

Summary of lecture 3 (III/III) 5(26)	(Very) brief on evaluating classifiers 6(26)
The likelihood function for logistic regression is $p(T \mid w) = \prod_{n=1}^{N} \sigma(w^{T}\phi_{n})^{t_{n}} \left(1 - \sigma(w^{T}\phi_{n})\right)^{1-t_{n}}$ Hence, computing the posterior density $p(w \mid T) = \frac{p(T w)p(w)}{p(T)}$ is intractable and we considered the Laplace approximation for solving this. The Laplace approximation is a simple (local) approximation that is obtained by fitting a Gaussian centered around the (MAP) mode of the distribution.	 Let us define the following concepts, True positives (tp): Items correctly classified as belonging to the class. True negatives (tn): Items correctly classified as not belonging to the class. False positives (fp): Items incorrectly classified as belonging to the class. In other words, a false alarm. False negatives (fn): Items that are not classified in the correct class, even though they should have. In other words, a missed detection. Precision = tp/tp + fp Recall = tp/tp + fn
Machine Learning T. Schön AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Two examples of neural networks in use 7(26)	Machine Learning T. Schön NN example 1 – system identification (I/V) 8(26)
 System identification Handwritten digit classification These examples will provide a glimpse into a few real life applications of models based in nonlinear function expansions (i.e., neural networks) both for regression and classification problems. We provide references for a more complete treatment. 	Neural networks are one of the standard models used in nonlinear system identification. Problem background: The task here is to identify a dynamical model of a Magnetorheological (MR) fluid damper. The MR fluid (typically some kind of oil) will greatly increases its so called apparent viscosity when the fluid is subjected to a magnetic field. MR fluid dampers are semi-active control devices which are used to reduce vibrations. Input signal: velocity $v(t)$ [cm/s] of the damper Output signal: Damping force $f(t)$ [N].
Machine Learning AUTOMATIC CONTROL	Machine Learning

NN example 2 – digit classificatio	n (I/IV))	13(26)	NN example 2 – digit classification (II/IV)	4(26)
 You have tried solving this problem using linear methods before. Let us see what can be done if we generalize to nonlinear function expansions (neural networks) instead. Let us now investigate 4 nonlinear models and one linear model solving the same task, Net-1: No hidden layer (equivalent to logistic regression). Net-2: One hidden layer, 12 hidden units fully connected. Net-3: Two hidden layers locally connected. Net-4: Two hidden layers, locally connected with weight sharing. Net-5: Two hidden layers, locally connected with two levels of weight sharing. 			Local connectivity (Net3-Net5) means that each hidden unit is connected only to a small number of units in the layer before. It makes use of the key property that nearby pixels are more strongly correlated than distant pixels.	4	
achine Learning Schön		automatic Reg Linköpings un		AUTOMATIC CONTROL Machine Learning REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET	\$.
NN example 2 - digit classification	ר (III/I∖	/)	15(26)	NN example 2 – digit classification (IV/IV) 1 This example if borrowed from Section 11.7 in HTF, who in turn borrowed it from,	6(26)
Network Architecture	Links	Weights	Correct	LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-Based Learning Applied to Document Recognition, Proceeding	s
Net-1: 0 hidden layer	2570	2570	80.0%	of the IEEE, 86(11):2278–2324, November 1998.	
Net-2: 1 hidden layer network	3214	3214	87.0%	The best performance as of today is provided by a deep neural	
Net-3: 2 hidden layer, locally connected	1226	1226	88.5%	network published in last years CVPR (99.77%),	
Net-4: 2 hidden layer, constrained network	2266	1132	94.0%	Ciresan, D., Meier, U. and Schmidhuber, J. Multi-column Deep Neural Networks for Image Classification, In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, USA, June, 2012.	
Net-5: 2 hidden layer, constrained network	5194	1060	98.4%	Recall the page mentioned during lecture 1 on this problem,	
Copyright IEEE 1989. Net-4 and Net-5 are referred to as convolutional networks.			EE 1989.	http://yann.lecun.com/exdb/mnist/	
This example illustrates that knowledge about the problem at hand can be very useful in order to improve the performance!				There is plenty of software support for neural networks, for example MATLAB's neural network toolbox (for general problems) and the system identification toolbox (for sys. id.).	;

