing Techniques for Curve Esti-
mation, Lecture Notes in Mathematics, pages 23–68. Springer-Verlag, 1979.

[54] T. Gasser, H.-G. Müller, and V. Mammitzsch. Kernels for nonparametric
curve estimation. Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 47(2):238–252, 1985.

[55] S. B. Gelfand and C. S. Ravishankar. A tree-structured piecewise linear
adaptive filter. IEEE Transactions on Information Theory, 39(6):1907–1922,
Nov. 1993.

[56] M. N. Gibbs. Bayesian Gaussian Processes for Regression and Classification.
PhD thesis, University of Cambridge, 1997.

[57] R. E. Groff, D. E. Koditschek, and P. P. Khargonekar. Piecewise linear home-
omorphisms: The scalar case. In Proceedings of the IEEE-INNS-ENNS In-
ternational Joint Conference on Neural Networks (IJCNN), volume 3, pages
259–264, 2000.

[58] F. Gustafsson. Adaptive Filtering and Change Detection. John Wiley & Sons,
2000.

[59] C. Güzeliş and İ. C. Göknar. A canonical representation for piecewise-affine
maps and its applications to circuit analysis. IEEE Transactions on Circuits
and Systems, 38(11):1342–1354, Nov. 1991.

246 Bibliography

[60] A. Hagenblad. Aspects of the identification of Wiener models. Licentiate The-
sis, Department of Electrical Engineering, Linköping University, SE-581 83
Linköping, Sweden. Thesis No. 793, 1999.

[61] W. Härdle. Applied Nonparametric Regression. Number 19 in Econometric
Society Monographs. Cambridge University Press, 1990.

[62] W. P. M. H. Heemels, B. D. Schutter, and A. Bemporad. Equivalence of
hybrid dynamical models. Automatica, 37(7):1085–1091, July 2001.

[63] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[64] E. A. Heredia and G. R. Arce. Piecewise linear system modeling based on a
continuous threshold decomposition. IEEE Transactions on Signal Process-
ing, 44(6):1440–1453, June 1996.

[65] I. Hoffmann. Identifikation hybrider dynamischer Systeme. PhD thesis, Uni-
versität Dortmund, 1999.

[66] I. Hoffmann and S. Engell. Identification of hybrid systems. In American
Control Conference, pages 711–712, 1998.

[67] C. C. Holmes and B. K. Mallick. Bayesian regression with multivariate linear
splines. Journal of the Royal Statistical Society. Series B, Statistical Method-
ology, 63(1):3–17, 2001.

[68] C. M. Hurvich, J. S. Simonoff, and C.-L. Tsai. Smoothing parameter selection
in nonparametric regression using an improved Akaike information criterion.
Journal of the Royal Statistical Society. Series B, Statistical Methodology, 60
(2):271–293, 1998.

[69] D. R. Hush and B. Horne. Efficient algorithms for function approximation
with piecewise linear sigmoidal networks. IEEE Transactions on Neural Net-
works, 9(6):1129–1141, Nov. 1998.

[70] ILOG, Inc. CPLEX 7.0 User’s Manual. Gentilly, France, 2000.

[71] T. A. Johansen and B. A. Foss. Identification of non-linear system structure
and parameters using regime decomposition. Automatica, 31(2):321–326, Feb.
1995.

[72] M. Johansson. Piecewise Linear Control Systems. PhD thesis, Department
of Automatic Control, Lund Institute of Technology, Lund University, Box
118, SE-221 00 Lund, Sweden, 1999.

[73] M. Johansson and A. Rantzer. Computation of piece-wise quadratic Lya-
punov functions for hybrid systems. IEEE Transactions on Automatic Con-
trol, 43(4):555–559, 1998.

Bibliography 247

[74] M. C. Jones and M. P. Wand. Asymptotic effectiveness of some higher order
kernels. Journal of Statistical Planning and Inference, 31(1):15–21, Apr. 1992.

[75] M. A. Jordán and O. A. A. Orqueda. Persistency of excitation and richness
in continuous-time piecewise linear systems. In 1st International Conference
on Control of Oscillations and Chaos, volume 2, pages 234–237, Aug. 1997.

