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Outline lecture 2 2(30)

1. Summary of lecture 1

2. Linear basis function models

3. Maximum likelihood and least squares

4. Bias variance trade-off
5. Shrinkage methods

• Ridge regression
• LASSO

6. Bayesian linear regression

7. Motivation of kernel methods

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Summary of lecture 1 (I/III) 3(30)

The exponential family of distributions over x, parameterized by η,

p(x | η) = h(x)g(η) exp
(

ηTu(x)
)

One important member is the Gaussian density, which is commonly
used as a building block in more sophisticated models. Important
basic properties were provided.

The idea underlying maximum likelihood is that the parameters θ
should be chosen in such a way that the measurements {xi}N

i=1 are
as likely as possible, i.e.,

θ̂ = arg max
θ

p(x1, · · · , xN | θ).
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Summary of lecture 1 (II/III) 4(30)

The three basic steps of Bayesian modeling (where all variables are
modeled as stochastic)

1. Assign prior distributions p(θ) to all unknown parameters θ.

2. Write down the likelihood p(x1, . . . , xN | θ) of the data
x1, . . . , xN given the parameters θ.

3. Determine the posterior distribution of the parameters given
the data

p(θ | x1, . . . , xN) =
p(x1, . . . , xN | θ)p(θ)

p(x1, . . . , xN)
∝ p(x1, . . . , xN | θ)p(θ)

If the posterior p(θ | x1, . . . , xN) and the prior p(θ) distributions are
of the same functional form they are conjugate distributions and
the prior is said to be a conjugate prior for the likelihood.
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Summary of lecture 1 (III/III) 5(30)

Modeling “heavy tails” using the Student’s t-distribution

St(x | µ, λ, ν) =
∫
N
(

x | µ, (ηλ)−1
)

Gam (η | ν/2, ν/2) dη

=
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

) 1
2
(

1 +
λ(x− µ)2

ν

)− ν
2− 1

2

which according to the first expressions can be interpreted as an
infinite mix of Gaussians with the same mean, but different variance.
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−log Student
−log Gaussian Poor robustness is due to an

unrealistic model, the ML
estimator is inherently robust,
provided we have the correct
model.
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Commonly used basis functions 6(30)

In using nonlinear basis functions, y(x, w) can be a nonlinear
function in the input variable x (still linear in w).

• Global (in the sense that a small change in x affects all basis
functions) basis function

1. Polynomial (see illustrative example in Section 1.1) (ex. identity
φ(x) = x)

• Local (in the sense that a small change in x only affects the
nearby basis functions) basis function

1. Gaussian
2. Sigmoidal
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Linear regression model on matrix form 7(30)

It is commonly convenient to write the linear regression model

tn = wTφ(xn) + εn, n = 1, . . . , N,

where w =
(
w0 w1 . . . wM−1

)T
and

φ =
(
1 φ1(xn) . . . φM−1(xn)

)T
on matrix form

T = Φw + E,

where

T =




t1
t2
...

tN


 Φ =




φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)


 E =




ε1
ε2
...

εN



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Maximum likelihood and least squares (I/IV) 8(30)

In our linear regression model,

tn = wTφ(xn) + εn,

assume that εn ∼ N (0, β−1) (i.i.d.). This results in the following
likelihood function

p(tn | w, β) = N (wTφ(xn), β−1)

Note that this is a slight abuse of notation, pw,β(tn) or p(tn; w, β) would have been better,

since w and β are both considered deterministic parameters in ML.
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Maximum likelihood and least squares (II/IV) 9(30)

The available training data consisting of N input variables
X = {xi}N

i=1 and the corresponding target variables T = {ti}N
i=1.

According to our assumption on the noise, the likelihood function is
given by

p(T | w, β) =
N

∏
n=1

p(tn | w, β) =
N

∏
n=1
N (tn | wTφ(xn), β−1)

which results in the following log-likelihood function

L(w, β) , ln p(t1, . . . , tn | w, β) =
N

∑
n=1

lnN (tn | wTφ(xn), β−1)

=
N
2

ln β− N
2

ln(2π)− β
N

∑
n=1

(tn −wTφ(xn))
2
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Maximum likelihood and least squares (III/IV) 10(30)

The maximum likelihood problem now amounts to solving

arg max
w,β

L(w, β)

Setting the derivative ∂L
∂w = 2β ∑N

n=1(tn −wTφ(xn))φ(xn)T equal to
0 gives the following ML estimate for w

ŵML = (ΦTΦ)−1ΦT
︸ ︷︷ ︸

Φ†

T,

Φ =




φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)




Note that if ΦTΦ is singular
(or close to) we can fix this
by adding λI, i.e.,

ŵRR = (ΦTΦ + λI)−1ΦTT,
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Maximum likelihood and least squares (IV/IV) 11(30)

Maximizing the log-likelihood function L(w, β) w.r.t. β results in the
following estimate for β

1
β̂ML

=
1
N

N

∑
n=1

(
tn − ŵMLφ(xn)

)2

Finally, note that if we are only interested in w, the log-likelihood
function is proportional to

N

∑
n=1

(tn −wTφ(xn))
2,

which clearly shows that assuming a Gaussian noise model and
making use of Maximum Likelihood (ML) corresponds to a Least
Squares (LS) problem.
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Interpretation of the Gauss-Markov theorem 12(30)

The least squares estimator has the smallest mean square error
(MSE) of all linear estimators with no bias, BUT there may exist a
biased estimator with lower MSE.

