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Chapter 1

Introduction

Let = denote the variable we seek to estimate and y denote the variables that
we have measured. Then we have

plylz)p(z)

o) o p(ylz)p(x) (1.1)

p(zly) =

where p(y|x) is referred to as the likelihood, p(z) is referred to as the prior
density and p(z|y) is referred to as the posterior density. Depending on how
we choose to model the unknown variable x we end up with different results.
Let us start by assuming that the unknown variable x is a stochastic variable
distributed according to a certain probability density function (PDF) p(x), the
prior PDF. This is known as the Bayesian approach to estimation. When the
measurements y are available we ask for the most probable value of the unknown
variable x that can be explained by the measurements. This implies that the
problem to be solved is

#MAP — argmax p(z|y) (1.2)

which according to (1.1) is equivalent to

#MAP = argmax p(y|z)p(z) (1.3)

The estimate #MAP is referred to as the Mazimum A Posteriori (MAP) estimate.
Within the Mazimum Likelihood (ML) framework, introduced by Fisher (1912),
it is instead assumed that the unknown variable z is an unknown deterministic
variable. Another way of stating this assumption is to say that the prior p(x)
is completely uninformative, implying that we have no prior knowledge of the
behaviour of the unknown variable. The corresponding estimator is given simply
by maximizing the likelihood function,

#ML — arg max p(y|x) (1.4)

The intuition is that we are looking for the variables x that best explains the
measurements y, in the sense that they make the measurements as likely as
possible.
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From the above discussion it is clear that an estimation problem sooner or
later is transformed into an optimization problem of some form. We will here
stress the use of convex optimization problems, which have the nice property
that any local optimum is also the global optimum. Even though most problems
are non-convex, they are often solved by suitable convex approximations, as
we shall see later. Another advantage of casting the estimation problem as a
convex optimization problem is that it is straightforward to add constraints to
the problem. The theory on convex optimization is by now rather mature and
there is general purpose software! available for solving the resulting problems.
In this way prior information about the state can be utilized, e.g., that the
state is always positive or that the components of the state should sum to one,
which is the case if the state is a vector of probabilities. Constraints of this type
cannot be straightforwardly included in the standard Kalman filter. However, if
we can (which we can, as will be shown later) formulate the Kalman filter as an
optimization problem, it is straightforward to add arbitrary convex constraints
to this problem and still guaranteeing a global optimum to be found.

The main message in convex optimization is that we should not differ be-
tween linear and nonlinear optimization problems, but instead between convex
and non-convex problems. The class of convex problems is much larger than
that covered by linear problems,

A convex optimization problem is defined as

min - fo(z)

st. filz) < 0, i=0,...,m, (1.5)
a]Tx = b,

where the functions fo, ..., f,, are convex and the equality constraints are linear.

For a thorough introduction to convex optimization, see Boyd and Vandenberghe

(2004).

It is also worth stressing that it is straightforward to include other variables
to be estimated, such as, e.g., missing data into the optimization problem. Be-
sides including them in the variables to be estimated, there is probably also a
need to provide some assumptions regarding how they behave, which are typi-
cally implemented as constraints.

LA useful and efficient software is YALMIP, developed by Lifberg (2006). It provides direct
access to several of the standard numerical solvers for optimization problems, using a powerful
MATLAB interface.



Chapter 2

State Estimation as an
Optimization Problem

During the lecture on nonlinear state estimation we derived a conceptual solu-
tion to the nonlinear sequential state estimation problem, see Schén (2008) for
details. Here we will take a different route, rather than insisting an directly find-
ing a sequential solution we will formulate an optimization problem containing
all the state variables. We can then of course study sequential solutions to this
problem and recover the solutions derived differently before. However, more
importantly, we can straightforwardly consider new problems, i.e., constrained
state estimation. Furthermore, this way of modelling problems typically reveals
a lot of the structure inherent in the problem. Once this structure is well un-
derstood we can try to find efficient approximations, rather than the other way
around. This is particularly true for the SLAM problem, which is very briefly
discussed in Chapter 4.

