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Course QOutline

* Monday (8:30-10:30):
- Lecture 1 (HS): Introduction, data attacks against non-

dynamic systems, power network monitoring, security
index, graph min cut

e Tuesday
- 8:30-12:30:
- Lecture 2 (HS): Attack space for cyber-physical

systems: DoS, undetectable, stealth, covert, bias, replay
attacks

- Lecture 3 (AT): Defense mechanisms, risk
management, anomaly detectors, watermarking

- 15:30-16:30:
- Exercise session (Graph min cut, security index)

» Wednesday (8:30-10:30):
- Lecture 4 (HS): Physical limits of control implementations :
- Exercise session
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Lecture 3

*Risk management
- security metrics, quantifying impact [1]

*Anomaly detectors (for detectable attacks) [2]

e Watermarking (against undetectable attacks)
- Replay attacks [3]
- Zero dynamics attacks [4]
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* Complex systems with numerous e ea s
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Goals of Lecture 3

* Analyze and compare existing attack scenarios in a
risk management framework

e Understand the basics of anomaly detection

» Design methods to reveal undetectable attacks
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- - - System kn_oyv_le_d_gg ______________________
Defining Risk T
e T '

Risk = (Scenario , Likelihood, Impact) | ¢ | | Covert
: Smith
e Scenario Eavesdroppin_. ;
. E E Disclosure resource; :
- How to describe the system under attack? : . ;[Bis'hopf] =
- (recall Lecture 2) i T Replay |
R r— fSinopoli}
e Likelihood
- How much effort does a given attack require? A
- (compare to security index, Lecture 1) oo i P
- Threat Vs /. High-Risk
g *// Threat
e Impact s S
- What are the consequences of an attack? £ ke
. . 'd
- (relate to control objectives) 7
7/
“ Threat's Likelihood >




Risk Management
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» Main steps in risk management
- Scope definition
- Models, Scenarios, objectives

- Risk Analysis
- Threat Identification
- Likelihood Assessment
- Impact Assessment

- Risk Treatment
- Prevention, Detection, Mitigation

! ; Cyber-Physical Systems \
Infrastructure
/ Cybersecurity Indicators

* -Penetration testing
VRS RS RS R RS 1 -Vendor advisories
{ 4 -Intrusion detection
| Infrastructure 1 ‘ monitoring
: Vulnerability Analysis | —
i : Power Applications )
i 3 -Impacted computation/
1 Application 1 communication
! i 1 » -Control function impact
N Impact Analysis 1 p
! 1
: - : Power System Reliability
1 Physical ] -Frequency, voltage, and
: System Impact 1 ‘ rotator angle stability

1
1 -Loss of load
I I;ufl-(-An-aly-sl_s- = _: -Economic losses
Acceptable

High

Application Security

Infrastructure Security

Risk Mitigation




Risk Management
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How to model adversaries and attacks?
- Lecture 2

How to measure likelihood (attack effort)?
- Lectures 1 and 2

How to compute impact?
- Lecture 2
- This lecture

How to design protection and detection
mechanisms?
- This lecture

rf| > 6= Alarm

Cyber-Physical Systems

Vulnerability Analysis

Infrastructure
Cybersecurity Indicators
* -Penetration testing
-------------- 1 -Vendor advisories
-Intrusion detection
Infrastructure monitoring

Power Applications

-Impacted computation/

Application
Impact Analysis

communication
-Control function impact

Physical
System Impact

Power System Reliability
-Frequency, voltage, and
rotator angle stability

¥ r N/

Acceptable

High

Risk Analysis

-Loss of load
-Economic losses

Application Security

Infrastructure Security

Risk Mitigation




Risk Analysis for Dynamical Systems

* Analysis of effort and impact of stealthy attacks

System knowledge

____________________________

» Cases considered here:
1. Minimum resource attacks
2. Maximum impact attacks
3. Maximum impact bounded | |
resource attacks s

____________________________

Disruption resources

» Considered attacks are in open loop. No disclosure
resources explicitly used (works due to linearity of
systems)

10



Networked Control System

i o op “ * Physical Plant

e Feedback Controller
Uk F |« Yk f . Zkt1 = AcZk; + Bc?jk

up = CCZ]; -+ chk’

l e Anomaly Detector
{re} | Alarm . Sk = Aesp + Beuy, + Koy
. T = Cesp + Deuy, + Ecyy

