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Abstract

In these note we provide some important properties of the multivari-
ate Gaussian, which are important building blocks for more sophisticated
probabilistic models. We also illustrate how these properties can be used
to derive the Kalman filter.

1 Introduction

The most common way of parameterizing the multivariate Gaussian (a.k.a. Nor-
mal) density function is according to

N (x ; µ,Σ) ,
1

(2π)n/2
√

det Σ
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
(1)

where x ∈ Rn denotes a random vector that is Gaussian distributed, with mean
value µ ∈ Rn and covariance Σ ∈ Sn

++ (i.e., the n-dimensional positive definite
cone). Furthermore, x ∼ N (µ,Σ) states that the random vector x is Gaussian
with mean µ and covariance Σ. The parameterizing (1) is sometimes referred to
as the moment form. An alternative parameterization of the Gaussian density
is provided by the information form, which is also referred to as the canonical
form or the natural form. This parameterization

N−1(x; ν,Λ) ,
exp

(
− 1

2ν
T Λ−1ν

)
(2π)n/2

√
det Λ−1

exp

(
−1

2
xT Λx+ xT ν

)
, (2)

is parameterized by the information vector ν and (Fisher) information matrix
Λ. It is straightforward to see the relationship between the two parameteriza-
tions (1) and (2),

N (x ; µ,Σ) =
1

(2π)n/2
√

det Σ
exp

(
−1

2
xT Σ−1x+ xT Σ−1µ− 1

2
µT Σ−1µ

)
=

exp
(
− 1

2µ
T Σ−1µ

)
(2π)n/2

√
det Σ

exp

(
−1

2
xT Σ−1x+ xT Σ−1µ

)
, (3)



which also reveals the that the parameters used in the information form are
given by a scaled version of the mean,

ν = Σ−1µ (4a)

and the inverse of the covariance matrix (sometimes also called the precision
matrix)

Λ = Σ−1. (4b)

The moment form (1) and the information form (2) results in different compu-
tations. It is useful to understand these differences in order to derive efficient
algorithms.

2 Partitioned Gaussian Densities

Let us, without loss of generality, assume that random vector x, its mean µ and
its covariance Σ can be partitioned according to

x =

(
xa
xb

)
, µ =

(
µa

µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
(5)

where for reasons of symmetry Σba = ΣT
ab. It is also useful to write down the

partitioned information matrix

Λ = Σ−1 =

(
Λaa Λab

Λba Λbb

)
, (6)

since this form will provide simpler calculations below. Note that, since the
inverse of a symmetric matrix is also symmetric, we have Λab = ΛT

ba.
We will now derive two important and very useful theorems for partitioned

Gaussian densities. These theorems will explain the two operations marginal-
ization and conditioning.

Theorem 1 (Marginalization) Let the random vector x be Gaussian dis-
tributed according to (1) and let it be partitioned according to (5), then the
marginal density p(xa) is given by

p(xa) = N (xa ; µa,Σaa) . (7)

Proof: See Appendix A.1. �

Theorem 2 (Conditioning) Let the random vector x be Gaussian distributed
according to (1) and let it be partitioned according to (5), then the conditional
density p(xa | xb) is given by

p(xa | xb) = N
(
xa ; µa|b,Σa|b

)
, (8a)

where

µa|b = µa + ΣabΣ
−1
bb (xb − µb), (8b)

Σa|b = Σaa − ΣabΣ
−1
bb Σba, (8c)

which using the information matrix can be written,

µa|b = µa − Λ−1
aa Λab(xb − µb), (8d)

Σa|b = Λ−1
aa . (8e)

Proof: See Appendix A.1. �
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3 Affine Transformations

In the previous section we dealt with partitioned Gaussian densities, and derived
the expressions for the marginal and conditional densities expressed in terms of
the parameters of the joint density. We shall now take a different starting point,
namely that we are given the marginal density p(xa) and the conditional density
p(xb | xa) (affine in xa) and derive expressions for the joint density p(xa, xb),
the marginal density p(xb) and the conditional density p(xa | xb).
Theorem 3 (Affine transformation) Assume that xa, as well as xb condi-
tioned on xa, are Gaussian distributed according to

p(xa) = N (xa ; µa,Σa) , (9a)

p(xb | xa) = N
(
xb ; Mxa + b,Σb|a

)
, (9b)

where M is a matrix (of appropriate dimension) and b is a constant vector. The
joint distribution of xa and xb is then given by

p(xa, xb) = N
((

xa
xb

)
;

(
µa

Mµa + b

)
, R

)
, (9c)

with

R =

(
MT Σ−1

b|aM + Σ−1
a −MT Σ−1

b|a
−Σ−1

b|aM Σ−1
b|a

)−1

=

(
Σa ΣaM

T

MΣa Σb|a +MΣaM
T

)
. (9d)

Proof: See Appendix A.2. �
Combining the results in Theorems 1, 2 and 3 we also get the following

corollary.