2.1 Problem Formulation

We are considering a nonlinear state-space model with additive noise according
to

Tip1 = f) + we, (2.1a)

Yt = h(l’t) + e, (21b>

where the noise w; and e; are i.i.d. Furthermore, the initial state 21 is random,
with 1 ~ N (Z1, P1). Note that everything can be straightforwardly generalized
to time-varying models, possibly containing a known control input u; as well.
However, in the interest of a simple notation we consider the time-invariant

case (2.1). The goal is to estimate the states z1.; given the measurements yi.;.
We will do this by considering the MAP estimate,

jl:t = argiax P($1:t|y1:t), (22)
T1:t
where
P(ylzt\l'lzt)P(fl:t)
P(Y1:¢)

P(T1ely1e) = X P(Y1:¢|®1:)p(@1:t) (2.3)
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Since the measurement noise e; is i.i.d. we have

t
pyralzre) = [ plyile:). (2.4)
i=1
Furthermore, the likelihood p(y;|x;) is given by
p(Wilz:) = pe, (yi — h(xi)). (2.5)

since the measurement noise e; enters additively in (2.1). In order to find a
manageable expression for p(x1.;) we start by making use of the product rule
according to

p(r1:4) = p(we, w1:0-1) = p(Te|T1:0-1)P(21:0-1), (2.6)

which by the Markov property is reduced to

p(z1:) = plae|ze—1)p(z1:0-1)- (2.7)
Repeated use of (2.6) and (2.7) results in

t

p(x1e) = pla) [ [ plailzioa), (2.8)

=2

where p(z1) denote the prior on the state at time ¢ = 1. Similarly to (2.5), the
additive process noise w; implies

p(@ilTi1) = puw,_, (xi — f(xi-1)). (2.9)

Assembling (2.3) — (2.5) and (2.7) results in

p(erlyre) o pan) [ [ plwilei) [] plyile:) (2.10a)
=2 i=1
= Pu, (T1 — T1) pri,l(ﬂfi — f(wi—1)) Hpei (y; — h(x;)). (2.10b)

To sum up, we have now arrived at an expression for the MAP estimator (2.2)
that we can work with

¢ ¢

&1 = argmax pg, (r1 — 21) pri,_l (zi — f(zi-1)) Hpe,; (yi — h(x;)) (2.11)
Tt i=2 i=1

The estimates arising from (2.11) are in the form

Figey  i=1,...,L (2.12)

In other words, the estimates are smoothed, save for the last Z;; which is of
course the filtered estimate.
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2.2 Relevant Special Cases

2.2.1 Linear Gaussian State-Space Model

A very commonly used special case of (2.1) is the linear (f and h are linear
functions) state-space model, subject to Gaussian (w; and e; are Gaussian)
noise,

Trp1 = Axy + w, wy ~ N(0,Q), (2.13a)
yr = Cwy + ey, e ~N(0, R). (2.13b)

This implies that the densities involved in (2.11) are given by

S TP
sller—=21]17

Pay (X1 — T1) x e i (2.14a)
Pun s (w5 — flai1)) oc e 2o Aninligs (2.14b)
e, (yi — h(x;)) oc e~ 2lwi=Cmilli—s (2.14c)

Using the fact that the logarithm is a monotonic function and the fact that
maximizing a function is equivalent to minimizing the negated function we have

maxp(z) & min — log p(x) (2.15)

The resulting MAP estimation problem is now given by

t t
JAUl:t = argmin ||a:1 - i‘1||i3171 + Z ||33z - A.Ti_1||32_1 + Z Hyl - szHé—l
T1:t i=2 i=1

(2.16)

This is a convex optimization problem, more specifically it is a quadratic program
(QP). The theory on how to handle least-squares problems of this type is well
established, see e.g., Bjorck (1996) and the many references therein. Here it is
worth noting that we can prove that the sequential solution to (2.16) is given
by the Kalman filter. Hence, one interpretation of the Kalman filter is as a
sequential solution to a weighted least squares problem. Furthermore, we are
free to add any convex constraints we like to (2.16) and still have a guarantee of
finding the global optima. This is further formalized in Section 2.3. The size of
the problem cast in (2.16) grows as the time increases. This can be handled very
much in the same way as the problem size is controlled within a Model Predictive
Controller (MPC), i.e., we simply bound the number of variables allowed in
the optimization problem. More specifically this corresponds to solving the
optimization problem over a sliding window, commonly referred to as moving
horizon estimation (MHE), which is further formalized in Section 2.4. There is
in fact an interesting duality between the control and the estimation problem,
which unfortunately is out of scope for this discussion, but the interested reader
is referred to for example (Goodwin et al., 2005; Kailath et al., 2000).

