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We consider the following scalar linear system.

Tyl = QfEk + Uk (1>
Y = O5l‘k + e (2)

where
e 1; € R is the state variable with initial distribution zq ~ N (x¢; Zg, X).
e 7. € R is the measurement.
e 0 is an unknown parameter with prior distribution 6 ~ N (6;0, 03)

e The white process noise vy € R and white measurement noise e; € R are distributed

as
Vg vg | |0 03 0
(LT &) @
The aim is to find a possibly approximate estimate of the posterior distribution p(6, xo.x |yo.n)-

There is no exact formula for this posterior distribution. in the variational Bayesian
inference we make the approximation

p(0, zo.n|yon) = q(0, To.n) £ qo(0)ga(zoN) (4)

It is known that, in the iterative scheme of minimizing KL(q(8, xo.x)||p(0, zo.n|v0:N)), i-€.,
variational Bayes, one gets the following identities.

log qs(0) =E,, [log p(yo.n, To:n, 0)] + const. (5)
log ¢.(wo.n) =Fy, [log p(yo.n, To.n, 0)] + const. (6)

We can write the joint density p(yo.n, Zo.n, 0) as follows.

P(Yons To-n, 0) =p(Yo.n |[To.n)p(T1:8|To.n -1, 0)p(T0)p(0) (7)
= Hp(yzll’z) Hp(ll?ifll?ifla 0)p(xo)p(0) (8)
= HJ\/'(yi; 0.5z;,02) HN(% Oxi_1, 05)N (20; Zo, )N (6;0,05)  (9)



Taking the logarithm of both sides, we get.

05
10gp(y0:N7 To:N, 9) = Z _F
i=0 €
-+ const.

where we included the terms that do not involve any variables into the constant term.

e Calculation of py(6):

log gs(0) =B, [log p(yo.v, To.v, 0)] + const. (11)
=FE,, [log p(21.x]20.n-1,0) + log p(#)] + const. (12)
05
=L, 02 —(x; — Ox;_1)* + log p(6) | + const. (13)
Li=1
05
=L, Z —g(fﬂi — 0z;_1)*| + logp(0) + const. (14)
Li=1 v
Y05
= _?qu (w; — 0x;_1)* +log p(#) + const. (15)
i=1 v
M 05
= _g( 207,71 + 0°x? )} + log p(6) + const. (16)
=1 b v
2
= 3 _ 05 (0 — xixil) + log p(0) + const. (17)
i=1 or T} T34
—Zlog./\/< p; Sl o2/x? 1) +1og N'(6;0, 05) + const,. (18)

where only the terms in (10) depending on only € are kept and the rest are included
into the constant. The terms Z;z;,_; and z7 | are defined as

TiTi—1 = qu (xixifl)

2 A 2
and  xi | = By, (274

Now, we can write gg(f) based on (18) as

where
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e Calculation of p,(xo.n):

log ¢z (o) =Eq, [logp(yow, Zo:N, 9)] + const. (24)
=E,, [logp(yo.n|To.n) + log p(x1.n|To.N—1,0) + log p(zg)] + const. (25)
=log p(yo.n|zo.n) + Ey, [log p(z1.n5|z0.n-1,0)] + log p(xo) + const.

(26)
&L 0.5
=log p(yo.n|To:n) + Ey, Z ——2 ; — 0z;_1)*| +log p(xo) + const.
(27)
27 05 0.5
=logp(yo.nlwon) + ) | =5 (@i = Oria)* = — Var(@%?l}
i=1 b v v
+ log p(xo) + const. (28)
N

=log p(yo.n|To.n) + Z [log N (23 0z;_1,07) + log N (2;_1; 0, 02/ Var(6))]

=1

+ log p(z0) + const. (29)
N
=log p(yo.n|To.n) + log p(z1.x|T0.N-1,0) + Zlog./\f x;_1;0,02/ Var(6))
i=1
+ log p(zg) + const. (30)

where only the terms in (10) depending on only zo.y are kept and the rest are
included into the constant. The terms 6 and Var 6 are

0 =E,,(0) (31)

Var(0) =E,,((0 — 0)?) (32)

which are equivalent to those defined in the calculation of gy(6). Now, we can write
Go(To.n) as

0 (50%) o< Dy oo |zon1, ) [] Mas: 0,02/ Var@))p(a)  (33)

1=0

in which all of the terms are Gaussian. The densities [[~, N(x;_1;0, 02/ Var(6))
must be interpreted as a pseudo likelihood which provides extra measurements de-
fined as

gkzozxk—i-ék (34)

for k =0,...,N — 1 where &, ~ N(é;;0,02/ Var()). The final density estimate is
written as

Q;c(xow) = p(xO:N|ZUO:N7 Yo:N—1, 5) (35>

which is a Gaussian density that can be calculated by running a Kalman smoother
on the data yo.n and go.y_1 using the parameter estimate # in the state model.