“the restriction to unbiased estimates is not necessarily a wise one.”
[HTF, page 51]

Two classes of potentially biased estimators, 1. Subset selection
methods and 2. Shrinkage methods.

This is intimately connected to the bias-variance trade-off
• We will give a system identification example related to ridge

regression to illustrate the bias-variance trade-off.
• See Section 3.2 for a slightly more abstract (but very

informative) account of the bias-variance trade-off. (this is a perfect

topic for discussions during the exercise sessions!)
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Interpretation of RR using the SVD of Φ 13(30)

By studying the SVD of Φ it can be shown that ridge regression
projects the measurements onto the principal components of Φ and
then shrinks the coefficients of low-variance components more than
the coefficients of high-variance components.

(See Section 3.4.1. in HTF for details.)
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Bias-variance tradeoff – example (I/IV) 14(30)

(Ex. 2.3 in Henrik Ohlsson’s PhD thesis) Consider a SISO system

yt =
n

∑
k=1

g0
kut−k + et, (1)

where ut denotes the input, yt denotes the output, et denotes white
noise (E (e) = 0 and E (etes) = σ2δ(t− s)) and {g0

k}n
k=1 denote the

impulse response of the system.

Recall that the impulse response is the output yt when ut = δ(t) is
used in (1), which results in

yt =

{
g0

t + et t = 1, . . . , n,
et t > n.
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Bias-variance tradeoff – example (II/IV) 15(30)

The task is now to estimate the impulse response using an nth order
FIR model,

yt = wTφt + et,

where

φt =
(
ut−1 . . . ut−n

)T , w ∈ Rn

Let us use Ridge Regression (RR),

ŵRR = arg min
w

‖Y−Φw‖2
2 + λwTw.

to find the parameters w.
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Bias-variance tradeoff – example (III/IV) 16(30)
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Bias-variance tradeoff – example (IV/IV) 17(30)

“Flexible” models will have a low bias and high variance and more
“restricted” models will have high bias and low variance.

The model with the best predictive capabilities is the one which
strikes the best tradeoff between bias and variance.

Recent contributions on impulse response identification using
regularization, see

• Gianluigi Pillonetto and Giuseppe De Nicolao. A new kernel-based approach for linear system identification.
Automatica, 46(1):81–93, January 2010.

• Tianshi Chen, Henrik Ohlsson and Lennart Ljung. On the estimation of transfer functions, regularizations and
Gaussian processes – Revisited. Automatica, 48(8): 1525–1535, August 2012.

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Lasso 18(30)

The Lasso was introduced during lecture 1 as the MAP estimate
when a Laplacian prior is assigned to the parameters. Alternatively
we can motivate the Lasso as the solution to

min
w

∑N
n=1

(
tn −wTφ(xn)

)2

s.t. ∑M−1
j=0 |wj| ≤ η

which using a Lagrange multiplier λ can be stated

min
w

N

∑
n=1

(
tn −wTφ(xn)

)2
+ λ

M−1

∑
j=0
|wj|

The difference to ridge regression is simply that Lasso make use of
the `1-norm ∑M−1

j=0 |wj|, rather than the `2-norm ∑M−1
j=0 w2

j used in
ridge regression in shrinking the parameters.
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Graphical illustration of Lasso and RR 19(30)

Lasso Ridge Regression (RR)

The circles are contours of the least squares cost function (LS
estimate in the middle). The constraint regions are shown in gray
|w0|+ |w1| ≤ η (Lasso) and w2

0 + w2
1 ≤ η (RR). The shape of the

constraints motivates why Lasso often leads to sparseness.
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Implementing Lasso 20(30)

The `1-regularized least squares problem (lasso)

min
w
‖T−Φw‖2

2 + λ‖w‖1 (2)

YALMIP code solving (2). Download: http://users.isy.liu.se/johanl/yalmip/

w=sdpvar (M, 1 ) ;
ops=sdpse t t i ngs ( ’ verbose ’ , 0 ) ;
solvesdp ( [ ] , ( T−Phi∗w) ’∗ ( T−Phi∗w) + lambda∗norm (w, 1 ) , ops )

CVX code solving (2). Download: http://cvxr.com/cvx/

cvx_begin
v a r i a b l e w(M)
minimize ( ( T−Phi∗w) ’∗ ( y−Phi∗w) + lambda∗norm (w, 1 ) )
cvx_end

A MATLAB package dedicated to `1-regularized least squares
problems is l1_ls. Download: http://www.stanford.edu/~boyd/l1_ls/
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Bayesian linear regression – example (I/VI) 21(30)

Consider the problem of fitting a straight line to noisy measurements.
Let the model be (t ∈ R, xn ∈ R)

tn = w0 + w1xn︸ ︷︷ ︸
y(x,w)

+εn, n = 1, . . . , N. (3)

where

εn ∼ N (0, 0.22), β =
1

0.22 = 25.