2.2.2 Nonlinear Gaussian State-Space Model

Let us now consider the nonlinear state-space, subject to additive Gaussian
noise, i.e., (2.1) where w; ~ N (0,Q) and e; ~ N (0, R). Hence, the correspond-
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ing MAP problem is the following nonlinear least squares problem

t t
B = argmin oy — 71|70 + D i = f@i)lig-r + Y llyi — (@) [

Trit i=2 i=1

(2.17)

Methods commonly used in solving (2.17), such as Gauss-Newton and Levenberg-
Marquart, rely on linear approximations of the involved nonlinear functions. A
solid account on how to solve nonlinear least square problems is provided by
(Nocedal and Wright, 2006; Dennis and Schnabel, 1983).

Using a first order Taylor expansion of the nonlinear functions f and h results
in a linear approximation according to,

S~ fa)+ D e = s RAL, 2as)
Fy —

h(z:) ~ h(x}) + agzt) (e = ha) + His,, (2.18b)
L

where x} denotes the linearization point and A,, = z;—x} denotes the deviation
from the linearization point. The linear approximation of the dynamics is given
by

lze = Fla-D)lg & o — F@io) = Foade, o

= |lae — 27 + 27 — f(27 1) — Fer B, |15

= A, = Fiorlg,, —aiflpys s (2.19)
where
ay = fziy) — . (2.20)
Similarly for the measurement relations we have
lye = (@) s ~ 1 He A, = crllr (2.21)
where
¢t = h(zf) — ys. (2.22)
To sum up we have
ﬁmm = arAg max V(Az,,) (2.23a)

*1:t

where

t
V(Azu) = HAih”%l + Z HAL —Fi1lg , — aiH?Q—l
i=2
t
+) N HiA,, — il f (2.23b)
i=1
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This problem will quickly become high-dimensional. Luckily it is a rather sparse
problem, due to the inherent structure present in the problem. In order to make
this obvious we will rewrite (2.23a), in the form

~

A = argmax V(A) (2.24)
A
V(A) = [|[AA — b3 (2.25)

where A € R¥("etmy)xtne jg 5 sparse matrix and b € RH™=+7v) - This is a problem
that has been thoroughly studied within the linear algebra community, see e.g.,
Golub and Van Loan (1996); Bjorck (1996).

Let the square root of the symmetric positive semidefinite matrix @ be de-
fined as Q £ QT/2Q'/?, allowing us to rewrite the weighted norm ||ac|\?Q,1 as an
unweighted norm ||z according to

HI”Z)—l _ ITQ71I _ xT(QT/2Q1/2)71x — :L’TQil/QQiT/zl‘
= (Q ) (Q?2) = |Q7?x| 3 (2.26)

This can be used in order to normalize the expression in (2.23b), i.e., rewrite it
as an unweighted norm according to

_ ¢ 2
V(Az,) = 1P T/QAM”g + Z HQiT/Q(A” ~Fi1Be, —ai) 2
i=2

¢ 2
+2 HRme(HiAxi —all,
i1

~ 2 t ~ B A 2
=[paa],+ X H(FH (%) - 2
LA 2
+ ; HHiAac,- cil (2.27)
where
Py = P12 e Rrexne a;=Q T/?q; e R™ (2.28a)
Q=Q /P eRmx", & =R c; e R™ (2.28b)
Fyi=—-Q TPF, e R, Hy=R"PH eR™ ™. (2.28¢)

Let us now define

A= (AT AT .. AT eRime (2.29)
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P 0 0 ... 0 0 0
F Q 0 ... 0 0 &
0 B Q ... 0 0 &

A=]l0 0 0 ... E, Q|, b=]|a (2.30)
H 0 0 0 0 iy
0 Hy O 0 0 az
O 0 0 ... 0 M ay

allowing us to rewrite (2.27) according to (2.24).

