Manipulating the Multivariate Gaussian Density

Thomas B. Schon and Fredrik Lindsten
Division of Automatic Control
Linkoping University
SE-58183 Linkoping, Sweden.
E-mail: {schon, lindsten}@isy.liu.se

January 11, 2011

Abstract

In these note we provide some important properties of the multivari-
ate Gaussian, which are important building blocks for more sophisticated
probabilistic models. We also illustrate how these properties can be used
to derive the Kalman filter.

1 Introduction

The most common way of parameterizing the multivariate Gaussian (a.k.a. Nor-
mal) density function is according to
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where z € R™ denotes a random vector that is Gaussian distributed, with mean
value € R™ and covariance ¥ € ST, (i.e., the n-dimensional positive definite
cone). Furthermore, z ~ N (u,X) states that the random vector z is Gaussian
with mean p and covariance X. The parameterizing (1) is sometimes referred to
as the moment form. An alternative parameterization of the Gaussian density
is provided by the information form, which is also referred to as the canonical
form or the natural form. This parameterization
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is parameterized by the information vector v and (Fisher) information matrix
A. Tt is straightforward to see the relationship between the two parameteriza-
tions (1) and (2),
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which also reveals the that the parameters used in the information form are
given by a scaled version of the mean,

v=x"'u (4a)

and the inverse of the covariance matrix (sometimes also called the precision
matrix)

A=x"1 (4b)

The moment form (1) and the information form (2) results in different compu-
tations. It is useful to understand these differences in order to derive efficient
algorithms.

2 Partitioned Gaussian Densities

Let us, without loss of generality, assume that random vector z, its mean p and
its covariance X can be partitioned according to
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where for reasons of symmetry Y, = X71,. It is also useful to write down the
partitioned information matrix

-1 Aaa Aab
A=x= (Aba Abb) ’ ()
since this form will provide simpler calculations below. Note that, since the
inverse of a symmetric matrix is also symmetric, we have Aq, = A7, .
We will now derive two important and very useful theorems for partitioned
Gaussian densities. These theorems will explain the two operations marginal-
ization and conditioning.

Theorem 1 (Marginalization) Let the random vector x be Gaussian dis-
tributed according to (1) and let it be partitioned according to (5), then the
marginal density p(z,) is given by

P(a) =N (Za fas Zaa) - (7)
Proof: See Appendix A.1. |

Theorem 2 (Conditioning) Let the random vector x be Gaussian distributed
according to (1) and let it be partitioned according to (5), then the conditional
density p(xq | zp) is given by

p(ma ‘ .'L'b) :N (xa; Ma|b72a|b) ) (83‘)
where
Halb = Ha + z)abzb_bl (Ib - ,LLb)7 (Sb)
Ea|b = E(m - Eabzb_bl Ebaa (8(3)
which using the information matriz can be written,
Lafp = Ha — Mgo Aap(zo — 1), (8d)
Ea\b = Az:al' (86)
Proof: See Appendix A.1. |



3 Affine Transformations

In the previous section we dealt with partitioned Gaussian densities, and derived
the expressions for the marginal and conditional densities expressed in terms of
the parameters of the joint density. We shall now take a different starting point,
namely that we are given the marginal density p(x,) and the conditional density
p(zp | x4) (affine in z,) and derive expressions for the joint density p(z,, ),
the marginal density p(x;) and the conditional density p(z, | zp)-

Theorem 3 (Affine transformation) Assume that x,, as well as x, condi-
tioned on x4, are Gaussian distributed according to

p(xa) =N (xa 5 Mas Za) ) (93‘)
p(fﬂb | 'ra) =N (xba Mz, + b7 Zb\a) s (gb)

where M is a matriz (of appropriate dimension) and b is a constant vector. The
joint distribution of x, and xy is then given by

) = () (e, ) 1) (90)
with
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Proof: See Appendix A.2. |
Combining the results in Theorems 1, 2 and 3 we also get the following
corollary.

