The Basic Example Solved with Variational Bayesian Inference

Umut Orguner

March 3, 2011

We consider the following scalar linear system.

$$x_{k+1} = \theta x_k + v_k \tag{1}$$

$$y_k = 0.5x_k + e_k \tag{2}$$

where

- $x_k \in \mathbb{R}$ is the state variable with initial distribution $x_0 \sim \mathcal{N}(x_0; \bar{x}_0, \Sigma_0)$.
- $y_k \in \mathbb{R}$ is the measurement.
- θ is an unknown parameter with prior distribution $\theta \sim \mathcal{N}(\theta; 0, \sigma_{\theta}^2)$
- The white process noise $v_k \in \mathbb{R}$ and white measurement noise $e_k \in \mathbb{R}$ are distributed as

$$\begin{bmatrix} v_k \\ e_k \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} v_k \\ e_k \end{bmatrix}; \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_v^2 & 0 \\ 0 & \sigma_e^2 \end{bmatrix} \right)$$
 (3)

The aim is to find a possibly approximate estimate of the posterior distribution $p(\theta, x_{0:N}|y_{0:N})$. There is no exact formula for this posterior distribution. in the variational Bayesian inference we make the approximation

$$p(\theta, x_{0:N}|y_{0:N}) \approx q(\theta, x_{0:N}) \triangleq q_{\theta}(\theta)q_x(x_{0:N})$$
(4)

It is known that, in the iterative scheme of minimizing $KL(q(\theta, x_{0:N})||p(\theta, x_{0:N}|y_{0:N}))$, i.e., variational Bayes, one gets the following identities.

$$\log q_{\theta}(\theta) = E_{q_x} \left[\log p(y_{0:N}, x_{0:N}, \theta) \right] + \text{const.}$$
(5)

$$\log q_x(x_{0:N}) = E_{q_{\theta}} \left[\log p(y_{0:N}, x_{0:N}, \theta) \right] + \text{const.}$$
(6)

We can write the joint density $p(y_{0:N}, x_{0:N}, \theta)$ as follows.

$$p(y_{0:N}, x_{0:N}, \theta) = p(y_{0:N}|x_{0:N})p(x_{1:N}|x_{0:N-1}, \theta)p(x_0)p(\theta)$$
(7)

$$= \prod_{i=0}^{N} p(y_i|x_i) \prod_{i=1}^{N} p(x_i|x_{i-1}, \theta) p(x_0) p(\theta)$$
(8)

$$= \prod_{i=0}^{N} \mathcal{N}(y_i; 0.5x_i, \sigma_e^2) \prod_{i=1}^{N} \mathcal{N}(x_i; \theta x_{i-1}, \sigma_v^2) \mathcal{N}(x_0; \bar{x}_0, \sigma_0^2) \mathcal{N}(\theta; 0, \sigma_\theta^2)$$
(9)

Taking the logarithm of both sides, we get.

$$\log p(y_{0:N}, x_{0:N}, \theta) = \sum_{i=0}^{N} -\frac{0.5}{\sigma_e^2} (y_i - 0.5x_i)^2 + \sum_{i=1}^{N} -\frac{0.5}{\sigma_v^2} (x_i - \theta x_{i-1})^2 - \frac{0.5}{\sigma_0^2} (x_0 - \bar{x}_0)^2 - \frac{0.5}{\sigma_\theta^2} \theta^2 + \text{const.}$$
(10)

where we included the terms that do not involve any variables into the constant term.

• Calculation of $p_{\theta}(\theta)$:

$$\log q_{\theta}(\theta) = E_{q_x} \left[\log p(y_{0:N}, x_{0:N}, \theta) \right] + \text{const.}$$
(11)

$$= E_{q_x} \left[\log p(x_{1:N} | x_{0:N-1}, \theta) + \log p(\theta) \right] + \text{const.}$$
 (12)

$$= E_{q_x} \left[\sum_{i=1}^{N} -\frac{0.5}{\sigma_v^2} (x_i - \theta x_{i-1})^2 + \log p(\theta) \right] + \text{const.}$$
 (13)

$$= E_{q_x} \left[\sum_{i=1}^{N} -\frac{0.5}{\sigma_v^2} (x_i - \theta x_{i-1})^2 \right] + \log p(\theta) + \text{const.}$$
 (14)

$$= \sum_{i=1}^{N} -\frac{0.5}{\sigma_v^2} E_{q_x} (x_i - \theta x_{i-1})^2 + \log p(\theta) + \text{const.}$$
 (15)

$$= \sum_{i=1}^{N} \left[-\frac{0.5}{\sigma_v^2} \left(-2\theta \overline{x_i x_{i-1}} + \theta^2 \overline{x_{i-1}^2} \right) \right] + \log p(\theta) + \text{const.}$$
 (16)

$$= \sum_{i=1}^{N} \left[-\frac{0.5}{\sigma_v^2 / \overline{x_{i-1}^2}} \left(\theta - \frac{\overline{x_i x_{i-1}}}{\overline{x_{i-1}^2}} \right)^2 \right] + \log p(\theta) + \text{const.}$$
 (17)

$$= \sum_{i=1}^{N} \log \mathcal{N}\left(\theta; \frac{\overline{x_i x_{i-1}}}{\overline{x_{i-1}^2}}, \sigma_v^2 / \overline{x_{i-1}^2}\right) + \log \mathcal{N}(\theta; 0, \sigma_\theta^2) + \text{const.}$$
 (18)

where only the terms in (10) depending on only θ are kept and the rest are included into the constant. The terms $\overline{x_i x_{i-1}}$ and $\overline{x_{i-1}^2}$ are defined as

$$\overline{x_i x_{i-1}} \triangleq E_{q_x}(x_i x_{i-1}) \quad \text{and} \quad \overline{x_{i-1}^2} \triangleq E_{q_x}(x_{i-1}^2)$$
 (19)