Corollary 1 (Affine transformation – marginal and conditional) As-
sume that xa, as well as xb conditioned on xa, are Gaussian distributed according
to

p(xa) = N (xa ; µa,Σa) , (10a)

p(xb | xa) = N
(
xb ; Mxa + b,Σb|a

)
, (10b)

where M is a matrix (of appropriate dimension) and b is a constant vector. The
marginal density of xb is then given by

p(xb) = N (xb ; µb,Σb) , (10c)

with

µb = Mµa + b, (10d)

Σb = Σb|a +MΣaM
T . (10e)

The conditional density of xa given xb is

p(xa | xb) = N
(
xa ; µa|b,Σa|b

)
, (10f)

with

µa|b = Σa|b

(
MT Σ−1

b|a(xb − b) + Σ−1
a µa

)
= µa + ΣaM

T Σ−1
b (xb − b−Mµa),

(10g)

Σa|b =
(

Σ−1
a +MT Σ−1

b|aM
)−1

= Σa − ΣaM
T Σ−1

b MΣa. (10h)
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4 Example – Kalman filter

Consider the following linear Gaussian state-space model

xt+1 = Axt + bt + wt, (11a)

yt = Cxt + dt + et, (11b)

where

wt ∼ N (0, Q), et ∼ N (0, R), (12)

and bt and dt are known vectors (e.g. from a known input). Furthermore,
assume that the initial condition is Gaussian according to

x1 ∼ N (x̂1|0, P1|0). (13)

As pointed out in the previous section, affine transformations conserve Gaus-
sianity. Hence, the filtering density p(xt | y1:t) and the 1-step prediction density
p(xt | y1:t−1) will also be Gaussian for any t ≥ 1 (with p(x1 | y0) , p(x1)).

In this probabilistic setting, we can view the Kalman filter as a filter keeping
track of the mean vector and covariance matrix of the filtering density (and the
1-step prediction density). Since these statistics are sufficient for the Gaussian
distribution, the Kalman filter is clearly optimal, since it holds all information
about the filtering density and 1-step prediction density.

To derive that Kalman filter, all that we need is Corollary 1. The derivation
is done inductively. Hence, assume that

p(xt | y1:t−1) = N
(
xt−1 ; x̂t|t−1, Pt|t−1

)
(14a)

(which, according to (13) is true at t = 1). From (11b) we have

p(yt | xt, y1:t−1) = p(yt|xt) = N (yt ; Cxt + dt, R) . (14b)

By identifying xt ↔ xa and yt ↔ xb and using Corollary 1 (the part concerning
the conditional density) we get

p(xt | y1:t) = N
(
xt ; x̂t|t, Pt|t

)
, (15)

with

Pt|t = Pt|t−1 −KtCPt|t−1, (16a)

Kt = Pt|t−1C
TS−1

t , (16b)

St = CPt|t−1C
T +R. (16c)

Furthermore,

x̂t|t = Pt|t
(
CTR−1(yt − dt) + (Pt|t−1)−1x̂t|t−1

)
= (Pt|t−1 −KtCPt|t−1)CTR−1(yt − dt) + Pt|t(Pt|t−1)−1x̂t|t−1

= (Pt|t−1C
T︸ ︷︷ ︸

=KtSt

−Kt CPt|t−1C
T︸ ︷︷ ︸

=St−R

)R−1(yt − dt) + Pt|t(Pt|t−1)−1x̂t|t−1

= Kt(St − St +R)R−1(yt − dt) + (Pt|t−1 −KtCPt|t−1)(Pt|t−1)−1x̂t|t−1

= Kt(yt − dt) + (I −KtC)x̂t|t−1

= x̂t|t−1 +Kt(yt − dt − Cx̂t|t−1), (17)
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which completes the measurement update of the filter.
For the time update, note that by (11a)

p(xt+1 | xt, y1:t) = p(xt+1 | xt) = N (xt+1 ; Axt + bt, Q) . (18)

From (15) and (18) we can again make use of Corollary 1 (the part concerning
the marginal density). By identifying xt ↔ xa, xt+1 ↔ xb we get

p(xt+1 | y1:t) = N
(
xt+1 ; x̂t+1|t, Pt+1|t

)
, (19)

with

x̂t+1|t = Ax̂t|t + bt, (20)

Pt+1|t = APt|tA
T +Q, (21)

which completes the time update and the derivation of the Kalman filter.