[76] P. Julián, A. Desages, and O. Agamennoni. High level canonical piecewise
linear representation using a simplicial partition. IEEE Transactions on Cir-
cuits and Systems – I: Fundamental Theory and Applications, 46(4):463–480,
1999.

[77] P. Julián, M. Jordán, and A. Desages. Canonical piecewise-linear approxi-
mation of smooth functions. IEEE Transactions on Circuits and Systems, 45
(5):567–571, May 1998.

[78] P. M. Julián. A High Level Canonical Piecewise Linear Representation: The-
ory and Applications. PhD thesis, Departamento de Ingenieŕıa Eléctrica,
Universidad Nacional del Sur, 1999.

[79] C. Kahlert and L. O. Chua. The complete canonical piecewise-linear repre-
sentation — part i: The geometry of the domain space. IEEE Transactions
on Circuits and Systems, 39:222–236, 1992.

[80] A. M. Kang and L. O. Chua. A global representation of multidimensional
piecewise-linear functions. IEEE Transactions on Circuits and Systems, CAS-
25:938–940, Nov. 1978.

[81] G. Kerschen, J.-C. Golinval, and K. Worden. Theoretical and experimental
identification of a non-linear beam. Journal of Sound and Vibration, 244(4):
597–613, July 2001.

[82] T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski. Recurrent SOM with
local linear models in time series prediction. In 6th European Symposium on
Artificial Neural Networks, pages 167–172, Apr. 1998.

[83] X. D. Koutsoukos, P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon. Super-
visory control of hybrid systems. Proceedings of the IEEE, 88(7):1026–1049,
July 2000.

[84] S. Kowalewski, O. Stursberg, M. Fritz, H. Graf, I. Hoffmann, J. Preußig,
M. Remelhe, S. Simon, and H. Treseler. A case study in tool-aided analysis
of discretely controlled continuous systems: the two tanks problem. In Hybrid
Systems V, volume 1567 of Lecture Notes in Computer Science, pages 163–
185. Springer-Verlag, 1999.

[85] I. L. Legostaeva and A. N. Shiryaev. Minimax weights in a trend detection
problem of a random process. Theory of Probability and its Applications, 16
(2):344–349, 1971.

248 Bibliography

[86] C.-A. Lehalle and R. Azencott. Piecewise affine neural networks and non-
linear control. In International Conference on Artificial Neural Networks,
volume 2, pages 633–638, Sept. 1998.

[87] C.-A. Lehalle and R. Azencott. Piecewise affine neural networks and non-
linear control: Stability results. In International Conference on Artificial
Neural Networks, pages 608–612, Sept. 1999.

[88] S. L. Leonov. Remarks on extremal problems in nonparametric curve esti-
mation. Statistics & Probability Letters, 43(2):169–178, 1999.

[89] X. Li, S. Wang, and W. Yin. A canonical representation of high-dimensional
continuous piecewise-linear functions. IEEE Transactions on Circuits and
Systems – I: Fundamental Theory and Applications, 48(11):1347–1351, Nov.
2001.

[90] J.-N. Lin and R. Unbehauen. Canonical piecewise-linear approximations.
IEEE Transactions on Circuits and Systems – I: Fundamental Theory and
Applications, 39(8):697–699, Aug. 1992.

[91] J.-N. Lin, H.-Q. Xu, and R. Unbehauen. A generalization of canonical
piecewise-linear functions. IEEE Transactions on Circuits and Systems –
I: Fundamental Theory and Applications, 41(4):345–347, Apr. 1994.

[92] I. Lind. Regressor selection in system identification using ANOVA. Licen-
tiate Thesis, Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden. Thesis No. 921, 2001.

[93] C. Livadas, J. Lygeros, and N. A. Lynch. High-level modeling and analysis
of the traffic alert and collision avoidance system (TCAS). Proceedings of the
IEEE, 88(7):926–948, July 2000.

[94] L. Ljung. System Identification: Theory for the User. Prentice-Hall, 2nd
edition, 1999.

[95] C. R. Loader. Old Faithful erupts: Bandwidth selection reviewed. Technical
report, AT&T Bell Laboratories, 1995.

