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1. Summary of lecture 8
2. Directed acyclic graphs
e General properties
e Conditional independence
3. Undirected graphs
e General properties
e Conditional independence
e Relation with directed graphs
4. Factor graphs
e Inference using belief propagation (BP)

— Sum-product algorithm
— Max-sum algorithm

(Chapter 8)
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Summary of lecture 8 (I/lll) 334y | Summary of lecture 8 (Il/lll) 4(34)

In boosting we train a sequence of M models y,, (x), where the
error function used to train a certain model depends on the
performance of the previous models.

The models are then combined to produce the resulting classifier (for
the two class problem) according to

M
Y (x) = sign (Z amym(x)>
m=1

We saw that the AdaBoost algorithm can be interpreted as a
sequential minimization of an exponential cost function.
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We started introducing some basic concepts for probabilistic
graphical models G = (V, L) consisting of
1. a set of nodes V (a.k.a. vertices) representing the random
variables and
2. aset of links £ (a.k.a. edges or arcs) containing elements
(1,j) € L connecting a pair of nodes (i,j) € V and thereby
encoding the probabilistic relations between nodes.

X0 X1 X2 XN
Q { e - ,
W Y2 YN
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Summary of lecture 8 (l1I/1l) 5349 | Why graphs? 6(34)

The set of parents to node j is defined as

P()={ieV|(ij) €&}

The directed graph describes how the joint distribution p(x) factors
into a product of factors p(x; | xp(;)) only depending on a subset of
the variables,

xy) = Hp(x,' \ xP(i))
i€V

Hence, for the state space model on the previous slide, we have

p(X,Y) (xo)HP Xt | X1 HP(yt | xt)
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Simple visualization of probabilistic relationships. b

Can be used to design and motivate new models.

They can provide some insights into the properties of the .
model, such as conditional independence properties.

Some complex computations for inference and learning
can be expressed and visualized.

We are going to consider three types of graphs:

e Directed graphs a.k.a. Bayesian networks
e Undirected graphs a.k.a. Markov random fields

e Factor graphs are a more convenient form that can be
obtained from the above two for the purposes of
inference and learning.
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Directed acyclic graphs 734) | Measured, hidden and multiple variables 8(34)

e Suppose we have K random variables
X1.K = {xl, R ,XK}.

e The most general decomposition of the joint density of
these variables is

plerx) = p(en) [ [ (eeloss)
k=2

e With a directed acyclic graph, we have the following
model.

Hp Xl k)

where P (k) is the parents of node k.

xl 1<)
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e The measured variables are shown with shaded nodes.

e If one has identical nodes, plates can be used to simplify the
graph.

The variable N in the lower right corner gives the number of the

identical nodes.
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Example — Gaussian mixture (I/1l) 9i34) | Example — Gaussian mixture (Il/ll) 10(34)

Suppose we have x1.y i.i.d. and distributed as
K
x; ~ p(x|mu, gk, M) = Y, N (x; Uk, Ak_1>
k=1

fori=1,...,N.

In a Bayesian model, all the unknowns {711k, p1:x, A1:x } are
modelled as random variables.

K
71k ~ Dir(7my.x|ag) & [T
k=1
LK
ik Ak ~p(pix, Ax) = [ TN (i mo, (BoAr) ™ )W (Ax]Wo, vo)
k=1
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Define the latent variables z, = [z,1, -+ ,zux|  forn =1,...,N as
we did in the construction used for EM and VB.

Then the joint density can be written as

K

N Znk
pxinzin) = [ [T [ "N (x; ks Ak_1>

n=1k=1
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Observing conditional independence (I/lll) 1134) | Observing conditional independence (llI/1ll) 12(34)

Example: Polynomial regression.
e Let t1.5 be the values of a function at the points x1.n.
e We would like to find the Kth degree polynomial approximating
this function whose coefficients are shown as w € RX+1,
e w~ N(0,X)
e Then the model can be written as
tn — (P(Xn)w + Un
where ¢(x) = [1,x,x%,...,xK].
o {v,}N isiid. and v, ~ N(0,R).
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Example: Polynomial regression
tn - 4)(xn)w + Un

e The joint density for the problem can be written as

N

p(tin, W) = p(tin|w)p(w) = p(w) HP(filw)

e What is the reason for the equality p(t1.n|w) = [T, p(t;|w)?
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Observing conditional independence (lll/lll) 1334) f Cl from DAGs — Ex 1 14(34)

. . . a,b,c
Example: Polynomial regression p(a,blc) :P( )
p(c) c
_plale)p(ble)p(c)
p(e)
=p(alc)p(blc) a b
t1 tz tN t1 tz tN
= alb

When w is assumed known it is said to “block the path”, rendering
all the variables {t,}"_, conditionally independent.