11



e Cyber-Physical Attacks

- Disclosure Component

L T 0 U
w5 2[5

|

- Disruptive component

ap = [fi bp'

b’

Up

Yk

Jp—— \\j

bi;
Network)+——-

BY
k
———f Network

U

o —

Yk

Networked Control System under Attack

* Closed-loop Dynamics
Mk = [:c; ZJ—HT

_wk_

Mk+1 = Ang + Bap + G o
ji = Cip +Day + H| | *

* Anomaly Detector
&= spl'

Ekr1 = Ak + Bear + Ge 15:
rr = Ceé + Deay, + He ?:j:

- Alarm triggered if:
Irill > 6, + 00, 00 €RT

12



1. Minimum Resource Attack:
Dynamical Case

Dynamical anomaly detector for closed-loop system:

Ek+1 = Al + Beay + Geowy,
T = Celk + Deay, + Hevy,

Lift to time interval [0, V]
with zero-initial conditions and no noise:

'r(] De 0 e 0 a;o
1 CeBe De 0 aq
T2 — CeAeBe CeBe 0 a2
. ; S 0 :
TN _CeAeN_lBe CeAeN_QBe De_ | ON |

Ve ~ e
r T a

13



1. Minimum Resource Attack:
Dynamical Case

Signal strength

min [|f1,(a) o channel 4
such that /

hp(@) = [la@ylle,,---» la@)lle, - -5 lag.)lle,]

Irll, = [|Trally < da

acg

* Minimize disruption resources (#channels attacked)
« No alarms (threshold ¢, )
« Reach attack goals G (compare to security index)

14



1. Minimum Resource Attack:
Formulate as MILP (1) @

lo

hp(a) = [[lag)lle,, - - - laglle, - agg.)lle,]
Note that Ity = [ Trall, < b
acg

Ihp(a)flo <€

can equivalently be formulated as

ag < Mpz;l Vi=1,..., q,
—a;) < Mpzl Vi=1,..., qq
da
Z Z; S €
i=1

z; € {0,1} Vi=1,..., q,.
where M is a large constant (“infinity”)

15



1. Minimum Resource Attack:
Formulate as MILP (2)

min €
such that
hp(a) = [llagylle,s- - llagylle,s -5 lag)lle,]
[hp(a)llo <€
Irlly = (| Trally < da
acg

* Minimize disruption resources (#channels attacked)
« No alarms (threshold §,, )
« Reach attack goals G (compare to security index)

« MILPif p=¢q =0

16



2. Maximum Impact Attack:
Dynamical Case

Dynamics of plant and controller:

Mk+1 = Ani + Bag, + Guwy,
rr = Cnx + Day, + Hoy,

Lifting to time interval [0, N]
with zero-initial conditions and no noise:

iy D 0 0 ap
L1 CB D 0 al
ro | — CAB CB 0 as
I E E 0] | :
zy| [CAYT'B CAY’B D| |ax.

~
X T. a




2. Maximum Impact Attack:
Dynamical Case

max | T,al,
such that
”I'Hq = H’]}qu < 0q

Maximize impact (push ||x||, far away from equilibrium)
No alarms (threshold ¢,)

Not a convex optimization problem!
Closed-form solution when p = ¢ = 2 (use Courant-

Sketch on the board! 18



2. Maximum Impact Attack:
Dynamical Case

max | T,al,
such that
Irllg = [|Trally < 0a

Theorem: Bounded solution iff ker(7,) C ker(7,) See Exercise 7

Theorem (pygpe/2nnnp): Assume bounded
SO RN by Tl = Vet

”ﬁvmax”Z

0= AmaxT. Tr — T.' To)Vimax  (Amax/Vmax Max generalized eigenpair)

What happens for infinite time-horizons? 19



2. Maximum-Impact Attack
Infinite Horizon

» Maximum-impact stealthy attack:

> P Yk o !
U r - Maximize “energy” of the state signal
Aug T T AGC) - Keep the residual signal "small
_= g(/C Ik) I_____ etwor o o 5
--------- maximize ) ", ||zk||3
~ {ak}zozo
Uk ) Yk subject to Y oo llrkllz <O

o If the system has unstable zero-

dynamics:
l, - There exists an exponentially increasing input
|7k]| > 0 = Alarm! that attains a “small” output
{ar}izy: e =0, Vk
agll = o0, |kl — o0

See Exercise 7 20



3. Maximum Impact Bounded Resource
Attack

max||T;all,
such that

Irlly = [I7rally < da
Ihp(a)fo <€

e Maximize impact (push ||x||,, far away from equilibrium)
No alarms (threshold §,,)
* Use no more than € channels

Jointly considers impact and likelihood

e p = q = o0 can be formulated as MILP (see slide 15)

21



Numerical Example

|
h,g h-.; : {11
hy = ——\..e’?ghl V2Qf’13+ L,
: ﬂfz
E— L — hoy = 2gho + 2ghy + ——uso,
e 42 42 Ay
11 %l—| ’— ¥z
a 1 —~9)k
hy ha hs = —4—3\;’ 2ghs + ( 4’2} 2
o : to; ‘ag (1 j )k
1 2 , — '
h‘4——4—4\f29h4+ 4’1 1Ml
s | — | p— < 4 '-1

* Wireless LQG controller
e 4 channels: 2 actuators and 2 measurements

e Minimum phase or non-minimum phase depending on71, V2
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Numerical Example (Non-Min Phase)

Values of |x||, for maximum impact formulation with
p=q=2, 0, =0.15

Thp(@s

2 3

Minimum phase 140.39 00
Non-minimum phase 689.43 00

Level of water
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Numerical Example (Non-Min Phase)

3

()
T

Actuator False-Data

20

80

- -
- .- n
- .

===lrll2

[

40 60
Time [s]

80

100
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Numerical Example (MILP)

OF TECHNOLOGY |
hs ha
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What components to protect?

ROYAL INSTITUTE
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() Nonminimum Phase

» Attacks on 3 or more (S P=——
components have very high o
impact
- Must protect 2 components wp 5

d m?f_ [l

e Attacks on 2 compoents still
have high risk .

0

» What to protect? e R
- Protecting ({u1, u2}) yields the ~  ° ‘uwr

lowest risk

2013-03-20 Teixeira et al. "Quantifying Cyber-Security for Networked Control Systems"



Numerical Example

* Maximum Impact Bounded Resource attack illustrated
o 2 channels allowed: MILP selects the actuators

* 3-4 channels allowed: Unbounded impact (any attack on
actuators can be hidden by corrupting 2 measurements)

o Infinity norm criteria (p = ¢ = o0 ) yields more aggressive
attack (bounds saturated)

e Not surprisingly, non-min phase plant more sensitive

27



System knowledge
A

____________________________

Summary

System Knowledge

Disruption K=1{P F. D} Disclosure
Resources ,L Resources , :
U . ' Disclosure resources .
k . . >
Tu f— ' ‘,"’ e
—| B, |« ar, = g(K, Z) - m N -
TY | — ; ‘

Attack Pohcy A T

Disruption resources

» Tools for quantitative trade-off analysis between attacker’s
impact and resources: Important for defense prioritization

* For dynamical systems there are temporal as well as spatial
(channel) constraints for attacker to fulfill

- Enforced through lifting models

» Closed-form solutions and mixed integer linear programming
formulations




Lecture 3

*Risk management
- security metrics, quantifying impact [1]

*Anomaly detectors (for detectable attacks) [2]

e Watermarking (against undetectable attacks)
- Replay attacks [3]
- Zero dynamics attacks [4]

29
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rocess input rocess output
P p—b process P P

Model-Based Fault Diagnosis

residual

_ Y ! residual
p| Process > 1au

model

residual generation

Model based fault diagnosis system

> processing

decision
logic

residual evaluation

e Basic ideas:

- Compute an expected output (using model information)

knowledge
of faults

- Evaluate the difference between the real and expected outputs (residual)

30



Fault-Diagnosis Objectives

OF TECHNOLOGY

e Fault Detection: detect faults

- Generate a residual sensitive to faults
- E.g.: Kalman filter &x11 = A2 + Buy + K(yr — Ciy) (no fault)