[96] C. R. Loader. Locfit: An introduction. Technical report, AT&T Bell Labo-
ratories, 1997.

[97] C. R. Loader. Bandwidth selection: Classical or plug-in? The Annals of
Statistics, 27(2):415–438, Apr. 1999.

[98] J. Löfberg. YALMIP 2.2 – Yet Another LMI Parser. Linköping University,
SE-581 83 Linköping, Sweden, 2002. http://www.control.isy.liu.se/
~johanl/yalmip.html.

[99] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifica-
tions for hybrid systems. Automatica, 35(3):349–370, 1999.

Bibliography 249

[100] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447,
1992.

[101] D. J. C. MacKay. Gaussian processes: A replacement for supervised neural
networks? Lecture notes for a tutorial at NIPS 1997, 1997.

[102] C. L. Mallows. Some comments on Cp. Technometrics, 15:661–676, 1973.

[103] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. “Neural-gas” network
for vector quantization and its application to time-series prediction. IEEE
Transactions on Neural Networks, 4(4):558–569, July 1993.

[104] M. C. Medeiros, M. G. C. Resende, and A. Veiga. Piecewise linear time series
estimation with GRASP. Technical report, AT&T Labs Research, Florham
Park, NJ 07932 USA, 1999.

[105] M. C. Medeiros, A. Veiga, and M. G. C. Resende. A combinatorial approach
to piecewise linear time series analysis. Technical report, AT&T Labs Re-
search, Florham Park, NJ 07932 USA, 1999.

[106] D. Mignone, A. Bemporad, and M. Morari. A framework for control, fault
detection, state estimation, and verification of hybrid systems. In American
Control Conference, pages 134–138, June 1999.

[107] M. Milanese and A. Vicino. Optimal estimation theory for dynamic systems
with set membership uncertainty: An overview. Automatica, 27(6):997–1009,
Nov. 1991.

[108] T. Moor and J. Raisch. Discrete control of switched linear systems. In
European Control Conference, Aug.–Sept. 1999.

[109] E. Münz and V. Krebs. Identification of hybrid systems using a priori knowl-
edge. In 15th IFAC World Congress on Automatic Control, July 2002.

[110] R. Murray-Smith. Local model networks and local learning. In Fuzzy Duis-
burg, pages 404–409, Feb. 1994.

[111] R. Murray-Smith and H. Gollee. A constructive learning algorithm for lo-
cal model networks. In IEEE Workshop on Computer-intensive methods in
control and signal processing, pages 21–29, 1994.

[112] R. Murray-Smith and T. A. Johansen, editors. Multiple Model Approaches
to Modelling and Control. Taylor & Francis, 1997.

[113] E. A. Nadaraya. On estimating regression. Theory of Probability and its
Applications, 10:186–190, 1964.

[114] S. Nadjm-Tehrani and J.-E. Strömberg. Formal verification of dynamic prop-
erties in an aerospace application. Formal Methods in System Design, 14(2):
135–169, Mar. 1999.

250 Bibliography

[115] K. S. Narendra and S.-M. Li. Neural networks in control systems. In
P. Smolensky, M. C. Mozer, and D. E. Rumelhart, editors, Mathematical
Perspectives on Neural Networks, chapter 11, pages 347–394. Lawrence Erl-
baum Associates, 1996.

[116] R. M. Neal. Monte Carlo implementation of Gaussian process models for
Bayesian regression and classification. Technical Report 9702, Department
of Statistics, University of Toronto, Jan. 1997.

[117] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer-Verlag, 1999.

[118] D. L. Pepyne and C. G. Cassandras. Optimal control of hybrid systems in
manufacturing. Proceedings of the IEEE, 88(7):1108–1123, July 2000.

[119] V. Petridis and A. Kehagias. Identification of switching dynamical systems
using multiple models. In The 37th IEEE Conference on Decision and Con-
trol: Session on System Identification I (WA-07), 1998.

[120] S. Pettersson. Analysis and Design of Hybrid Systems. PhD thesis, Con-
trol Engineering Laboratory, Department of Signals and Systems, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, 1999.