n=1 Cl rule for tail-to-tail nodes
Important question: Can this be formalized, i.e., can we discern Cl For conditional independence of two nodes, the tail-to-tail nodes
properties directly from the graph? between them must be observed, which blocks the path.
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Cl from DAGs — Ex 2 15(34) Cl from DAGs — Ex 3 16(34)

Head-to-tail nodes:

Head-to-head nodes: a b
a c b

O—0O—0O e Area and bindependenta | b? Yes, since
S pla,b,c)de = [ playp(b)p(c | a,b)de —

? b).
e Area and b independenta L b? p(a)p(b) , c
e How about when cis given; a L b|c? No,
i _ plabe) _
since p(a,b | c) = S =

FW #pa]c)p( | o).

e How about when c is given; a L b|c?

Cl rule for head-to-head nodes

Cl rule for head-to-tail nodes

For conditional independence of two nodes, the head-to-tail nodes For conditional independence of two nodes, the head-to-head nodes
between them must be observed, which blocks the path. between them must be unobserved, which blocks the path.
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D-separation

D-separation examples

D-separation for Directed Acyclic Graphs

Consider a directed acyclic graph in which A, B and C are arbitrary
non-intersecting sets of nodes. We have the property

A LB|C

if, on all possible paths from any node in A to any node in B,
o all tail-to-tail and head-to-tail nodes are in C;

e neither head-to-head nodes nor any of their descendants are in
C.
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e The path from a to b is not blocked by f,
since it is a tail-to-tail node and f not
observed.

e Nor is it blocked by e, which is a
head-to-head node, with an observed
node c as descendant.

e Hence, Cl (2 L b | ) does not follow
from this graph.
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C

e The path froma to b is blocked by f,
since it is a tail-to-tail node and f is
observed.

e |tis also blocked by ¢, head-to-head
node and neither it not its descendants
are observed.

e Hence, Cl (a L b | c) follows from this

graph.
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Undirected graphical model (Markov random fields)

19(34)

e Nodes and edges carry
similar meanings.

e Conditional independence is
determined by graphical
separation.

A 1 B|C

e A more natural
representation for some
models, e.g., images.
e One must take special care
while converting directed
graphs to undirected ones. o U
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Conversion from directed to undirected

e When conversion is done
directly some correlations
that would be present in the
original model can be lost.

e One must “marry” the
parents to get those
correlations back, this is
called moralization.

e Moralization has to be
performed for all the pairs of
parents.
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PDF for an undirected graphical model 134) | Physics interpretation 2(34)

The core result is given by the so-called e The Hammersley-Clifford theorem has a physics interpretation
Hammersley-Clifford theorem using the concept when the functions i (xc) are non-zero everywhere.
of cliques. e [n this case, we can write

xs T4 X5

pe(xc) = exp(—E(xc))
where E(-) is called an energy function.
e The overall graph can then be considered as a lattice with a
potential energy function described by E(x¢).

Hammersley-Clifford Theorem (a basic version) e Finding the maximum of the density can then be considered as
finding the point where the total potential energy is minimized.

Definition (Clique)

A clique C is a subset of nodes {1, .. .,N} of an undirected graph
such that there exists a link between all pairs.

The joint probability distribution p(x71.y) of an undirected graph for

variables 1x1,...,xn} is given b _
{x1,. N} given by p(xin) = HeXP —E(xc)) = - eXP ZE xc)
p X1: N H Pc XC) where Z = Z H Pc xc)
YN e A local maximum then corresponds to an equilibrium.
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Application — image de-noising (I/ll) 23(34) | Application — image de-noising (lI/1l) 24(34)

Suppose we have a noisy image and want to e The density is then

remove the noise.

—logp(x1:n.1:N,, V1N 1:N,) =) Ey(Xii Vi
e Model the true pixel values as x; ;. gp( 1:Ny, 1:Ny yl.Nx,l.Ny) ZXJ: y(Xij Yij)

e Model the measured image pixel values as + Ex(xij, Xig141) + Ex(Xij, Xio1j-1)
7, 4 7) 7 4

vij = xij+oij, vij~N(0,B). + Ex(xij, Xi—1j+1) + Ex(xij, Xig1j-1) + C

e [f the image is 8 bit grayscale, maximization
in general requires the calculation of
256(N=xNy) different combinations.

e We instead maximize w.r.t. only one pixel
keeping the others fixed at their last values.

e Choose the energy functions as

1
Ey(xij, ¥ij) =5 (yij — xi5)°
p

1
Ex(xi, i, %, 5,) =min | —(x; : — x;,:)?,
(¥ jus X o) ((xz( iy~ Yiaja) 7) e This is called lterative Conditional Modes

(ICM).
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Road surface estimation

Aim: Estimate the road surface using images from a stereo camera.

Solved using a Conditional Random Field (CRF) model and message
passing.