2.3 Constrained State Estimation

An interesting class of problems is given in 1 below.

Problem 1 (Convex optimization filtering)

Assume that the densities p., (o), Pw,(w;), and pe,(e;) are log-concave'. In
the presence of constraints in terms of a linear dynamic model 2.13, the MAP-
estimate is the solution &y = x; to the following problem

t—1 t
max 1og(pz, (20 — T0)) + Y _ log(pu, (w:)) + Y log(pe, (e:))
k i=0 i=0
s.t. Tiv1 = Az +w;, 1=0,...,t—1,
yi = Cizi+ey, i=0,...,t.

It is straightforward to add any convex constraints to this formulation, and the
resulting problem can be solved using standard software.

The reason why this is an interesting class of problems is that they are convex
and we can straightforwardly add any convex constraints to the problem and
sole for the global optimum. An examples of this is given in Schon et al. (2003).

2.4 Moving Horizon State Estimation

The main concern with the formulation of the estimation problem given so far
is that the number of variables increase linearly in time, which is of course not
acceptable in many applications. Hence, we have to find a way of bounding the
number of variables. If possible we can of course derive a sequential solution,
but in many cases this is impossible. Another way of bounding the number
of variables in the optimization problem is to use moving horizon estimation
(MHE) (Maciejowski, 2002; Goodwin et al., 2005), defined in Problem 2. This
is the same idea underpinning model predictive control (MPC), i.e., the state is
estimated using a fixed size, moving window of data.

LA function f : R™ — R is log-concave if f(x) > 0 for all = in the domain of f and log(f)
is a concave function (Boyd and Vandenberghe, 2004).
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Problem 2 (Moving Horizon Estimation (MHE))

Assume that the densities p,, (w;) and p.,(e;) are log-concave. In the presence
of constraints in terms of a linear dynamic model, the MHE-estimate is the
solution &; = x; to the following problem

t—1 t
. 2 2
Jmin - F(zep) + Dol = flai)llga + Y, Ny — h@a)ll7-

ok i=i—L i=t—L+1
1=0,...,m,
ClTxtL;t = Oa j:()a"'vna

where F(x:_1) contains information about the past. Additional constraints
are included via the convex functions fi,..., f, convex and the linear equality
constraints.

The problem is now reduced to solving a possible nonlinear and possibly con-
strained least squares problem, with a fixed number of variables. This problem
has to be solved each time a new measurement arrives. However, it is important
to understand that the approach using MHE is, in general, sub-optimal, since
the influence of the past measurements is not necessarily taken care of correctly
in F(z;—p).

Several useful entry points into the literature on moving horizon estimation
for nonlinear systems are given in Rao et al. (2001); Rao (2000); Goodwin et al.
(2005).
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Chapter 3

Linear Regression

Consider the classical linear regression problem,
Y = @l 0+ ey, t=1,...,N, (3.1)

where y; € R denotes the measurement, ¢, € R" denotes the regressor, # € R?
denotes the unknown, e; € R denotes the measurement noise and N denotes
the number of samples. We assume that we have observed N measurements
YN = {yt}fvzl and that the regressors ¢i.; are available. Furthermore, we
assume that the measurement noise e; is independent and identically distributed
(iid) and Gaussian, e; ~ N'(0,0%),0 > 0. The N equations in (3.1) can just as
well be stacked on top of each other and written according to

Y =070+ E, (3.2)
where
Y= % ... yv) €RV (3.3a)
d=(p1 @2 ... @n)eER (3.3b)
E=(e1 e ... en) RV (3.3¢)

The problem of estimating the unknown 6 has been extensively studied over the
years. We will in this chapter discuss the linear regression problem using a few
common model assumptions and estimators. As we will see, all problems end
up in the form

argmin ||Y — @703 + X[|60]]% (3.4)
6

for different choices of A and p.