Machine Learning

T. Schön

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

The "deep learning hype" 17(26)	Introducing kernel methods (I/III) 18(26)
<pre>Even made it into the New York Times in November, 2012, http://www.nytimes.com/2012/11/24/science/ scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html? pagewanted=1&_r=0 Deep learning is a very active topic at NIPS. A good entry point (tutorial papers, talks, groups, etc.) into the deep learning hype is provided by http://deeplearning.net/ Interesting topic for a project!</pre>	Let us introduce the kernel methods as an equivalent formulation of the linear regression problem. Recall that linear regression models the relationship between a cont- inuous target variable <i>t</i> and a function $\phi(x)$ of the input variable <i>x</i> , $t_n = \underbrace{w^T \phi(x_n)}_{y(x_n,w)} + \epsilon_n$. From lecture 2 we have that the posterior distribution is given by $p(w \mid T) = \mathcal{N}(w \mid m_N, S_N),$ $m_N = \beta S_N \Phi^T T,$ $S_N = (\alpha I + \beta \Phi^T \Phi)^{-1}.$
Machine Learning AUTOMATIC CONTROL REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET	Machine Learning AUTOMATIC CONTROL REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET
Introducing kernel methods (II/III) 19(26)	Introducing kernel methods (III/III) 20(26)
Inserting this into $y(x, w) = w^T \phi(x)$ provides the following expression for the predictive mean	Kernel methods constitutes a class of algorithms where the training data (or a subset thereof) is kept also during the prediction phase.
$y(x, m_N) = m_N^T \phi(x) = \phi(x)^T m_N = \beta \phi(x)^T S_N \Phi^T T$	Many linear methods can be re-cast into an equivalent "dual representation" where the predictions are based on linear

combinations of kernel functions (one example provided above).

A general property of kernels is that they are inner products

$$k(x,z) = \psi(x)^T \psi(z)$$

(Linear regression example, $\psi(x) = \beta^{1/2} S_N^{1/2} \phi(x)$)

The above development suggests the following idea. In an algorithm where the input data x enters only in the form of scalar products we can replace this scalar product with another choice of kernel! This is referred to as the **kernel trick**.

Machine Learning T. Schön

Machine Learning T. Schön

 $=\sum_{n=1}^{N}\underbrace{\beta\phi(x)^{T}S_{N}\phi(x_{n})}_{k(x,x_{n})}t_{n}=\sum_{n=1}^{N}k(x,x_{n})t_{n},$

where

$$k(x, x') = \beta \phi(x)^T S_N \phi(x')$$

is referred to as the **equivalent kernel**.

This suggests and alternative approach to regression where we instead of introducing a set of basis functions directly make use of a localized kernel.