Corollary 1 (Affine transformation — marginal and conditional) As-
sume that x,, as well as xp conditioned on x,, are Gaussian distributed according
to

p(xa) =N (l'a 5 Mas Ea) > (103)
p(fEb | xa) =N (xb; Mz, +0, Zb\a) ) (10b>

where M is a matriz (of appropriate dimension) and b is a constant vector. The
marginal density of xy is then given by

p(zp) =N (63 16, 2) (10c)
with
= Mipia +b, (10d)
2y = Sppe + MEMT. (10e)
The conditional density of x, given xp is
p(a | z6) =N (Tas tajps Zapp) » (10f)
with
Halb = Zalp (MTEZ,_@(% —b) + Eglﬂa) = pta + ZaMTE, (2 — b — Mpg),
(10g)
Sap = (2;1 + MTZ;‘CILM)_l =%, — S MTS M, (10h)



4 Example — Kalman filter

Consider the following linear Gaussian state-space model

T = Azy + by + wy, (11a)
yr = Cxy + di + €, (11b)

where
Wi NN(O,Q), €t NN(OvR)7 (12)

and b; and d; are known vectors (e.g. from a known input). Furthermore,
assume that the initial condition is Gaussian according to

x1 ~ N (&1)0, Pyjo).- (13)

As pointed out in the previous section, affine transformations conserve Gaus-
sianity. Hence, the filtering density p(z; | y1.¢) and the 1-step prediction density
p(x¢ | y14—1) will also be Gaussian for any ¢ > 1 (with p(x1 | yo) = p(x1)).

In this probabilistic setting, we can view the Kalman filter as a filter keeping
track of the mean vector and covariance matrix of the filtering density (and the
1-step prediction density). Since these statistics are sufficient for the Gaussian
distribution, the Kalman filter is clearly optimal, since it holds all information
about the filtering density and 1-step prediction density.

To derive that Kalman filter, all that we need is Corollary 1. The derivation
is done inductively. Hence, assume that

p(@e | yr—1) =N (@¢—1; Zeje—1, Prr—1) (14a)
(which, according to (13) is true at ¢ = 1). From (11b) we have
Pt | T, y14—1) = pyelee) = N (e ; Coy + dy, R) . (14b)

By identifying x; <+ x, and y; > xp and using Corollary 1 (the part concerning
the conditional density) we get

plae | yie) = N (@5 Bepp Ppe) (15)
with
Py = Pyy—1 — KiCPyy_y, (16a)
K= Py TS, (16b)
Sy = CPyy—1C" + R. (16¢)
Furthermore,

Ty = Py (CTR?l(yt —d) + (Pt\t—l)iljt\t—l)
= (Pyg—1 — KtCPt|t71)CTR_1(yt —ds) + Pt\t(Pt\tfl)_l-i‘t\tfl
= (Py—1C" —K, Opt\t—lcT)Ril(yt —di) + Pt|t(Pt\t—1)7lft\t—1
—— ————
=KS; =S,—-R
= Ki(S; = Si + R)R™ ' (ye — di) + (Pyje—1 — KiCPrp—1)(Poje—1) ™ By
= Ki(ys — dy) + (I = K:C)Zypp—q
= Tyjp—1 + Ki(ye — dy — Cypq), (17)



which completes the measurement update of the filter.
For the time update, note that by (11a)

P(@ig1 | oY1) = p(@eg1 | ) = N (g1 5 Az + b1, Q) . (18)

From (15) and (18) we can again make use of Corollary 1 (the part concerning
the marginal density). By identifying z; <> x4, 111 <> xp we get

p(l‘t-s-l | ?Jl:t) =N (xt-i-l ; §7t+1\t7Pt+1|t) > (19)

with
Tygp1ye = Ay + by, (20)
Py = APt|tAT +Q, (21)

which completes the time update and the derivation of the Kalman filter.