[121] P. Philips, M. Weiss, and H. A. Preisig. Control based on discrete-event
models of continuous systems. In European Control Conference, Aug.–Sept.
1999.

[122] C. Pizzi and P. Pellizzari. Adaptive local linear models for financial time
series. Journal of Computational Intelligence in Finance, Jan. 1998.

[123] M. B. Priestley and M. T. Chao. Non-parametric function fitting. Journal of
the Royal Statistical Society. Series B, Statistical Methodology, 34, 385-392
1972.

[124] P. Pucar and J. Sjöberg. On the hinge-finding algorithm for hinging hyper-
planes. IEEE Transactions on Information Theory, 44(3):1310–1319, May
1998.

[125] C. E. Rasmussen. Evaluation of Gaussian Processes and Other Methods for
Non-Linear Regression. PhD thesis, University of Toronto, 1996.

[126] C. Rhodes and M. Morari. The false nearest neighbors algorithm: An
overview. Computers & Chemical Engineering, 21(Suppl. 1):S1149–S1154,
May 1997.

[127] J. Roll. Invariance of approximating automata for piecewise linear systems.
Technical Report LiTH-ISY-R-2178, Department of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden, 1999.

Bibliography 251

[128] J. Roll. Invariance of approximating automata for piecewise linear systems
with uncertainties. In Hybrid Systems: Computation and Control, volume
1790 of Lecture Notes in Computer Science, pages 396–406. Springer-Verlag,
2000.

[129] J. Roll. Robust verification of piecewise affine systems. In 15th IFAC World
Congress on Automatic Control, Session T-We-A21, July 2002.

[130] J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine sys-
tems via mixed-integer programming. Provisionally accepted for Automatica,
2003.

[131] J. Roll, A. Nazin, and L. Ljung. A non-asymptotic approach to local mod-
elling. In The 41st IEEE Conference on Decision and Control, pages 638–643,
Dec. 2002.

[132] J. Roll, A. Nazin, and L. Ljung. Direct weight optimization for nonpara-
metric estimation of a regression function at a given point. Submitted to
Scandinavian Journal of Statistics, 2003.

[133] J. Roll, A. Nazin, and L. Ljung. Local modelling of nonlinear dynamic sys-
tems using direct weight optimization. Accepted for the 13th IFAC Sympo-
sium on System Identification, Rotterdam, Aug. 2003.

[134] J. Roll, A. Nazin, and L. Ljung. Local modelling with a priori known bounds
using direct weight optimization. Submitted to the European Control Con-
ference, Cambridge, Sept. 2003.

[135] M. Rubensson. Discrete-time stability analysis of hybrid systems. Licentiate
Thesis, Department of Signals and Systems, Chalmers University of Technol-
ogy, Sweden, 2000.

[136] D. Ruppert and M. P. Wand. Multivariate locally weighted least squares
regression. The Annals of Statistics, 22(3):1346–1370, Sept. 1994.

[137] J. Sacks and W. Strawderman. Improvements on linear minimax estimates.
In Statistical decision theory and related topics III, volume 2, pages 287–304.
Academic Press, 1982.

[138] J. Sacks and D. Ylvisaker. Linear estimation for approximately linear models.
The Annals of Statistics, 6(5):1122–1137, 1978.

[139] N. V. Sahinidis. BARON – Branch And Reduce Optimization Navigator.
Technical report, University of Illinois at Urbana-Champaign, Dept. of Chem-
ical Engineering, Urbana, IL, USA, 2000.

[140] S. Simani, C. Fantuzzi, R. Rovatti, and S. Beghelli. Parameter identification
for piecewise-affine fuzzy models in noisy environment. International Journal
of Approximate Reasoning, 22(1-2):149–167, Sept.–Oct. 1999.

252 Bibliography

[141] A. C. Singer, G. W. Wornell, and A. V. Oppenheim. Codebook prediction:
A nonlinear signal modeling paradigm. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 5, pages 325–328, 1992.

[142] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Y. Glorennec,
H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modeling in system
identification: a unified overview. Automatica, 31(12):1691–1724, 1995.

[143] A. Skeppstedt. Construction of composite models from large data-sets. Li-
centiate Thesis, Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden. Thesis No. 149, 1988.