Lorentzon, M. and Andersson, T. Road surface modeling using stereo vision, Master’s thesis, LiTH-ISY-EX-12/4582-SE,
Linképing university, Sweden, 2012.

http://liu.diva-portal.org/smash/record. jsf?searchId=2&pid=diva2:532767
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Inference in graphical models

Inference in graphical models amounts to computing the posterior
distribution of one or more of the nodes that are not observed.

The structure in the graphical model is exploited in finding inference
algorithms.

Most inference algorithms can be expressed in terms of message
passing algorithms, where local messages are propagated around
the graph.
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Inference on a chain

The message 1, (x,) can be evaluated recursively

Z Pu_10(Xn—1,Xn) (Z .. >

Xn—1 Xn—2

= Z lpn—l,n (xn—l/ xn);’ll’é (x”—l)’

Xn—1

Ha(Xn) =

where the recursion is started by 1, (x2) = ¥, P1.2(x1,X2).
Similarly, for the message 7i4(x,,) we have

.uﬁ(xn) = Z Yunt1(Xn, Xnt1) (Z .. )

Xn+1 Xn+2
= Z 1 (Xn, Xn1) g (Xnt1)-
Xnt+1
The generalization of this message passing idea to trees is referred
to as the sum-product algorithm.
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Factor graphs

xy Z2 Z3

e Both directed and undirected
graphs give a factorial
representation for the joint
density. fa fo 2 fa
e Factor graphs make this
factorization more explicit by  p(x1.4) = f,(x1, x2)fp (x1, x2)fe (%2, x3)fa (x3)

adding nodes for each factor.
g gf
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e Both directed and undirected
graphs can be converted into
factor graphs.
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Inference in factor graphs 9i34) f Inference in factor graphs 0(34)

e We have the joint density for the graph on
the right given as

p(x17) o fi(x1)fa (x1:3)f3(x2)fa(x2, ¥7)f5(x3:6)

e When we have measurements of some
variables, we might need the posteriors of
some or all unobserved variables.

_ plaz)
p(x2,%6)

— p(x1:7)
Zx11x3/x4/x5,X7 p (x1:7)
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p(x1, X3, X4, X5, X7|X2, X6) =
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e Making inference requires marginals.

e [t is possible to calculate the marginals on a graph
efficiently by passing local messages along the
graph.

e Two interconnected types of messages are
considered

e Messages from variable nodes to factor nodes

I1

frene(xi)\fj

Hxi—f; (xi) = Hfp—x; <xi>

e Messages from factor nodes to variable nodes

.ufj—>xi (xi) = Z f] H
xgene(fj)\x;  xg€ne(f;)\x;

ng—>f]~ (xe)
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Inference in factor graphs 134) @ Inference in factor graphs 2(34)

Sum Product Algorlthm
e Calculate messages from variable nodes to factor nodes

H Hf—x; (x:)
feene(xi)\f;

e Calculate messages from factor nodes to variable nodes
W)= Y. fi TI Haor(x0)
xeene(f;)\x;  xe€ne(f;)\x;

e lterate messages until convergence. (Different iteration schemes can
be designed.)
e After convergence, the marginals are calculated as

IT moon(x)

fe€ne(x;)

in—>f/ (xi) =
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e The values in the observed nodes are just
substituted into the factors and not integrated out.
e [f the graph is a tree, the algorithm can calculate
all the marginals by making
e a forward pass from the root to the leaves
e a backward pass from the leaves to the root.
e The sum-product algorithm gives the exact results
in a tree structured graph.

e The sum-product algorithm is equivalent to a
Kalman smoother for linear Gaussian dynamical
systems.
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Inference in factor graphs A few concepts to summarize lecture 9

e When the sum-product algorlthm 1S app“ed to Directed graphs: A graphical description of a probabilistic model where the conditional

directed graphs without loops the resulting probabilities correspond to edges.
algorithm is sometimes referred to as belief D-separation: Checking for conditional independence is somewhat troublesome for directed
propagation. 1 fa Z2 graphs requiring a condition called D-separation to be satisfied.

e Ina graph with Ioops, the sum-product algorithm Undirected graphs: Another graphical representation where conditional independence is

. . given by simple graph separation.
is not exact and actually might not converge. . . . . o
Factor graphs: An extension of directed and undirected graphs which makes the probabilistic

e People anyway apply it to the graphs with loops fo fe factors explicit.
also, which is called loopy belief propagation. o Belief propagation: A probabilistic inference type using graphs where local messages are
. . . . C . 3 ted th h nodes.
e Even in this form, it has important applications in propagated among fhe graph nodes
communications (decoding of error Correcting Sum-product algorithm: A form of belief propagation which gives exact results only for trees
but also applied to graphs with loops anyway.
codes).
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