According to (3), the following identity basis function is used

φ0(xn) = 1, φ1(xn) = xn.

The example lives in two dimensions, allowing us to plot the
distributions in illustrating the inference.
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Bayesian linear regression – example (II/VI) 22(30)

Let the true values for w be w? =
(
−0.3 0.5

)T
(plotted using a

white circle below).

Generate synthetic measurements by

tn = w?
0 + w?

1xn + εn, εn ∼ N (0, 0.22),

where xn ∼ U (−1, 1).

Furthermore, let the prior be

p(w) = N
(

w |
(
0 0

)T , α−1I
)

,

where

α = 2.
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Bayesian linear regression – example (III/VI) 23(30)

Plot of the situation before any data arrives.

Prior,

p(w) = N
(

w |
(
0 0

)T ,
1
2

I
)
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Example of a few realizations from
the posterior.
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Bayesian linear regression – example (IV/VI) 24(30)

Plot of the situation after one measurement has arrived.
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Likelihood (plotted as a
function of w)

p(t1 | w) = N (t1 | w0 + w1x1, β−1)

Posterior/prior,

p(w | t1) = N (w | m1, S1) ,

m1 = βS1ΦTt1,

S1 = (αI + βΦTΦ)−1.

Example of a few realizations
from the posterior and the first
measurement (black circle).
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Bayesian Linear Regression - Example (V/VI) 25(30)

Plot of the situation after two measurements have arrived.
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Likelihood (plotted as a
function of w)

p(t2 | w) = N (t2 | w0 + w1x2, β−1)

Posterior/prior,

p(w | T) = N (w | m2, S2) ,

m2 = βS2ΦTT,

S2 = (αI + βΦTΦ)−1.

Example of a few realizations
from the posterior and the
measurements (black circles).
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Bayesian linear regression – example (VI/VI) 26(30)

Plot of the situation after 30 measurements have arrived.
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Likelihood (plotted as a
function of w)

p(t30 | w) = N (t30 | w0 + w1x30, β−1)

Posterior/prior,

p(w | T) = N (w | m30, S30) ,

m30 = βS30ΦTT,

S30 = (αI + βΦTΦ)−1.

Example of a few realizations
from the posterior and the
measurements (black circles).
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Empirical Bayes 27(30)

Important question: How do we decide on the suitable values for
hyperparameters η?

Idea: Estimate the hyperparameters from the data by selecting them
such that they maximize the marginal likelihood function,

p(T | η) =
∫

p(T | w, η)p(w | η)dw,

where η denotes the hyperparameters to be estimated.

Travels under many names, besides empirical Bayes, this is also
referred to as type 2 maximum likelihood, generalized maximum
likelihood, and evidence approximation.

Empirical Bayes combines the two statistical philosophies;
frequentistic ideas are used to estimate the hyperparameters that are
then used within the Bayesian inference.
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Predictive distribution – example 28(30)

Investigating the predictive distribution for the example above
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N = 2 observations N = 5 observations N = 200 observations

• True system (y(x) = −0.3 + 0.5x) generating the data (red line)

• Mean of the predictive distribution (blue line)

• One standard deviation of the predictive distribution (gray shaded area) Note that this is
the point-wise predictive standard deviation as a function of x.

• Observations (black circles)
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Posterior distribution 29(30)

Recall that the posterior distribution is given by

p(w | T) = N (w | mN, SN),

where

mN = βSNΦTT,

SN = (αI + βΦTΦ)−1.

Let us now investigate the posterior mean solution mN, which has an
interpretation that directly leads to the kernel methods (lecture 5),
including Gaussian processes.
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A few concepts to summarize lecture 2 30(30)

Linear regression: Models the relationship between a continuous target variable t and a
possibly nonlinear function φ(x) of the input variables.

Hyperparameter: A parameter of the prior distribution that controls the distribution of the
parameters of the model.

Maximum a Posteriori (MAP): A point estimate obtained by maximizing the posterior
distribution. Corresponds to a mode of the posterior distribution.

Gauss Markov theorem: States that in a linear regression model, the best (in the sense of
minimum MSE) linear unbiased estimate (BLUE) is given by the least squares estimate.

Ridge regression: An `2-regularized least squares problem used to solve the linear
regression problem resulting in potentially biased estimates. A.k.a. Tikhonov regularization.

Lasso: An `1-regularized least squares problem used to solve the linear regression problem
resulting in potentially biased estimates. The Lasso typically produce sparse estimates.
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