Kernel representation of ℓ_2 -reg. LS (I/II) 21(26)	Kernel representation of ℓ_2 -reg. LS (II/II) 22(26)
Inserting the solution $\widehat{w} = \Phi^T \widehat{a} = \Phi^T (K + \lambda I)^{-1} T$ into $y(x, w)$ provides the following prediction for a new input x $y(x, \widehat{w}) = \widehat{w}^T \phi(x) = \widehat{a}^T \Phi \phi(x) = \left(\left((K + \lambda I)^{-1} T \right)^T \Phi \phi(x) \right)^T$ $= \phi(x)^T \Phi^T (K + \lambda I)^{-1} T$ $= \phi(x)^T (\phi(x_1) - \phi(x_2) - \cdots - \phi(x_N)) (K + \lambda I)^{-1} T$ $= (k(x, x_1) - k(x, x_2) - \cdots - k(x, x_N)) (K + \lambda I)^{-1} T,$ where we have made use of the definition of a kernel function $k(x, z) \triangleq \phi(x)^T \phi(z)$ Hence, the solution to the ℓ_2 -regularized least squares problem is expressed in terms of the kernel function $k(x, z)$.	Note (again) that the prediction at x is given by a linear combination of the target values from the training set (expensive). Furthermore, we are required to invert an $N \times N$ matrix (compared to an $M \times M$ matrix in the original formulation), where typically $N \gg M$. Relevant question, So what is the point? The fact that it is expressed only using the kernel function $k(x, z)$ implies that we can work entirely using kernels and avoid introducing basis functions $\phi(x)$. This in turn allows us to implicitly use basis functions of high, even infinite, dimensions $(M \to \infty)$.
Machine Learning T. Schön AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET	Machine Learning T. Schön AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
 Constructing kernels 23(26) 1. Chose a feature mapping φ(x) and then use this to find the corresponding kernel, k(x,z) = φ(x)^Tφ(z) = ∑_{i=1}^M φ_i(x)φ_i(z) 2. Chose a kernel function directly. In this case it is important to verify that it is in fact a kernel. (we will see two examples of this) A function k(x,z) is a kernel iff the Gram matrix K is positive semi-definite for all possible inputs. 3. Form new kernels from simpler kernels. 	Techniques for constructing new kernels24(26)Given valid kernels $k_1(x,z)$ and $k_2(x,z)$, the following are also valid kernels $k(x,z) = ck_1(x,z),$ $k(x,z) = f(x)k_1(x,z)f(z),$ $k(x,z) = ck_1(x,z),$ $k(x,z) = f(x)k_1(x,z)f(z),$ $k(x,z) = q(k_1(x,z)),$ $k(x,z) = f(x)k_1(x,z)f(z),$ $k(x,z) = q(k_1(x,z)),$ $k(x,z) = k_1(x,z)f(z),$ $k(x,z) = q(k_1(x,z)),$ $k(x,z) = exp(k_1(x,z)),$ $k(x,z) = k_1(x,z) + k_2(x,z),$ $k(x,z) = k_1(x,z)k_2(x,z),$ $k(x,z) = k_3(\phi(x),\phi(z)),$ $k(x,z) = x^T Ax,$ where $c > 0$ is a constant, f is a function, q is a polynomial with nonnegative coefficients, $\phi(x)$ is a function from x to \mathbb{R}^M , k_3 is a
4. Start from probabilistic generative models. Machine Learning AUTOMATIC CONTROL T. Schön REGLERTEKNIK	valid kernel in \mathbb{R}^M and $A \succeq 0$. Machine Learning T. Schön Automatic control REGLERTEKNIK LINKÖPINGS UNIVERSITET

-

Example – polynomial kernel A few concepts to summarize lecture 4 Let us investigate if the polynomial kernel $k(x,z) = (x^{T}z + c)^{n}, c > 0$ Neural networks: A nonlinear function (as a function expansion) from a set of input variables is a kernel for the special case n = 2 and a 2D input space $\{x_i\}$ to a set of output variables $\{y_k\}$ controlled by a vector w of parameters. $x = (x_1, x_2)^T$ Backpropagation: Computing the gradients by making use of the chain rule, combined with clever reuse of information that is needed for more than one gradient. $k(x,z) = (x^T z)^2 = (x_1 z_1 + x_2 z_2 + c)^2$ Convolutional neural networks: The hidden units takes their inputs from a small part of the $= x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2 + 2c x_1 z_1 + 2c x_2 z_2 + c^2$ available inputs and all units have the same weights (called weight sharing). Kernel function: A kernel function k(x,z) is defined as an inner product $k(x,z) = \phi(x)^T \phi(z)$, $=\phi(x)^T\phi(z),$ where $\phi(x)$ is a fixed mapping. Kernel trick: (a.k.a. kernel substitution) In an algorithm where the input data x enters only in where the form of scalar products we can replace this scalar product with another choice of kernel. $\phi(x) = \begin{pmatrix} x_1^2 & \sqrt{2}x_1x_2 & x_2^2 & \sqrt{2c}x_1 & \sqrt{2c}x_2 & c \end{pmatrix}^T$ Hence, it contains all possible terms (constant, linear and guadratic) up to order 2. AUTOMATIC CONTROL AUTOMATIC CONTROL Machine Learning Machine Learning REGLERTEKNIK REGLERTEKNIK LINKÖPINGS UNIVERSITET T. Schön LINKÖPINGS UNIVERSITET T. Schön