Remark 1 The extra conditioning on yy.4 in both densities (15) and (18) does
not change the properties of the Gaussians according to Corollary 1. Since we
are conditioning on it in both distributions, y1.4 can be viewed as a constant.



A Proofs

A.1 Partitioned Gaussian Densities

Proof 1 (Proof of Theorem 1) The marginal density p(z,) is by definition
obtained by integrating out the xp variables from the joint density p(zq,xy) ac-
cording to

p@w:/fwmum%, (22)

where
(0, 20) !
Tgy Tp) = ———F—=
PRt B0 = o ryn/2/det s

and ¥ was defined in (5) and the exponent E is given by

exp(F) (23)

1

1
E = _5(3711 - MG)TAaa(aja - Ma) - 5(370, - /J/a)TAab(ajb - ,U/b)

1 1
- §($b — 15) " Npa(Ta — pta) — 5(% — )" Ao (zp — 1y
1 _
=-3 (i Aoy — 22 Moo (1 — Ay Apa(Ta — pa)) — 22 Aapite
+ QMzAabe + /—ll?Abeb + nganUa - ngAaaMa + MgAaaﬂa) (24)
Completing the squares in the above expression results in

1

E= -5z — (u — A Moo (za = 1)) Ao (s — (1 — Ay Moo (20 — 11a)))
45 (A ara — 22T M A Muat + 1o Nao gy At
- %(xaTAaa:va — 227 Agatta + L Naatta)
= _%(l‘b — (b — Ay A (0 — 1)) Ao (w5 — (o — Ay Apa(T0 — p1a)))
2o ) (Mo — Ay ) (i — ) (25)

Using the block matriz inversion provided in (56) we have
E(;al = Naa — AabA&,lAba- (26)
which together with (25) results in

1

p(Ta,p) = W—d\/ﬁ exp(E1) exp(FE2) (27)

where

1 _ _
B = _i(xb - (Nb - AbblAba(xa - Na)))TAbb(xb - (Ub - AbblAba(xa - Ha)))v
(28a)

1 _
E, = _§(xa - ﬂa)T(Aaa - AabAbblAba)(xa — Ha)- (28b)



Now, since Ey is independent of x, we have

1
p(r,) = W/exp(El)dxb exp(FEs).

Since the integral of a density function is equal to one, we have

/exp(El)dﬂcb = (2m)™/2y [det Ay}

which inserted in (29) results in
\/det Ayt
p(x,) = m exp((Za — pa)" Saa (Ta — ta))-
Finally, the determinant property (54b) gives
det ¥ = det ¥yq det(Zpy — Dpa X, Sap)
and the block matriz inversion property (56) provides
Ayt = S0 — Spa 0l S
Now, inserting (32) and (33) into (31) concludes the proof.
Proof 2 (Proof of Theorem 2) We will make use of the fact that

o P(Ta;2p)
el o) =)

which according to the definition (1) is

o det Ebb
p(za | 2p) = \/ m exp(E),

1 _ 1 _
E=-g(r- W) "'E - p) + 5@ = 1) Sy () — n)-

Let us first consider the constant in front of the exponential in (35),

det Xpp
(2m)na/2det X

Using the result on determinants given in (54b) we have

Zaa Eab

det X = det
¢ ¢ <Zba DN

> = det Sy det(Zaq — Sap Xy Soa)

(34)

(37)

(38)

which inserted into (37) results in the following expression for the constant in

front of the exponent

1
(2m)ma/2 det(Zaq — SapXpy Soa)

(39)



Let us now continue by studying the exponent of (35), which using the precision
matriz s given by

= (o A — p) — 5 (o — o) Sy — o)
- *%(ma - ,Ufa)TAaa(xa - ,Ufa) - %(xa - ,Ufa)TAab(:Eb - /~Lb)
— L — 1) Ava (@0 — ) — (2 — 1) (Apy — S — o). (40)