Remark 1 The extra conditioning on y1:t in both densities (15) and (18) does
not change the properties of the Gaussians according to Corollary 1. Since we
are conditioning on it in both distributions, y1:t can be viewed as a constant.
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A Proofs

A.1 Partitioned Gaussian Densities

Proof 1 (Proof of Theorem 1) The marginal density p(xa) is by definition
obtained by integrating out the xb variables from the joint density p(xa, xb) ac-
cording to

p(xa) =

∫
p(xa, xb)dxb, (22)

where

p(xa, xb) =
1

(2π)n/2
√

det Σ
exp(E) (23)

and Σ was defined in (5) and the exponent E is given by

E = −1

2
(xa − µa)T Λaa(xa − µa)− 1

2
(xa − µa)T Λab(xb − µb)

− 1

2
(xb − µb)

T Λba(xa − µa)− 1

2
(xb − µb)

T Λbb(xb − µb)

= −1

2

(
xTb Λbbxb − 2xTb Λbb(µb − Λ−1

bb Λba(xa − µa))− 2xTa Λabµb

+ 2µT
a Λabµb + µT

b Λbbµb + xTa Λaaxa − 2xTa Λaaµa + µT
a Λaaµa

)
(24)

Completing the squares in the above expression results in

E = −1

2
(xb − (µb − Λ−1

bb Λba(xa − µa)))T Λbb(xb − (µb − Λ−1
bb Λba(xa − µa)))

+
1

2

(
xTa ΛabΛ

−1
bb Λbaxa − 2xTa ΛabΛ

−1
bb Λbaµa + µaΛabΛ

−1
bb Λbaµa

)
− 1

2

(
xTa Λaaxa − 2xTa Λaaµa + µT

a Λaaµa

)
= −1

2
(xb − (µb − Λ−1

bb Λba(xa − µa)))T Λbb(xb − (µb − Λ−1
bb Λba(xa − µa)))

− 1

2
(xa − µa)T (Λaa − ΛabΛ

−1
bb Λba)(xa − µa) (25)

Using the block matrix inversion provided in (56) we have

Σ−1
aa = Λaa − ΛabΛ

−1
bb Λba. (26)

which together with (25) results in

p(xa, xb) =
1

(2π)n/2
√

det Σ
exp(E1) exp(E2) (27)

where

E1 = −1

2
(xb − (µb − Λ−1

bb Λba(xa − µa)))T Λbb(xb − (µb − Λ−1
bb Λba(xa − µa))),

(28a)

E2 = −1

2
(xa − µa)T (Λaa − ΛabΛ

−1
bb Λba)(xa − µa). (28b)
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Now, since E2 is independent of xb we have

p(xa) =
1

(2π)n/2
√

det Σ

∫
exp(E1)dxb exp(E2). (29)

Since the integral of a density function is equal to one, we have∫
exp(E1)dxb = (2π)nb/2

√
det Λ−1

bb (30)

which inserted in (29) results in

p(xa) =

√
det Λ−1

bb

(2π)na/2
√

det Σ

∫
exp((xa − µa)T Σ−1

aa (xa − µa)). (31)

Finally, the determinant property (54b) gives

det Σ = det Σaa det(Σbb − ΣbaΣ−1
aa Σab) (32)

and the block matrix inversion property (56) provides

Λ−1
bb = Σbb − ΣbaΣ−1

aa Σab. (33)

Now, inserting (32) and (33) into (31) concludes the proof.

Proof 2 (Proof of Theorem 2) We will make use of the fact that

p(xa | xb) =
p(xa, xb)

p(xb)
, (34)

which according to the definition (1) is

p(xa | xb) =

√
det Σbb

(2π)na/2 det Σ
exp(E), (35)

E = −1

2
(x− µ)T Σ−1(x− µ) +

1

2
(xb − µb)Σ

−1
bb (xb − µb). (36)

Let us first consider the constant in front of the exponential in (35),√
det Σbb

(2π)na/2 det Σ
. (37)

Using the result on determinants given in (54b) we have

det Σ = det

(
Σaa Σab

Σba Σbb

)
= det Σbb det(Σaa − ΣabΣ

−1
bb Σba) (38)

which inserted into (37) results in the following expression for the constant in
front of the exponent

1

(2π)na/2 det(Σaa − ΣabΣ
−1
bb Σba)

(39)
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Let us now continue by studying the exponent of (35), which using the precision
matrix is given by

E = −1

2
(x− µ)T Λ(x− µ)− 1

2
(xb − µb)Σ

−1
bb (xb − µb)

= −1

2
(xa − µa)T Λaa(xa − µa)− 1

2
(xa − µa)T Λab(xb − µb)

− 1

2
(xb − µb)

T Λba(xa − µa)− 1

2
(xb − µb)