Now, we can write $q_{\theta}(\theta)$ based on (18) as

$$q_{\theta}(\theta) \propto \prod_{i=1}^{N} \mathcal{N}\left(\theta; \frac{\overline{x_i x_{i-1}}}{\overline{x_{i-1}^2}}, \sigma_v^2 / \overline{x_{i-1}^2}\right) \mathcal{N}(\theta; 0, \sigma_{\theta}^2)$$
 (20)

$$= \mathcal{N}\left(\theta; \overline{\theta}, \operatorname{Var}(\theta)\right)\right) \tag{21}$$

where

$$\operatorname{Var}(\theta) = \left(\sum_{i=1}^{N} \frac{\overline{x_{i-1}^2}}{\sigma_v^2} + \frac{1}{\sigma_\theta^2}\right)^{-1} \tag{22}$$

$$\overline{\theta} \triangleq \operatorname{Var}(\theta) \sum_{i=1}^{N} \frac{\overline{x_i x_{i-1}}}{\sigma_v^2}$$
 (23)

• Calculation of $p_x(x_{0:N})$:

$$\log q_{x}(x_{0:N}) = E_{q_{\theta}} \left[\log p(y_{0:N}, x_{0:N}, \theta) \right] + \text{const.}$$

$$= E_{q_{\theta}} \left[\log p(y_{0:N}|x_{0:N}) + \log p(x_{1:N}|x_{0:N-1}, \theta) + \log p(x_{0}) \right] + \text{const.}$$

$$= \log p(y_{0:N}|x_{0:N}) + E_{q_{\theta}} \left[\log p(x_{1:N}|x_{0:N-1}, \theta) \right] + \log p(x_{0}) + \text{const.}$$

$$(26)$$

$$= \log p(y_{0:N}|x_{0:N}) + E_{q_{\theta}} \left[\sum_{i=0}^{N} -\frac{0.5}{\sigma_{v}^{2}} (x_{i} - \theta x_{i-1})^{2} \right] + \log p(x_{0}) + \text{const.}$$

$$(27)$$

$$= \log p(y_{0:N}|x_{0:N}) + \sum_{i=1}^{N} \left[-\frac{0.5}{\sigma_{v}^{2}} (x_{i} - \overline{\theta} x_{i-1})^{2} - \frac{0.5}{\sigma_{v}^{2}} \operatorname{Var}(\theta) x_{i-1}^{2} \right]$$

$$+ \log p(x_{0}) + \text{const.}$$

$$(28)$$

$$= \log p(y_{0:N}|x_{0:N}) + \sum_{i=1}^{N} \left[\log \mathcal{N}(x_{i}; \overline{\theta} x_{i-1}, \sigma_{v}^{2}) + \log \mathcal{N}(x_{i-1}; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta)) \right]$$

$$+ \log p(x_{0}) + \text{const.}$$

$$(29)$$

$$= \log p(y_{0:N}|x_{0:N}) + \log p(x_{1:N}|x_{0:N-1}, \overline{\theta}) + \sum_{i=1}^{N} \log \mathcal{N}(x_{i-1}; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta))$$

$$+ \log p(x_{0}) + \text{const.}$$

$$(30)$$

where only the terms in (10) depending on only $x_{0:N}$ are kept and the rest are included into the constant. The terms $\bar{\theta}$ and $\operatorname{Var} \theta$ are

$$\overline{\theta} = E_{q_{\theta}}(\theta) \tag{31}$$

$$Var(\theta) = E_{q_{\theta}}((\theta - \overline{\theta})^2)$$
(32)

which are equivalent to those defined in the calculation of $q_{\theta}(\theta)$. Now, we can write $q_x(x_{0:N})$ as

$$q_x(x_{0:N}) \propto p(y_{0:N}|x_{0:N})p(x_{1:N}|x_{0:N-1},\overline{\theta}) \prod_{i=0}^{N-1} \mathcal{N}(x_i;0,\sigma_v^2/\text{Var}(\theta))p(x_0)$$
(33)

in which all of the terms are Gaussian. The densities $\prod_{i=1}^{N} \mathcal{N}(x_{i-1}; 0, \sigma_v^2 / \text{Var}(\theta))$ must be interpreted as a pseudo likelihood which provides extra measurements defined as

$$\tilde{y}_k = 0 = x_k + \tilde{e}_k \tag{34}$$

for k = 0, ..., N - 1 where $\tilde{e}_k \sim \mathcal{N}(\tilde{e}_k; 0, \sigma_v^2 / \text{Var}(\theta))$. The final density estimate is written as

$$q_x(x_{0:N}) = p(x_{0:N}|y_{0:N}, \tilde{y}_{0:N-1}, \overline{\theta})$$
(35)

which is a Gaussian density that can be calculated by running a Kalman smoother on the data $y_{0:N}$ and $\tilde{y}_{0:N-1}$ using the parameter estimate $\bar{\theta}$ in the state model.