IIIIIII"’ Tk ——:%k “JJ\[(O,}Dk)
T =y — CTy,

e ~ N(0,CP,C")
» Fault Isolation: locate the faulty components

Fault 1 Fault 2
- Generate a set of structured residuals l l
- E.g.: [ﬁ(s)] _ [Gn(s) 0 ] [fl(s)] —
TQ(S) 0 (}22(8) jé(s)

» Fault Identification: estimate the fault signal
- Use a state estimator

- Simple example: @rt1 — Aéy — Buy, = F f

Decision on
FDI

o All fail in the presence of undetectable attacks

31
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Beyond Fault Diagnosis

Fault Detection

y(t)

and
Diagnosis
A A
?J-{ ”’ ﬁyatm‘ =™ 5}’?11 mmal Sﬁ S
‘/Actuamr */Actuatur / Actuator
Faults Faults Faults

e Often requires redundancy (extra sensors / actuators)

» See [2] for more details and references

32



Lecture 3

*Risk management
- security metrics, quantifying impact [1]

*Anomaly detectors (for detectable attacks) [2]

e Watermarking (against undetectable attacks)
- Replay attacks [3]
- Zero dynamics attacks [4]

33



Replay Attack
— Phase II [3]

e No more data is recorded
Iy =Ty, k>r

» The previously recorded
data is replayed
[bz] _ [T“(ukT —uk)]

by TY(yk—7 — Yk)

» Physical attack is also
performed

fre =970, I, )

» No system knowledge is needed:

System Knowledge

Disruption K={P,F, D} Disclosure
Resources v Resources
Uk
. Tu —
«— B |« ar = g(K,Ty) -— Yk
TY | —
Attack Policy
Uk » P Yk
|
| Sk
L

w 1 y
I ' 1

75|l > 0r + 0a ? l Alarm

A

K={P,F,D}=0

[Mo and Sinopoli, Allerton
2009]

4



Residue

Tank 3 Tank 4

: ! : : : : V;“@
TSR YRR I

£ mo T |
.? 8_ N B ..I .......... ........ "r- N ............ J
= 5 ; e Attack Goal: Empty tank 4
é 6 1 B - ' ‘l‘ T ---]12

s s e ] | —
O I | 1| A S T _h*" » Replay attack on sensor 2
—

o " .......... ............ | =) < Physical attack on tank 4

0 50 100 150 (200 250 |{300 350 ¢ Tank 4 is emptied

o
o
o

» Physical attack ends at t=180s
» Replay attack ends at t=280s

o
o
Ny

| | | §—-\|7‘k\|2

5|0 100 1‘:")0 260 2EI>O 360 350
Time [s] *» The attack is not detected

- Why is it undetectable?

- Can we "make” it detectable?

O
o
e}

35



Sensor Replay Attack — Analysis [3]

ROYAL INSTITUTE
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» Residual generated by a Kalman Filter (+LQG controller ux = Lz )

Try1x = Alg + Buy (o fault) )
jk:iﬁmk—l —FK(yk—ka.‘k_l) ‘ LTl — Tk NN(O;PIC)
rk:yk—Ci‘k TkNN(O,CPkCT+R)
» Model data replay as a virtual time-shifted " a
P %
plant ‘
|
) v v If
Ly = Tk—1y Yp = Yk—T5 T = Tk-T r—-—J-—i—} J
e Residual under sensor replay attack b -
- ~A k—T
Pkt1 = Ty — CA(Zo—1 — $0|_1) ' Fle——

A= (A+BL)(I - KC)

o Attack is stealthy if A is stable
- Attacked residual converges to healthy residual r: — rj, ~ N(0,CP,C' + R)
- Relies on the (virtual) plant and Kalman filter having the same control policy

36



Sensor Replay Attack — Watermarking [ 3]

ROYAL INSTITUTE
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* The plant proactively changes the control policy
- Adds noise to control input: ux = Ly + Cx
- Noise is randomly generated, but known

u = Ly + Gk

—lyk

» Residual under sensor replay akttack _______ - -C}
A » i y (m-.Ikr) :.--’i_ Network
Thtl = Tyl — C.A(:c0|_1 - 350|—1) - C Z A" B(G —¢}) O
i— Yk—T
A= (A+BL)(I - KC) ’ -