T (Λbb − Σ−1
bb )(xb − µb). (40)

Reordering the terms in (40) results in

E = −1

2
xTa Λaaxa + xTa (Λaaµa − Λab(xb − µb))

− 1

2
µT
a Λaaµa + µT

a Λab(xb − µb)−
1

2
(xb − µb)

T (Λbb − Σ−1
bb )(xb − µb). (41)

Using the block matrix inversion result (56)

Σ−1
bb = Λbb − ΛbaΛ−1

aa Λab (42)

in (41) results in

E = −1

2
xTa Λaaxa + xTa (Λaaµa − Λab(xb − µb))

− 1

2
µT
a Λaaµa + µT

a Λab(xb − µb)−
1

2
(xb − µb)

T ΛbaΛ−1
aa Λab(xb − µb). (43)

We can now complete the squares, which gives us

E = −1

2
(xa − (Λaaµa − Λab(xb − µb)))

T
Λaa (xa − (Λaaµa − Λab(xb − µb))) .

(44)

Finally, combining (39) and (44) results in

p(xa | xb) =
1

(2π)nx/2 det Λ−1
aa

exp(E) (45)

which concludes the proof.

A.2 Affine Transformation

Proof 3 (Proof of Theorem 3) We start by introducing the vector

x =

(
xa
xb

)
(46)

for which the joint distribution is given by

p(x) = p(xb | xa)p(xa) =
(2π)−(na+nb)/2√

det Σb|a det Σa

e−
1
2E , (47)

where

E = (xb −Mxa − b)T Σ−1
b|a(xb −Mxa − b) + (xa − µa)T Σ−1

a (xa − µa). (48)
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Introduce the following variables

e = xa − µa, (49a)

f = xb −Mµa − b, (49b)

which allows us to write the exponent (48) as

E = (f −Me)T Σ−1
b|a(f −Me) + eT Σ−1

a e

= eT (MT Σ−1
b|aM + Σ−1

a )e− eTMT Σ−1
b|af − fΣ−1

b|aMe+ fT Σ−1
b|af

=

(
e
f

)T
(
MT Σ−1

b|aM + Σ−1
a −MT Σ−1

b|a
−Σ−1

b|aM Σ−1
b|a

)
︸ ︷︷ ︸

,R−1

(
e
f

)

=

(
xa − µa

xb −Mµa − b

)T

R−1

(
xa − µa

xb −Mµa − b

)
(50)

Furthermore, from (54b) we have that

1

detR
= detR−1 = det

(
Σ−1

b|a

)
det
(
MT Σ−1

b|aM + Σ−1
a −MT Σ−1

b|aΣb|aΣ−1
b|aM

)
= det

(
Σ−1

b|a

)
det
(
Σ−1

a

)
=

1

det
(
Σb|a

)
det (Σa)

.

(51)

Hence, from (47), (50) and (51) we can write the joint PDF for x as

p(x) =
(2π)−(na+nb)/2

√
detR

exp

(
−1

2

((
xa − µa

xb −Mµa − b

)T

R−1

(
xa − µa

xb −Mµa − b

)))

= N
(
x ;

(
µa

Mµa + b

)
, R

)
(52)

which concludes the proof.

B Matrix Identities

This appendix provides some useful results from matrix theory.
Consider the following block matrix

M =

(
A B
C D

)
(53)

The following results hold for the determinant

det

(
A B
C D

)
= detAdet(D − CA−1B︸ ︷︷ ︸

∆A

), (54a)

= detD det(A−BD−1C︸ ︷︷ ︸
∆D

), (54b)
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where ∆D = A − BD−1C is referred to as the Schur complement of D in M
and ∆A = D − CA−1B is referred to as the Schur complement of A in M .

When the block matrix (53) is invertible its inverse can be written according
to (

A B
C D

)−1

=

(
I −A−1B
0 I

)(
A−1 0

0 ∆−1
A

)(
I 0

−CA−1 I

)
=

(
A−1 +A−1B∆−1

A CA−1 −A−1B∆−1
A

−∆−1
A CA−1 ∆−1

A

)
, (55)

where we have made use of the Schur complement of A in M . We can also use
the Schur complement of D in M , resulting in(

A B
C D

)−1

=

(
I 0

−D−1C I

)(
∆−1

D 0
0 D−1

)(
I −BD−1

0 I

)
=

(
∆−1

D ∆−1
D BD−1

−D−1C∆−1
D D−1 +D−1C∆−1

D BD−1

)
. (56)

The matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (57)

under the assumption that the involved inverses exist. It is worth noting that the
matrix inversion lemma is sometimes also referred to as the Woodbury matrix
identity, the Sherman-Morrison-Woodbury formula or the Woodbury formula.
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