[144] A. Skeppstedt, L. Ljung, and M. Millnert. Construction of composite models
from observed data. International Journal of Control, 55(1):141–152, 1992.

[145] E. D. Sontag. Interconnected automata and linear systems: A theoretical
framework in discrete-time. In R. Alur, T. A. Henzinger, and E. D. Son-
tag, editors, Hybrid Systems III - Verification and Control, number 1066 in
Lecture Notes in Computer Science, pages 436–448. Springer-Verlag, 1996.

[146] A. Stenman. Model on Demand: Algorithms, Analysis and Applications.
PhD thesis, Department of Electrical Engineering, Linköping University, SE-
581 83 Linköping, Sweden, 1999.

[147] C. J. Stone. Consistent nonparametric regression. The Annals of Statistics,
5(4):595–645, 1977.

[148] J.-E. Strömberg, F. Gustafsson, and L. Ljung. Trees as black-box model
structures for dynamical systems. In European Control Conference, pages
1175–1180, Grenoble, France, July 1991.

[149] J. F. Sturm. SeDuMi 1.05, 2002. http://fewcal.kub.nl/sturm/software/
sedumi.html.

[150] O. Stursberg and S. Kowalewski. Approximating switched continuous systems
by rectangular automata. In European Control Conference, Aug.–Sept. 1999.

[151] S. A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University
Press, 1991.

[152] J. Vesanto. Using the SOM and local models in time-series prediction. In
Workshop on Self-Organizing Maps, pages 209–214, Espoo, Finland, June
1997.

[153] J. Vörös. Parameter identification of Wiener systems with discontinuous
nonlinearities. Systems & Control Letters, 44(5):363–372, Dec. 2001.

[154] J. Walter, H. Ritter, and K. Schulten. Non-linear prediction with self-
organizing maps. In International Joint Conference on Neural Networks,
volume 2, pages 747–752, 1990.

Bibliography 253

[155] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, 1995.

[156] G. S. Watson. Smooth regression analysis. Sankhyā, Series A, 26:359–372,
1964.

[157] T. Wigren. Recursive prediction error identification using the nonlinear
Wiener model. Automatica, 29(4):1011–1025, 1993.

[158] C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression.
In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in
Neural Information Processing Systems 8. MIT Press, 1996.

[159] H. P. Williams. Model Building in Mathematical Programming. John Wiley
& Sons, 4th edition, 1999.

[160] L. A. Wolsey. Integer Programming. Wiley, 1998.

[161] F. Zhang. Matrix Theory: Basic Results and Techniques. Springer-Verlag,
1999.

[162] L. H. Zhao. Minimax linear estimation in a white noise problem. The Annals
of Statistics, 25(2):745–755, 1997.

254 Bibliography

PhD Dissertations,
Division of Automatic Control, Linköping University

M. Millnert: Identification and control of systems subject to abrupt changes.
Thesis no. 82, 1982. ISBN 91-7372-542-0.
A.J.M. van Overbeek: On-line structure selection for the identification of mul-
tivariable systems. Thesis no. 86, 1982. ISBN 91-7372-586-2.
B. Bengtsson: On some control problems for queues. Thesis no. 87, 1982. ISBN
91-7372-593-5.
S. Ljung: Fast algorithms for integral equations and least squares identification
problems. Thesis no. 93, 1983. ISBN 91-7372-641-9.
H. Jonson: A Newton method for solving non-linear optimal control problems
with general constraints. Thesis no. 104, 1983. ISBN 91-7372-718-0.
E. Trulsson: Adaptive control based on explicit criterion minimization. Thesis
no. 106, 1983. ISBN 91-7372-728-8.
K. Nordström: Uncertainty, robustness and sensitivity reduction in the design
of single input control systems. Thesis no. 162, 1987. ISBN 91-7870-170-8.
B. Wahlberg: On the identification and approximation of linear systems. Thesis
no. 163, 1987. ISBN 91-7870-175-9.
S. Gunnarsson: Frequency domain aspects of modeling and control in adaptive
systems. Thesis no. 194, 1988. ISBN 91-7870-380-8.
A. Isaksson: On system identification in one and two dimensions with signal
processing applications. Thesis no. 196, 1988. ISBN 91-7870-383-2.
M. Viberg: Subspace fitting concepts in sensor array processing. Thesis no. 217,
1989. ISBN 91-7870-529-0.
K. Forsman: Constructive commutative algebra in nonlinear control theory. The-
sis no. 261, 1991. ISBN 91-7870-827-3.
F. Gustafsson: Estimation of discrete parameters in linear systems. Thesis no.
271, 1992. ISBN 91-7870-876-1.
P. Nagy: Tools for knowledge-based signal processing with applications to system
identification. Thesis no. 280, 1992. ISBN 91-7870-962-8.
T. Svensson: Mathematical tools and software for analysis and design of nonlinear
control systems. Thesis no. 285, 1992. ISBN 91-7870-989-X.
S. Andersson: On dimension reduction in sensor array signal processing. Thesis
no. 290, 1992. ISBN 91-7871-015-4.
H. Hjalmarsson: Aspects on incomplete modeling in system identification. The-
sis no. 298, 1993. ISBN 91-7871-070-7.
I. Klein: Automatic synthesis of sequential control schemes. Thesis no. 305, 1993.
ISBN 91-7871-090-1.
J.-E. Strömberg: A mode switching modelling philosophy. Thesis no. 353, 1994.
ISBN 91-7871-430-3.