(.—

» Distribution of residual under attack changes
- Nominal distribution: 7% ~N(0,CPC" + R)
- Distribution with attack: 7% ~ N (piy—1,CP:C" + R+ %)

o Attack can be detected by comparing the two distributions
- See Kullback-Leibler divergence and Neyman-Pearson test
- Detection enabled by asymmetries between the time-shifted and real-time models

Can we use other forms of asymmetry to detect attacks? 37



Lecture 3

*Risk management
- security metrics, quantifying impact [1]

*Anomaly detectors (for detectable attacks) [2]

e Watermarking (against undetectable attacks)
- Replay attacks [3]
- Zero dynamics attacks [4]

38



Zero-Dynamics Attack Model

e Physical Plant under attack

pa . { Tpy1 = Axy + Bay,

5 CL‘():O
yr = Cxyp,

> P l
a4 P , o Attack policy
M =1 9(K-,0) i @ - Computed using 4,B,C

- Open-loop policy

e Attack Goals and
» D |je— Constraints

- Reach an unsafe state
- Remain stealthy

|7k > 0 + 00 ? l Alarm

39
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de
dt

]

Quadruple-tank process has an unstable zero if 0 <~ ++, < 1

Security
Tank 3
—r—
Tank 1

Y1

v

0 2% o0

_le 0 A‘:?ﬁ

0 -4 0

0 0 -

0 0]

&£
0

Testbed for Networked Control System

Actuator

[Johansson, IEEE TCST, 2000]
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Experimental Result (Lecture 2) u H

ngﬁmnuum

80 100

...........................................

...........................................

G—

Tank | Tank 2
Ay Y2
vi o

» Attack Goal: Empty tank 3

e Zero-dynamics attack on
both actuators

e The attack is detected

a1



Tank 3

Vl

[t

e Smooth increase |
- What causes it?

- Does it compromise the
attack’s stealthiness?

* Abrupt increase
- How can it be induced so

that attacks are revealed?

20 40 60 80 100 42



Revealing Zero Dynamics Attacks [4]

» Revisit zero dynamics

e Output behavior with initial condition
mismatch

* Revealing zero dynamics attacks

43



Zero Dynamics

* Physical plant e Qutput-zeroing
) Trt = Az, + Bay, prObIem:
' yr = Cy, - Find 20 and F such that
Thyl = (A—I—BF)ﬂjk
) o = 20
0= Cﬂfk

Zero Dynamics
L1 = (A-I-BF):Uk
0= Cﬂjk,

with zyp € V* C ker(C) and F such that (A + BF)V* C V*,

Interpretation for Linear Systems?

44



Zero Dynamics Attack

» Physical plant under attack » Undetectable attacks

| k1 = Az + Bay, 0 T = ATk + Bak, zo = 0
: —_C R 0= C.Tk
Y = Uy

e Zero dynamics attack policy
Rk+1 — (A‘|‘BF)Z,LU-

ap = Fzy, rr+1 = Az + Ba
) T aen
OZCQZ;C

with zg € V* C ker(C) and
F such that (A + BF)V* C V*.

What happens when zo # 2z ?

45



Initial Condition Mismatch

Theorem 1. The output produced
by the zero dynamics attack
241 = (A + BF)Zk

0 = Fz , 20 € V*
is described by
ert+1 = Aey,
yr = Cey, 0T

o Attack is not undetectable if 20 belongs to the observable
subspace of (4,C) (i.e. z yields a zero output)
o If Ais stable:
- the resulting output energy is finite;

- the output can be made arbitrarily small by scaling down the initial
condition 2o




Revealing Zero Dynamics Attacks

Definition: A zero dynamics attack is revealed if yi # 0

* Proposed approach (watermarking):
- change the system dynamics from ¥ = (A,B,C) to % = (A, B,C)

Every zero-dynamics attack is

Zero-dynamics attacks are stealthy
revealed if the system

with respect to the system

~

[$k+1] _ -A BF ] [ﬂ?k] Th1| -A BF T
Zk41 _0 A+ BF| |z Zk+1 N _0 A+ BF| |z
T L -~ i

for all g =2 € V* is observable for all xg = zp € V*

47



Modifying the input matrix B (1)

o Consider B = BW

» Observation: attacks remain undetectable w.r.t to W if and only if the
unobservable trajectories are not perturbed