2 2

Reordering the terms in (40) results in

1
E = —ixgl\aa.’)ja + QTZ; (Aaa,ua — Aab(fL‘b — Mb))
1 1 _
- §M§Aaaﬂa + g Nap (= 1) — 5 (@0 = o) (Mop — g ) (w5 — ). (41)

Using the block matriz inversion result (56)
Sy = Avy — ApaA g, Aap (42)

in (41) results in

1
E = _7$TAaa$a + .’17?; (Aaaua - Aab(xb - ub))

2 a
1 1
- §MaTAaaMa + il Aap (5 — ) — 5(331; — 115) " Ava A gy Mg (T — ). (43)
We can now complete the squares, which gives us
1
E= _5 (xa - (Aaaﬂa - Aab(xb - ,U/b)))TAaa (:Ea - (Aaalu/a - Aab(xb - Mb))) .
(44)
Finally, combining (39) and (44) results in
1
p(xa | ) = xp(E) (45)

(2m)/2 det Aad ©

which concludes the proof.

A.2 Affine Transformation
Proof 3 (Proof of Theorem 3) We start by introducing the vector

z= (ib) (46)

for which the joint distribution is given by

(2m)~ (natne)/2

p(x) = p(lL’b | xa)p(xa) = det Eb\a det Ea

e 2 ¥, (47)

where

E=(zxy— Mz, — b)TEb_li(a:b — My —b) + (24 — o) 27 (@0 — p1a).  (48)



Introduce the following variables

€ =2Tq — lha, (49a)
f:,be—M,U/a—b, (49b)

which allows us to write the exponent (48) as
E=(f—-Me)'s, (f — Me) +e''s e

— eT(Msz—lle + 37 e - eTMTEb_‘if — be_‘éMe + szb—‘}Lf

_(e)T MTE;‘iMqLE{;l fMsz—l; (e>
“\f fEb‘liM Ebﬁi f (50)

ARt

T
— Ia*,ufa R—l I’a*,LLa
xp — Mpg, — b xp— Mpg, — b

Furthermore, from (54b) we have that

1 —1 -1 Ty —1 -1 Ty —1 -1
= det R = det (251 ) det (MTSgIM + 57— MTE;I%,, 5500 )

1
— -1 -1\ _
= det (Eb|a) det (%27) = 357 (Sja) det (Sq)

(51)

Hence, from (47), (50) and (51) we can write the joint PDF for x as
)~ (Ratmns)/2 1 _ T _
p(l’) — (ﬂ-)— exp | —= ( Za Ha ) Rfl ( Tq Ha )
Vdet R 2 \\@o — Mpa —b Ty — Mg —b

_ . Ha
(o () )

which concludes the proof.

(52)

B Matrix Identities

This appendix provides some useful results from matrix theory.
Consider the following block matrix

M= (g g) (53)

The following results hold for the determinant

A B _
det (C D> = det Adet(D — CA™'B), (54a)
Ay
= det Ddet(A — BD'C), (54b)
——

Ap



where Ap = A — BD7'C is referred to as the Schur complement of D in M
and Ay = D — CA™!'B is referred to as the Schur complement of A in M.
When the block matrix (53) is invertible its inverse can be written according

A B\ ' (I —A'B\ (At 0 I 0

¢ D) —\o I 0 A \—ca™t I
(AT 4 AT'BATICATY —ATIBALY

- ~AGICAT! ALl ’

where we have made use of the Schur complement of A in M. We can also use
the Schur complement of D in M, resulting in

A B\"' ([ I o\[(ap' 0\ (I —-BD!
¢ p) “\-ptc 1)\ o bp)\o I

_ ARt AL'BD! (56)
~\-D7'CA;' D'+ D 'CAL'BDY)”

to

(55)

The matriz inversion lemma
(A+BCD) ' =A"!'-A'B(C™' + DA™'B)"'DA™, (57)

under the assumption that the involved inverses exist. It is worth noting that the
matrix inversion lemma is sometimes also referred to as the Woodbury matrix
identity, the Sherman-Morrison-Woodbury formula or the Woodbury formula.
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