K. Wang Chen: Transformation and symbolic calculations in filtering and con-
trol. Thesis no. 361, 1994. ISBN 91-7871-467-2.
T. McKelvey: Identification of state-space models from time and frequency data.
Thesis no. 380, 1995. ISBN 91-7871-531-8.
J. Sjöberg: Non-linear system identification with neural networks. Thesis no.
381, 1995. ISBN 91-7871-534-2.
R. Germundsson: Symbolic systems – theory, computation and applications.
Thesis no. 389, 1995. ISBN 91-7871-578-4.
P. Pucar: Modeling and segmentation using multiple models. Thesis no. 405,
1995. ISBN 91-7871-627-6.
H. Fortell: Algebraic approaches to normal forms and zero dynamics. Thesis no.
407, 1995. ISBN 91-7871-629-2.
A. Helmersson: Methods for robust gain scheduling. Thesis no. 406, 1995. ISBN
91-7871-628-4.
P. Lindskog: Methods, algorithms and tools for system identification based on
prior knowledge. Thesis no. 436, 1996. ISBN 91-7871-424-8.
J. Gunnarsson: Symbolic methods and tools for discrete event dynamic systems.
Thesis no. 477, 1997. ISBN 91-7871-917-8.
M. Jirstrand: Constructive methods for inequality constraints in control. Thesis
no. 527, 1998. ISBN 91-7219-187-2.
U. Forssell: Closed-loop identification: Methods, theory, and applications. Thesis
no. 566, 1999. ISBN 91-7219-432-4.
A. Stenman: Model on demand: Algorithms, analysis and applications. Thesis
no. 571, 1999. ISBN 91-7219-450-2.
N. Bergman: Recursive Bayesian estimation: Navigation and tracking applica-
tions. Thesis no. 579, 1999. ISBN 91-7219-473-1.
K. Edström: Switched bond graphs: Simulation and analysis. Thesis no. 586,
1999. ISBN 91-7219-493-6.
M. Larsson: Behavioral and structural model based approaches to discrete diag-
nosis. Thesis no. 608, 1999. ISBN 91-7219-615-5.
F. Gunnarsson: Power control in cellular radio systems: Analysis, design and
estimation. Thesis no. 623, 2000. ISBN 91-7219-689-0.
V. Einarsson: Model checking methods for mode switching systems. Thesis no.
652, 2000. ISBN 91-7219-836-2.
M. Norrlöf: Iterative learning control: Analysis, design, and experiments. Thesis
no. 653, 2000. ISBN 91-7219-837-0.
F. Tjärnström: Variance expressions and model reduction in system identifica-
tion. Thesis no. 730, 2002. ISBN 91-7373-253-2.
J. Löfberg: Minimax approaches to robust model predictive control. Thesis no.
812, 2003. ISBN 91-7373-622-8.