Proof sketch: Check the conditions when zo = 2z € V* is unobservable:
M —A —BF—B(W - I)F} [

20

0 A — (A + BF)

]:0 , Where (Al —(A+ BF))z =0
C 0

20

B(W = I)Fz =0

* Revealing attacks: Choose W such that B(W —I)Fz, #0

Theorem. All the zero dynamics attacks associated with a givenz, € V*
remain stealthy with respect to ¥ = (A, B, C) if and only if V* C ker(B(W —I)F)

48



» Simply changing B to B affects the W l

system performance under no attack et :
e Coordinated input scaling: N

- Similar to encryption

Uk, W F le—

Wl p le——

Theorem. Let z; =z, =z€V* and apply W =al at time k. The output
trajectory is described by
=A
Ck+1 €k o= (1—a)z
yr = Cey,
» Revealing attack: choose « such that v« is “large” enough.
- Does not affect the system dynamics

49



\
\
‘Tﬁn \

T
e Solution to reveal attacks: input scaling w =al ¢ i

Example — modifying B

\
‘ Tank 4 \
Tank 2
Y2

» Example: choose «=0.987 |

—_—— [— o Attack begins at £ =0
e = - Initial condition mismatch

1.6}

1.4+

e Input scaling applied at & =100
- the attack is revealed

1.2}
1t
08r

0e6F

e Stable A results in
finite output energy

04

0.2F

0 e

1 1 1 1 1 | 1 1 1
0 20 40 a0 20 100 120 140 160 182 200

50



Modifying the output matrix C

. ~ C
Consider C = [AC]

» Observation: attacks remain undetectable w.r.t to C if and only if
> =(4,B,C)and ¥ = (A,B,C) share common unobservable trajectories

» Revealing attacks: add measurements so that x = V*nV* becomes
empty
- system dynamics are not affected
- Requires at most dim(V*) new measurements

~

Theorem. There exists azy € V" generating an undetectable attack to 3y = (A, B,C)
if and only if (A4 BF') has an eigenvector in V* Nker C

51



Modifying the system matrix A

e Consider A=A+ AA

o Observation: attacks remain undetectable w.r.t to A if and only if the
unobservable trajectories are not perturbed (similarto B )

Proof sketch: Check the conditions for which zo = z; € V*is unobservable:

M—A—-AA —BF z
0 M — (A+ BF) [ZOI =0 , where (\ - (A+BF))z =0
C 0 v
°* AAzg =0

* Revealing attacks: choose AA such that V*nker(AA) =10
- Affects the system dynamics and may also require re-designing the controller

Theorem. All the zero-dynamics attacks associated with a givenz, € V*
remain stealthy with respect to ¥ = (4, B,C) if and only if V* C ker(AA)

52



Example - modifying A u H

—
* Solution to reveal attacks: A4 such that v nker(Ad) =0 E H@
p— 0 O_ Vi V2
ve |00 P aa-D | |
0 1 0 0 00397 0
- - 00 0 0
 Example: connect tank 3 to tank 1:  24=1, ¢ _go102 o
00 0 0
i ! — k|
goot 0-2;—#—__
400 L L L 'i 53

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 20 40 a0 20 100 120 140 180 180 200 0 20 40 80 20 100 120 140 160 180 200
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Summary il =

» Zero-dynamics attacks are robust to initial
condition mismatch

* Proposed methods to reveal attacks by
- Changing C: Adding measurements
- Changing A: Modifying the open-loop
dynamics

- Changing B: Cooperatively scaling the input
signhals

» Adding measurements and scaling input
signals does not affect the system
performance 54



Summary of Lecture 3

*Risk management
- security metrics, quantifying impact [1]

- Tools for quantitative trade-off analysis between attacker’s
impact and resources: Important for defense prioritization

eBasics of Fault Diagnosis (for detectable attacks) [2]

e Watermarking (against undetectable attacks)

- Induce asymmetries in the attacker/system models
- Additive signals against sensor replay attacks [3]
- Model perturbations against zero dynamics attacks [4]

55



