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Chasles theorem is one of the most fundamental results in kinematics.

Theorem 1 (Chasles) Every rigid body motion can be realized by a rotation
about an axis combined with a translation parallel to that axis.

Proof 1 Consider a general 4 X 4 homogeneous transformation matrix
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In order to continue we will now change bases in order reveal the structure. This
can be done by perform a similarity transform of the A-matrix according to
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Let us start investigating the rotation part, i.e., the upper left 3 x 3 sub-matriz
of A. The Q matriz can now be chosen according to

Q:(vl va u) (3)

where u is the eigenvalue of R corresponding to eigenvalue 1 (more specifically
it is the axis of rotation). The other two vectors vi and ve are chosen so that
they together with u form a real basis. This implies that the 3 X 3 upper left part
(QTRQ) of A is reduced to a rotation about the z azis according to
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When it comes to the translation, we have that
Q"Re~ Q"c+ Q"d = (Q"RQ —~ )Q"c+ Q"d. (5)

Let us now define
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allowing us to write (5) according to
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If the top 2 x 2 matriz of (QT RQ — I) is nonsingular we can solve the first two
equations of
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for ¢z and ¢, and, without loss of generality, let ¢, = 0. In that case we have A
in the form
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where k is given by the third component in
d=Q"d. (10)

Hence, the rigid body motion is described by a rotation about the z-axis through
an angle ¢ followed by a translation along the z-azis through a distance k.

If the top 2 x 2 submatriz of (QT RQ — I) is singular, then QT RQ = I. This
means that A is a pure translation.