3.1 Maximum Likelihood Estimation

The Maximum Likelihood estimate M is give by

oML = arg max p(Y'|6) (3.5)
0

15
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According to the assumptions above the measurement noise is Gaussian and
independent, implying that the likelihood function p(Y'|0) is given by

p(Y10) = pe(Y —8T0) = N(V; ®T0,R) x e 21V -2"0l0-s (3.6)
where R = %I y. Inserting (3.6) into (3.5) results in

~ _iv_aTal2
oME :argénaxe 2 Y =270l (3.7)

Since the logarithm is a monotonic function we can just as well minimize the
log-likelihood function,

M = argmin ||y — o70|[> (3.8)
0
We can rewrite this problem as an unweighted problem by noting that

2
Iy — @70l = HR_T/Q(Y - <I>T9)H2 — — ||y — a7} (3.9)

1
=
where we have used the fact that R = 02Iy. Noting that ¢ is not part of the
optimization variable and inserting (3.9) into (3.8) finally gives us the following
ordinary least squares problem

MY = arg min HY — @THHE (3.10)
0
which allows for a closed-form solution

M- = (@0T) oY, (3.11)

3.2 Maximum a Posteriori Estimation

Let us now study the MAP estimate (1.3) for the linear regression problem (3.2)

OMAP = arg max p(Y'|0)p(6) (3.12)
0

Let us write down a problem that is equivalent to (3.12) and directly useful in
derivations to follow,

OMAP — argmin — log p(Y'|0) — log p(6) (3.13)
0
The first term in (3.13) is according to (3.9) given by
1
—logp(Y']0) §\|Y—¢29||§. (3.14)

In Section 3.2.1 we consider the problem resulting from a Gaussian prior and in
Section 3.2.2 we consider a Laplacian prior.
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3.2.1 Gaussian Prior

Consider the situation where the individual parameters {6, }&_; are independent,
each having a Gaussian prior, according to

0; ~ N(0,0%/)), i=1,2,....d. (3.15)

The independece assumtions implies that

d d

—logp(0) = [[p(0:) = > _ —logp(6;), (3.16)

i=1 i=1

which using the Gaussian assumption (3.15) can be written as

LISY A
—log p(0 27 —;IIMI% (3.17)

Using (3.14) and (3.17), the resulting problem is given by

OMAP — arg max ”Y—@Tﬁ}’§+)\\\9||§ (3.18)
9

Similarly to (3.10) this problem allows for a closed-form solution and it is
straightforward to show that it is given by

0= (907 + \y)"'®Y. (3.19)

The estimator given in (3.18) is within the field of statistics referred to as ridge
regression and in other fields is travels under names such as reqularized least
squares and Tikhonov reqularization. This estimator is often used for its ability
to deal with outliers and for ill-posed problems it is used to ensure that an
inverse exists.

For intuition it is worth noting that as the variance tends to infinity (A tends
to 0) (3.19) is reduced to the ML problem (3.11).

3.2.2 Laplacian Prior

Let us now consider the situation where the individual parameters {6;}¢_; are
independent, each and having a Laplacian prior,

0; ~ £(0,20%/)), i=1,2,...,d. (3.20)

This implies that

d
A A g, A
—log p(# Z 5oze e o (3.21)

Using (3.14) and (3.21) results in

OMAP _ oo max v - (I)TQHE +Al0]1 (3.22)
0
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which does not allow for a closed-form solution. However, the problem (3.22)
is convex, guaranteeing that any minima is the global minima. There exists
good methods and software for solving this type of problem, see e.g., Kim et al.
(2007). The estimator (3.22) is referred to as the Least Absolute Shrinking and
Selection Operator (LASSO), introduced by Tibshirani (1996). Typically the
LASSO solution results in a sparse estimate 0. Recently this sparseness property
of the I3 norm has spurred a lot of interest under names such as compressed
sensing, compressed sampling and [; magic.

3.3 Summary and Useful Convex Extensions
In Table 3.1 we summarize the discussion in the previous sections. The problems

Table 3.1: Cost functions and the corresponding probabilistic assumptions.

Cost function Estimator | Prior

Y — @793 ML -

Y — ®T0[2 + \[|0]]3 | MAP N(0,0%/)\)
Y —®T9[2 + N[0, | MAP L£(0,202/))

derived above are all in the form

min - fo(x) (3.23)
where depending on the assumptions made, the cost function fy(x) is the cost
function used in (3.10),(3.18) or (3.22). Similarly to what was done for the
state estimation problem, if there is additional knowledge available about the
problem, this should of course be used in forming the estimates. The best is of
course if the constraints can be expressed in terms of a convex set, since then
the results problem will be convex,

min  fo(z
xr
st.  filz) < 0, i=0,...,m, (3.24)
a?x = b, j=0,...,n,
where the functions fy, ..., f,, are convex and the equality constraints are linear.

Non-convex constraints can of course be used as well, resulting in a much
harder problem.



Chapter 4

Least Squares Formulations
of SLAM and VO

This chapter is very sketchy and very short, but some of the details not showed
during the lecture are present. It will be expanded as more of this has been
applied. Currently this section is heavily inspired by Dellaert and Kaess (2006).

In order to mathematically describe the data association, let us introduce a
data association variable

ey €{1,2,...,N+1}, (4.1)

where N is the total number of landmarks. The data association variable en-
codes the relation between the measurement y;; and landmark I, where k = c;.
In other words,

¢y =i <N (4.2)

implies that the j*" measurement at time ¢ is associated to landmark i.
The measurement equation is provided by the camera model according to

ytj = h(xta lctj) + etj? etj ~ N(07 R) (43)

where h(zy,l.,;) = P(L¢,, ), derived during lecture 2. Note that we can of course
use different sensors.

Similar to what was done in Section 2.2.2 we will now formulate a non-
linear least squares problem, that we solve using standard methods, involving
linearization. According to (4.3) we have the following likelihood function

P(yegle, Leyy) ox e 21— hoten) s (44)

The full SLAM problem now corresponds to the following nonlinear least squares
problem

t

t M;
. _ 2 2
argmin oy — &30+ llai = fleim)llgr + DY Ny =l eI

Z1:t,l1:N i=2 i=1 j=1

(4.5)

19
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which we can approximate according to

argmin V(21.,l1:n) (4.6)

T1:4,01:N
where

t
V(@n uv) = oy =230+ D0 180 = Fimi Ao,y —aillf)

=2

t M;
Cij Cij 2
+ZZHHZ Ag, +L; Alc,.,j _diHR_l (4.7)
i=1 j=1



Appendix A

Useful Facts from
Probability Theory

In this appendix we list some facts from probability theory that are important
to understand in order to read the main text. For a detailed treatment of
probability theory we refer to one of the many textbooks on the subject.

Theorem 1 (Bayes’ theorem) Given two random variables a and b the con-
ditional probability density function p(alb) is given by

plalt) = PR (A1)

Definition 1 (Markov property) A discrete-time stochastic process {x;} is
said to possess the Markov property if

p($t+1|3317 cee ,xt) =p($t+1|$t)- (A-Q)

Definition 2 (Multivariable Normal Density) A random variable x with
E{z} = p, and Cov{z} = X, such that det X, > 0 is N (pz, X)) if and only if
the probability density function for x is

1
(2m)n=/2/det 3, ¢

In order to have a practical notation for stating that a probability density func-
tion is normal with a certain mean value and covariance we will define the
following

p(z) = — 3 (@—pa) T2 (@ —p) (A.3)

1 1 Ts—1
—2(@—pa) B (@ —pa) A4
(2m)e/2 /Aot 5, (A4

This notation will allow us to write N'(z ; p, ;) rather than the entire expres-
sion in (A.4), which is of course convenient.

N(I; ,ua:azac) =

Definition 3 (Laplace Density) A random variable z is said to be Laplacian
distributed if the density function for x is
1 T —

—legel (A.5)

p(x): %e ’

21
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The Laplace density is also referred to as the double exponential density. Sim-
ilarly to what we did for the Gaussian density above, we will use the following
notation for the Laplacian density,

1 _jz—u
E(I, ﬂ)a) = %6 7y (AG)

where p € R is the location parameter and o > 0 is the scale parameter.
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